TOWARDS A PROBABILISTIC ASSESSMENT OF HYPOBARIC DECOMPRESSION SICKNESS TREATMENT

Fitzpatrick DT
HBO Treatment Specialist

Human Research Program Investigators’ Workshop

February 13, 2014
DCS treatment in space

Matching needs to resources.
probabilistic nature of symptoms and symptom resolution

- DCS symptom during EVA is probabilistic;
 no guarantee of a symptom, just a probability.

- Symptom resolution during treatment is also probabilistic;
 no guarantee of symptom resolution, just a probability.

- You maximize the $P(\text{symptom resolution})$ with additional pressure, oxygen, and time.

- Also adjunctive therapy to support tissue recovery.
symptom resolution = bubble dissolution

- Boyle’s Law compression (closed, isothermal, ideal gas system):
 \[P_2 - P_1 = \frac{V_1}{V_2} \times P_1 - P_1 \]
 \[P_2 - P_1 \text{ is } \Delta P, \text{ as psid.} \]

- Bubble-to-tissue N\textsubscript{2} diffusion gradient and the O\textsubscript{2} window:
 \[P_{\text{bub \ N}_2} = P_B + 2\gamma/r + M - P_{\text{bub \ O}_2} - P_{\text{bub \ CO}_2} - P_{\text{bub \ H}_2\text{O}} \]

- Tissue Bubble Dynamics Model integrates both through time as \(\frac{dr}{dt} \):
 \[\frac{dr}{dt} = -\frac{\alpha D}{h} \left(P_B - vt + \frac{2\gamma}{r} + \frac{4}{3} \pi r^3 M - P_t - P_{\text{met}} \right) + \frac{rv}{3} \]
 \[\frac{dr}{dt} = \frac{P_B - vt + \frac{4\gamma}{3r} + \frac{8}{3} \pi r^3 M}{P_B - vt} \]
Tissue Bubble Dynamics Model (TBDM)

- An open, isothermal system where mass enters or leaves.

\[\Delta P = P_1 \times \frac{V_1}{V_2} - P_1 \]

- Note that “time” to achieve a \(\Delta P \) is available from the TBDM.

NASA 1982 - 2009 symptom data

- The JSC Hypobaric DCS Database documents 969 exposures from 47 different altitude tests.
- Symptoms are from 119 subjects diagnosed with DCS.

<table>
<thead>
<tr>
<th>symptom category</th>
<th>symptom resolution details</th>
<th>count</th>
<th>% of 220 symptoms</th>
<th>resolution pressure data available</th>
<th>% of 195 pressure data available</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>resolved at altitude</td>
<td>37</td>
<td>16.8</td>
<td>37</td>
<td>19.0</td>
</tr>
<tr>
<td>B</td>
<td>resolved on repressurization</td>
<td>137</td>
<td>62.2</td>
<td>121</td>
<td>62.0</td>
</tr>
<tr>
<td>C</td>
<td>resolved at site pressure</td>
<td>17</td>
<td>7.7</td>
<td>17</td>
<td>8.7</td>
</tr>
<tr>
<td>D</td>
<td>resolved after HBO for a persistent symptom at site pressure</td>
<td>20</td>
<td>9.1</td>
<td>20</td>
<td>10.2</td>
</tr>
<tr>
<td>E</td>
<td>no treatment pressure information exits</td>
<td>9</td>
<td>4.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>220</td>
<td>100.0</td>
<td>195</td>
<td>100</td>
</tr>
<tr>
<td>F</td>
<td>resolved but then reoccurred or was new and treated with HBO</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
P(sympotm resolution) modeled as a log-logistic function of observed ΔP and two other explanatory variables.

We used 154 symptoms from 119 subjects diagnosed with DCS.

removed 37 that resolved before repress
symptoms linked to TBDM through ΔP

DATA STATS

P(symptom resolution)

computed ΔP

TBDM simulations
- pressure
- oxygen
- time
Regression Results (n=154 Symptoms)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate ± 95% CI</th>
<th>Standard Error*</th>
<th>z-score</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1</td>
<td>0.633 (0.50 to 0.80)</td>
<td>0.077</td>
<td>-3.75</td>
<td><0.001</td>
</tr>
<tr>
<td>B_2</td>
<td>1.682 (1.00 to 2.35)</td>
<td>0.344</td>
<td>4.89</td>
<td><0.001</td>
</tr>
<tr>
<td>AMB</td>
<td>-1.089 (-1.96 to -0.22)</td>
<td>0.444</td>
<td>-2.45</td>
<td>0.014</td>
</tr>
<tr>
<td>T_s (min)</td>
<td>0.00395 (0.001 to 0.007)</td>
<td>0.0015</td>
<td>2.61</td>
<td>0.009</td>
</tr>
</tbody>
</table>

* Symptom dependency considered.

\[
P(\text{symptom resolution}) = \frac{1}{1 + \exp(-\ln(\Delta P) - 1.682 + 1.089 \times \text{AMB} - 0.00395 \times T_s) / 0.633)},
\]

where AMB = 1 if ambulation was as part of the exposure, otherwise AMB = 0; and where T_s is time (min) to onset of a DCS symptom.
Hypobaric DCS Treatment Model Example 1

154 symptoms with 20 HBO
100 ambulation with 3 HBO
54 no ambulation with 17 HBO

\[\Delta P = 14.7 - 4.3 \text{ psia} \]

\[T_s = 120 \text{ min} \]
120 min PB, 6-min ascent to 4.3 psia, DCS 60 min into an ambulatory EVA, 30 min delay, 15 min repress to 14.7 psia, and 60 min GLO.

$$\Delta P = P_1 \times \frac{V_1}{V_2} - P_1$$

$$9.37 = \frac{4.3 \times 1176964 \mu m^3}{370255 \mu m^3} - 4.3$$ after 15 min

$$27.5 = \frac{4.3 \times 1176964 \mu m^3}{159167 \mu m^3} - 4.3$$ after 75 min

<table>
<thead>
<tr>
<th>simulation</th>
<th>symptom onset</th>
<th>BGI</th>
<th>BGI @ repress</th>
<th>computed ΔP</th>
<th>P(symptom resolution) ± 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-hr PB @ 14.7 psia</td>
<td>60</td>
<td>15.0</td>
<td>21.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>repress to 14.7</td>
<td>14.8</td>
<td>9.37</td>
<td>0.90</td>
<td>0.78 – 0.96</td>
<td></td>
</tr>
<tr>
<td>1-hr 100% GLO @ 14.7</td>
<td>11.2</td>
<td>27.5</td>
<td>0.98</td>
<td>0.93 – 0.99</td>
<td></td>
</tr>
</tbody>
</table>
discussion / forward work

• Approaches to validate the model:
 • Our results agree with 12-times more data: 89.0% (121/136) for NASA compared to 92.8% (1,516/1,633) for USAF symptoms that resolved during repressurization (Muehlberger et al. 2004).
 • Results from Duke University micronuclei research.
 • Some data do exist on symptom resolution with GLO (Krause et al. 2000).
 • No data exists on time to symptom resolution with or without GLO.

• The treatment model applies to symptoms detected early with a prompt treatment response.

• Time to symptom resolution is not explicit in the treatment model; it was not available for our symptom data.
 • However, an estimate of resolution time is available from the TBDM.

• Management ultimatelyconcurs on an acceptable P(symptom resolution).
 • The hard work is to balance limited treatment resources with the likelihood of effective treatment.

thank you
Observed ΔP to resolve 138 symptoms compared to the computed ideal gas ΔP from TBDM. Linear regression for ΔP computed = $1.0016 \times \Delta P$ observed – 0.324, $r^2 = 0.977$.
Hypobaric DCS Treatment Model Results

154 symptoms

100 ambulation (historical data)

54 no ambulation (ARGO + PRP data)

a = 60 min DCS
b = 120 min DCS
c = 180 min DCS
d = 240 min DCS

P(symptom resolution) vs. deltaP (psia)

P(symptom resolution) vs. deltaP (psid)
Muehlberger’s ΔP data

<table>
<thead>
<tr>
<th>symptom category</th>
<th>symptom resolution details</th>
<th>treatment pressure data</th>
<th>fraction of total 1,669</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>resolved at altitude</td>
<td>66</td>
<td>3.8</td>
</tr>
<tr>
<td>B</td>
<td>resolved on repressurization</td>
<td>1,433</td>
<td>84.3</td>
</tr>
<tr>
<td>C</td>
<td>resolved on repressurization but without documented resolution pressure</td>
<td>83</td>
<td>4.9</td>
</tr>
<tr>
<td>D</td>
<td>resolved at site pressure</td>
<td>117</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>total symptoms resolved</td>
<td>1,699</td>
<td>100.0</td>
</tr>
</tbody>
</table>

- Of 117 symptoms that resolved at site pressure, 112 were referred to HBO Rx.
- Of 1,433 symptoms that resolved during repress, 52 were referred to HBO Rx.
- For 93% of 1,433 symptoms that resolved during repress the subjects continued with 2-hr of GLO.