
Detecting and Characterizing Semantic
Inconsistencies in Ported Code

Baishakhi Ray, Miryung Kim Suzette Person Neha Rungta
The University of Texas at Austin

Austin , USA
rayb@utexas.edu, miryung@ ece.utexas.edu

NASA Langley Research Center NASA Ames Research Center
Hampton, USA Mountain View. USA

suzette. person @nasa. gov neha. s.rungla@ nasa.gov

Abstract-Adding similar reatures and bug fixes often requires
porting program patches from reference implementations and
adallting them 10 target implementations. Porting errors may
result from faulty adaptations or inconsistent updates. This paper
investigates (I) the tYllCS of porting errors found in tlraetiec,
and (2) how to detect and characteri:.r.c potential porting errors.
Analyzing \"crsion histories, we define live categories of porting
errors, including inrorrecl conlrol- and data-flow, code redun­
dancy, incllnsistent identifier renamings, etc. I.el'eraging this
categllri:r.atilln, we design a static cllntrol- and data-dependent-e
analysis technique, SPA, to deled lind chHracterize porting
inconsistencies. Our evaluation on code from lour open-suurce
projects shows thai SPA can dell-oct porting incunsistencies with
65% to 73 o/~ precision and 90 % recall, and identify inconsistency
types with 58% to 63 % precision and 92% to 100% recall. In a
romparison with two cxisting crror detcction tools, SPA improves
precision by 14 to 17 IICrttntage IJOints.

I. I NTRODUCTION

Developers often port code fmm one implementation to
another in order to implement similar features or bug fixes.
A recent case study of OpenBSD, NctBSD, and FrecBSD
found that J J % to 16% codc changcs arc ported from pecr
projects 11 8]. Also, when libraries and frameworks evolve their
APls, client applications make similar updates to usc the new
APls correctly [3J. In a large code base, typically 10% to
30% of the code is considered as code clones 111), which
often require similar updates during soft ware evolution 11 3].
When porting changes from one implementation to another,
developers generally need to adapt the ported changes to fit
the new context. The code in the reference often serves as
a template that is pasted into the target implementation, and
thcn latcr adaptcd [12 1.

The process of adapting a change to fit another context
can be error-prone, often resulting in porting errors. Chou
et al . report that a significant JXlrtion of operating system
bugs comes from ported edits r4]. In a case study of clone
related bugs, Juergens et al. discover that ,. nearly every
second, unintenlional inconsistent chanRe.~ to clones lead 10
a fault" 11Of. Li et al. idcntify errors in Linux and FrecBSD
resulting from dcvelopers fo rgctting to renamc idcntificrs aftcr
porting code 11 5]. Jiang et a!. 19J present evidence of porting
errors when similar code appears in different contexts. Porting
errors can also happen when deve lopers evol ve JXlrted code
differently [6), 110).

Whcn dcvelopers port codc from a referencc to a target con­
tcxt, thcy usually expect thc portcd eodc to behavc similarly.

Existing tool support for detecting semantic inconsistencies in
ported code is limited. For example, Li et a!. and Juergens
et al. find inconsistent clones using a lexical clone detection
analysis (10), [1 5]. Jiang et al. and Gabel et al. report clone
related bugs by comparing the syntax tree structures for two
clones [6], [9]. Such syntactic and lexical analyses are not
sufficient to detect the semantic inconsistencies arising fmm
updates to the ported code in diffe rent contexts.

The goal of thi s work is to assist developers in porting
ed it~ from one contcxt to another, by dctccting semantic
inconsistencies that may indicate a porting crror. As a first
step towards this goal, we study the extent and ehardcteristics
of porting errors that occur in pmctiee to better understand
the types of porting errors and their fixes. In our study,
we work backwards by first mining the version histories of
Linux and FreeBSD to detect commit messages containing
porting error related keywords. We then analyze three types
of souree code commits- fix-inducing, error-inducing, and
reference-and their corresponding patches. A patch is the set
of program statements that are added, deleled, or modified in
a program vcrsion with respect to its previous version. Notc
thai modified statcment" can also be represcnted as dcleted
statements in the old version and added statements in the
new version. We usc Sliverski et al. 's fix -inducing change
identification method (2 1) to identify the patch that originally
introduced the porting error. We then use Repertoire [1 8] to
fi nd a reference patch that served as the template for the error­
inducing patch. Through manual investigation of the reference
patch, the error-inducing patch, and the fix patch, we find that
many of the porting errors result from incorrect adaptation of
the ported code, including inconsistent identifier renamings,
diffcrent control- and data-flow contcxt" in thc reference and
targct implementations, and codc redundancy.

Lcvemging this characterization of porting errors, we design
and implement SPA, an algorithm to detect and characterize
porting inconsistencies. SPA detects semantic inconsistencies
that arise due to the interactions between program statements
in the ported code and program statements surrounding the
ported code. SPA takes two code patches as input: a reference
patch (Refold and Ref"cw) and a target patch (farold and
Tarn"",). SPA analyzes the reference and target patches to
identify the ported code, and then uses static control- and data­
dependcnce analyses to identify the impact of thc portcd codc
on thc reference and targct contcxt~ . Finally, SPA compares thc

impact of the portcd cooe on thc refcrencc and targct scmantics
to detcct and charactcrize porting inconsistencics.

To evaluate the accuracy of SPA, we perfonn an empirical
evaluation on four large open-source codebases: FreeBSD,
Linux, Eclipse COT, and Mozilla, and compare the result.;; with
two stale-of-the-art tools, DejaVu [6] and Jiang el al. 's elone
related bug dctection tool [9[. Thc result.;; of our study show
that SPA idcntifics scmantic porting inconsistcncies with 65%
to 73% precision and 90% recall and idcntifics inconsistcncy
types with 58% to 63% precision and 92% to 100% recall. SPA
outperforms two relatcd error detcction tools with a precision
improvement of 14 to 17 percentage points.

We make the following contribulions:

• We conduct a comprehensive study of the extent and
characteristics of porting errors reported for real-world
systems. We identify categories of common porting errors
related to inconsistent control fl ow, inconsistent data fl ow,
inconsistent identifier renaming, and code redundancy.

• Leveraging information about commonly found porting
errors, we design and implement a novel algorithm, SPA,
to dctect potential porting crrors based on inconsistent
semantics of ported cooe betwecn the reference and target
context.;;.

• We conduct an cmpirieal cvaluation of SPA'S ability to
detect and characterize porting inconsistencies in four
large open-source eodebases.

The rest of the paper is organized as follows. Section 11
discusses an empirical study of porting errors in Linux and
FreeBSD. Section III discusses SPA'S methooology for de­
tecting and characterizing porting inconsistencies. Section IV
presents an empirical cvaluation of SPA'S capability to detect
and characterize porting inconsistencies. Section V discusses
related work. Finally, Section VI summarizes our work and
directions for futu re work.

II. AN EMPIRtCAL STUDY OF PORTI NG ERRORS

We conduct an empirical study of porting errors documented
in real world projects to better understand the extent and
characteristics of poning errors found in practice. In this study,
we focus on porting errors thai arise when porting a patch to
a similar, hut nOI identical, context within the same project.
We first identify porting errors that are reported and fixed by
developers using the version histories from two large, open­
souree projeet~. We then manually analyze these errors to
undersrnnd the characteristics of the errors as well as the
fixes. Most of the errors found in the artifacts used in our
study can largely be characterized into five categories. In the
remainder of this section, we present the study setup, resul ts,
and a description of the five categories of porting errors. We
first define several key terms used in this work.

Definition 2.1: A program plJtch, 1):= l::.(lJl' "'2)' is the
set of syntactic program differences betwecn two program
versions, "1 and 11-2, where cach clement in the set is an atomic
program statement that corresponds to an edit operation, e.g.,
insert. delete, move, and update.

Definition 2.2: Ported code is a pair of atomic program
statements Sr and Sl in patches Pr and PI respectively, such
that s,. and St are syntactically similar and arc also edited
similarly.

Definition 2.3: Context of ported code is the set of program
statements in a method that are not part of the ported code.

A. Study Method

We mine the commit logs and analyze version histories for
Linux and FreeBSD. Table I shows the size of the two projects
in KLOC, the evolution period under study, and the number
of unique developers who made commit.;; during that period.

Developers often document fixes to porting errors in com­
mit messages. To detect how many hug fi xes are related to
porting, we find commit logs that contain at least one porting
related keyword: copy, cut, paste, or porting, and at
least one error related keyword: error, bug, mistake,
fix, or defect. A sample commit message in FreeBSD
is "Fix cut&paste bug which would resu l t in
a panic " The corresponding code patch fixes the port­
ing error.

To understand the nature of porting errors, we work back­
wards from a porting error fix by extracting three patches:
(a) the fix patch, PI' where the porting error is fixed, (b) the
target patch, Pt, where the porting error is introduced into the
codebase, and (c) the reference patch, Pr, which contains edits
that serve as the template for the ported code. A fix patch PI is
the program paleh associated with the mined commit message.
For example, the fi x patch corresponding to the commit
message shown above, is represented by the colored lines in
the IR-I example in Table II. From the program locations
edited in PI, we use cvs annotate or git blame, to
identify the target patch, PL, which introduced the porting error.
This process is similar to how Sliwerski et al. [21J identify
a fix -inducing patch. We then use the REPERTOtRE tool to
identify a set of candidate reference patches that may serve as
the template for the target patch PI [19] . The reference patch,
by definition, has a commit date prior to the revision date of
a larget palch; hence, we consider patches available until the
target patch date as candidate reference patches. Finally, we
select the reference patch, Pr, through a manual inspection of
the possible candidates. For example, in the IR-I example in
Table 11 where the developer forgot to update an identifier bp
to rabp after porting code fragments from the reference patch,
we expect the reference patch to eonrnin the unaltered eooe
fragment related to bp. When multiple patches contain similar
unaltered code fragments, we select a patch with the maximum
number of similar lines.

B. Poning Errors Characterization

In our study we were able to identify 11 3 and 182 porting
errors documented in FreeBSD and Linux version histories
over the course of 18 years and 3 years respectively. Based
on the porting errors analyzed in our study, we were able to
classify the errors into fi ve different categories. We usc the

codc snippets in Table II to discuss each of the categories of
porting errors beluw.

TABLE I
S TUOY SUll l liCTS

KLOC de\'cJopers years

Linux 14.998
FIT"<'B.<;D 4.479

6,839
4Il5

3
18

ICF: Inconsistent Control Flow. Many porting errurs arisc
from edits that arc ported tu a different control flow context
and are not adapted correctly with respect 10 the context. In
the ICF example shown in Table IT, there is an extra for
loo p, highlighted in gray , in the reference context. Thus,
the conti nue statement in the reference code is iOlended to

match the inner for l oop . [n the target cOOlext, however,
there is only one fo r loop. Thus, the cont inue statement
(marked in red) unintentionally matches the wrong f o r loop.
Thc corresponding fix patch removcs thc continue state­
ment in the target context to fix the error.
IR: Incollsistcnt Rcnaming. Developers often forget to adapt
variable, type, and constant names according to the target
contcxt and these inconsistent renamings lead to porting errors.
This type uf porting error is further split into two sub­
catcgories:

IR·I : Inconsistem renamings of identifier.~. Dcvelopers re­
name some occurrcm;cs of an idcntificr i, but forgct to update
all occurrcm;cs uf the identifier i cunsistently. For example,
pointer bp is updated to pointer rabp three times, missing
the instanccs marked in red in the lR-l example in Table n.

IR·2: Inconsistent renamings of related identifiers. Develop­
ers consistently rename an identifier, but forget to update all
related identifiers. In the IR-2 example in Table n, all instances
of the OFDM related macro TWL_ F'IR5T_ OF'DM_RATE are
updated to the CCK related macro I WL_FJ RS T_CCK­
_ RAT E. However, the variable o f dm and the related macro
lo west-p r esen t _ o f dm are not updated to cc k and the
related macro l owes t -pr esent _ cc k. The corresponding
fix patch replaccs the token o f dm with the token cc k to fix
this error.
IDF: Inconsistent Data Flow. This inconsistency occurs when
developers mistakenly inscrt code to a diffcrent data initializa­
tion cuntext. Ln the lDF example in Table U, the first argument
of the s trcmp method optarg is initialized dilTercntly in the
reference and target edits. optarg is an environment variable
initialized by the getopt : call that parscs the command
line arguments and stores the next argument to optarg.
Hence, the function call ge t opt and thc use of variable
o ptarg should occur as a pair. [n the reference context,
optarg is used after get op t : and thus is initialized
properly. In the target context, however, there is no call to
get opt '. Thus, opta r g is not initialized properly.
RDN: Redundant operations. Developers may inadvertently
introduce redundant operations when they port code to the
wrong place, e.g., whcre it already performs the samc opem­
tion, or thcy may not update ported ediL" correctly to ensure

,

Linu.

r ig. I. Rcla!ionship bc!wccn differcm !ypcs of poning errors

there are no redundant computations in the target context.
In the RON example in Tahle II, a ecxle fragment related
to me mcpy was ported to the samc function body twice under
the same scope in FreeBSD. The corresponding patch removes
me mcpy and the buff e r initialization statements to correct
the redundant opemtions.
OTH: Others. Other porting errors we identified include
incorrect formatting, c.g., indcntation, that docs not match with
the rest of the target cooe structure, or unadapted eommenL"
that do not describe the target code currectly. For example,
in FrceBSD rile src/sys/geom!stripe !g_ stripe h,
version 1.3, a commcnt related to "Co nc a t Name" was
updated not to "Stripe Name " .

C. Distribution of Porting Errors in FreeBSD and Linux

TABLE III
D!STRIB UTION OF PORTI NG ERRORS

tCt' ,. lin' RON 01'1\ Total

Linux 23 74 26 47 25 182
t2.64% 40.66% 14.29% 25.82% 13.74%

FIftB.<; D 9 54 32 ' 4 28 11 3
7.96% 47.78% 28.3 1% 12.39% 24.78%

By manually inspecting the sets of reference patch. Pn

target patch, Pt , porting error fi x patch, PI. associated commit
messages, and bug descriptions, we eategori 7.e the porting
errors into the fi ve categories described above. Table III shows
a distribution of the 11 3 cases of FreeBSD and 182 cases of
Linux across the five categorics of porting errors. Thc results
show that a majori ty of porting errors are due to incunsistent
renaming of identifiers (lR}-47. 78% and 40.66% in FrecBSD
and Linux respectively. The errors related to control (ICF) and
data (lDF) flow inconsistency make up more than 25% of the
total porting errors. The res t of the errors are either due to
redundant operations (RON)-12.39% and 25.82%, or wrong
indentation and commcnts (aTH}-24.78% and 13.74% in
FreeBSD and Unux respectively.

The error catcgories are not mutually exclusive. For exam­
ple. an inconsistent renaming error (IR) may also cause an
inconsistent data initia1i7Ation crror (lDF)-I7.7% and 1.6%
of the porting errors in FreeBSD and Linux respectively are
both types IR and lDF. An inconsistent data ini tialization error
(JDF) may also generate redundant operations (RDN}- I.8%
in FrecBSD and 2.7% in Linux. Somctimes, an inconsistent
control flow (ICF) may also initialize thc data erroneously

TABl.E II
E XAMI'LES OF l'<lIlTING EIIIIOIiS O F lJt Fl'EIiENT TYl'ES

ICF : Ineon,btent Contml Fk,w
FreeBSb commit: s ~cl sysl kernl s c hed_ 4b sd
Log: Fix a copy-paste bug in NON-KSE c""",,
Reference File: s~c/ s ys / ke~n/ 3 ched_4 bsd c
FORF..ACII_ K SEGRP _ I N_PROC p ,): g : I

c, vendon 1,90, Author. david):u, Date: 2CXW ll /14

•
•
•

aw,,):e ~ 0 ;

if):c- > ke_eptick~ _ 0 1
con tinue ;

i f FSHI FT >_ eCPU_SH I F T]

ke ->k e...J'clcpu +- r eal"lathz lOCI
ke-> ke_ cplick " : «

,

Target File: s rc /s ys/ ke r n/sched_ 4b sd c
F OREACILTHRF.AD_ IN_ PROC p, to:

awake _ 0 ;

i f k c - >k ,,_ c pt ie): " _ L 0'
ee1'ltch", e l

if ,'SHIn >- CC[,U~HH-TI t
k e ->kc...J>clcpu +­

fi xPl _ ll

I

r eal"lalhz leOI
ke->I<e_ cplich : «

IR-I . Inmn~istent renaminJ:s uf identifiers
FrecBSD commit: s r c / sys / ke r n/ vf s _ bi o c, version 1.351, Author. phi:, Date: 2003-0 1-05
Log: Fix eu t&pasle bug which would result in a panic because buffer was being biodooo'ed mulliple limes.
Reference File: scc/ sys / ke rn/ vf s _ bi o c ~et File: src/s ys / kern/ vfs~io c

· " ,,'
• o p - >o_j ocl'><l - B' O--'-\!'JIO;

• o p ->b_f.l"g ~ ,- - II_ I N II"' ~ ;

• " v p - > v_ type -- IIOiR : + lt vp->v_ lype - - VCHHi

• IIOP_ SPF.CSTRATEGY ~. " • els e

• IIOP _ S TRATF.GY ~. "];

+ VOI'_ SI' ECS THATEGY vp , bp rabp l ;
+ ehe
+ IIOP _ST IlAT !::GY vp , by> rabp: ;

lR-2. Incoru;islent renami ng5 of related identifiers
Linux colllmit: 5cddOb946a0afebld0364a3654328b046tb8 18a2, Author: Emmanuel Grumbach. Dale: 20 13- 11 -20
Log: r ix a copy paste error in iwLealc_basie_Tates whieh leads to a wrong calculation of CCK basic Tales.
Reference rile: / wi I""l"s~ / i wl wifi Idvml cxon , c Thl")!;ct File: / wi I"" l () ~~ / i wl wi fi/dvml r xon c

+~f r WI._ RATE_ 2 4 IoLI NDEX < !o'"c" Lprc"cnt_ o t dlll

+ o f dlll _ I WL_ RATF._ 2 4IoLMA S K » I WL_ FIRST_

O~TE;

it IWL.ftATE.-l IIoLI NDEX < low""l...J.>re senl_~cl< 1

t>fdfttc cl< I WL.ftATE_ llI\...HASK » I WLJ'IHS T_

~T~;

UW: Inronsistcnt [)ata ~,u ...
FreeBSb commit: s ~cl sbi n/gp t /qpL c, ven;ion I. Iii, AUioor. marcel, Dme: 2006-07-07
l.og: Fix eut-n-pa.'te bug: compare argument s against known alia",., not the global optarg.
Reference Pile: src/sh.in/qpL/gpt c Targel Pile: src/sbi n/ qpl/gpt c
... ~in lnt; argc , c h ll r ' .HgV I p"r~c_uu id o:o " ,t ch ll r ' " , " nid_t ' " ni dl I

whll e c h - gctopt .HgC , argv,
" " l teh ch: t

e ll ,e ' 0 '

: I - -1 :

~f , trcmp opt a r g , " 'pac e " : _ 01 t
opt • FS_OPTSPACE ;

I

,wHch • .• :
e ll,e ' c '
if st rcmp ~ " · ., t i ' l _ CI

uuid_ t efi • GPT_ ENT_TYP E_ EFl ;

I I

RDN: Redunda nt operations
Linux mmmit 19c2fdhab l r1854f2bfcc7Sc326dOf4537ec2a7e, Author. John W. Linville, Dale: 2011-04-29
Log: Looks lii:e a copy-n-paste error, idenlical lines are a few li""s below the o""s removed, .
Reference File: s IC cl s y s Ide v I mxge l i i _ mxge c Target File: s rc l s ys/dev I mxge l i f.Jflxg e c
mc mset ~t"f_tlv , CxO C, , ize o f , t r uet;

mwi fiex_ie_typc~_t~f_time' tamp: : ;

me11lCpy .bu ffer, 't5f~t lv , ' ~z eof t , f_tl v header: I ;
. o u f f e r , • • i z e o f tB f _tlv hea de r l ;

memcpy . bufCer . ' t"f_ val, .Heo f l ~ [_val : I;
. uuffe r +- s 1zeot tsf val l;

(IDf')-----(1.9% in f'rccBSD and 1.6% in Linux. Figure I shows
the distribution of the five porting error types in FreeBSD and
Linux.

D. Threats to Validity

Construct Validity. We rely on the method of mining for
porting error related keywords in the commit messages. It is
possihle that developers may not document porting errors in
commit messages when fixing porting errors.
Infernal Validity. We assume that porting mistakes happen due
to poor adaptation, which may not be always true. The five
types of common porting crrors are derived from the analyzed
data and thus are subject to the experimenter's interpretation
or categorization bias.
External validity. We study porting errors in FrccBSD and
Linux. Both of these projects are written in C. Thus our
categorization of porting errors may be biased towards C
language features. Also, we study porting bugs within a
project boundary. Our observations may differ for cross-system
porting errors. Though our results may not generalize to other
systems, we believe our study of two long-surviving, large
scale operating systems provides meaningful insights.

Ill. SPA ApPROACH

This section presents a semantic porting analysis algorithm,
SPA. It detects and categorizes inconsistencies in sequential
program-flow and incorrect identifier renaming withi n the
scope of a single method. Our key intuition is that semantic
inconsistencies in porting arise due to the interactions between
ported code and the impacted context, when the contexL" differ
between the reference and the target implementations.

A. Overview

An overview of the SPA process is shown in Figure 2.
To detect potential semantic inconsistencies, SPA takes as
input a reference patch that specifics the syntactic differences
between Refold and Refncw and a target patch that specifies
the syntactic differences between Tarmd and Tarncw . We
first extract the set of edit operations, such as insertion and
deletion of program statemenL", from the target (J~ ar) and
reference (Erer) patches. In step 2 of Figure 2, we estimate
which of the edit operations correspond to the set of program
statements that arc ported from Rcf"ew to Tar"ew. The AST
nodes corresponding to the ported statemcnts arc storcd in
the ported node pairs (PNP) set. We then compute the
statements impacted by the ported Slatements in the reference
(Ire() and the larget (Ilar) in step 3. We use standard control
and data dependence analyses to compute the impact of the
ported statements on the other statements (the context). In
step 4, the infonnation computed in the previous steps is used
to detect and categori7.c the potential porting inconsistencies
according to the types presented in Section Il l. Finally, the
inconsistencies are reported in step 5.

IType afH (unadapted indentalion or oommenls) is not included in tile
scope of our diaglKlsi., as this requires textual or t~xical analysis arKl does nol.
involv~ Ihe semanli"" of code f gment~.

Wc illuslrate the SPA approach with an example shown in
Table IV. The cxample is an adapted vcrsion of code fragmcnts
from FreeBSD. The codc is portcd from a reference method,
freebsd4 _ getfsstat, to a target method, osfl _ get ­
fss t at . Lines marked with "+" are the ported code. The
reference and target contexts are syntactically different. In
os fl _ge t fs s tat, the ported lines T ~ and 11 a appear after
two i f statemenL" at lines T 4 and T E. No such i f statements
are present in freebsd4 _ getfsstat. Also, the variable
buf is initialized at line Tl2. Thus, Tl3 is in a different
data initialization context in the target than iL" corresponding
line RE in the reference.

The program statements that are changed between the old
and new versions arc highlighted in gray and the ported ediL"
are marked with "+" in Table IV. Ported ediL" IS, TI0 and
Tl~ in Tarnew correspond to R4 , RS and RE in Ref"ew
respectively. The ported edits in Tar,,~w arc control-dependent
on T4 and data-dependent on Tl, T2 and T12. Also T11,
T14 , and T1S are data-dependent on the ported edits TIC
and Tl3. All of these statements are treated as impacted
statements. Similarly, RI, R2, and R8 are marked as impacted
statements in Refncw. Next, we present the details of how
impacted ported nodes are generated.

B. Identify the Impact of the Ported Code

We present the thrce main steps to identify the porting con­
lext that may impact or may be impacted by the portcd codc.
Thc inputs to SPA are two patches specifying thc syntactic
differences between Refold and Ref"cw and between Tarold

and Tarnew : Plar: = Ll.(Tarold , Tar"cw) and Pre! := .d(Refold,
Ref""w).

Step I . Identify Edits in the Reference and Target: SPA
computes the syntactic edit operations (insert, delete, move,
or uptlate) required on the abstract syntax trees (ASTs) to
transfonn Refold to Ref .. cw and Tarold to Tarnew [5]. This
algorithm is inspired by Meng et aJ.'s edit script generation
and extends its implementation r 161, r 171. For the code shown
in Table IV, three edit (jfL~ert) operations are identified in the
reference patch, and fi ve edit operations are identified in the
target patch. SPA uses the edit operations to generate the edited
nodes Er ,,! and Eta,., corresponding to Ref""", and Tar""",
respectively. An edited node cp is an AST node corresponding
10 an edited srntement in a program patch p. The sourcc lines
corresponding to the edited nodes are highlighted using a gray
background in Table IV.

Step 2. Identify Ported Nodes: SPA delermincs the cor­
respondcnce of statements in the ported code between thc
reference and the target. It is possible that when a developer
adapts ported code from one context to another, she may also
insert or delete additionaJ code; hence, there may be edited
nodes that do not correspond to ported code. A ported node
pair is a pair of AST nodes (r, l) , where r E Ere! and
t E Blar , and rand t have a unique correspondence with
each other. This unique correspondence is detennined by a
function clone that takes two arbitrary AST nodes as input
and outpuL" truc if the AST node types are identical and their

ReI ... , Reletence Ed~

~ = (~"") ~ Node. C .. ~o! on<! ~
~

"" I '" II POOOO N<>do I 'I ' 1111 D.,. Dependent "" ~ I''''''',t Nod .. = ;:-c -~ ~ •• • ~ 11C ... ,iC.,) II mIl! II , ~ T",9'" Ed<' 11,., ,1,.,) . III 1 J:l, " I ~ II , , ,
II I " - ~

''-' ==

Fig. 2. SPA Workfl ow

TARl.E IV
EXAM I'Ll! AI>OI"r EIl ANII SIMI' LlI'I EI) I-'(JIIT1N(J E X AMPLE TA KEN I' IIO M FlllmBS D

R efn ow

Rl in" fr"cbBd4_'1ctf"~t"t ~nt tl a gB , int bufd.e
o' ta t f~ 0 5b : I
~lat[s bu e - nul l ;
lnt e r r o r - 0 ;

R4 + ~"t count - but, h e I ost"t f, sizeot i ;
R5 ~nt 5i,,, _ count . ,tatt, 5i,cof I;

Rt error copyou t o , b, but , , i.e:;

" '" "'
r e turn .,,' ror ;

T l i nt oB fl _ gctf"Btat i nt fl a 'l" , in" bufd . e ,
o , f b t"tf, o ,b: I

su, tf9 b ur - null .
l nt e rro r - C,
i t t l a'l" __ GF.TFSS TAT I

T5 r e turn 0 ;
T E i f fl a 'l' __ WAI T:

T 7 flags - MN T_ WAl l' ;

" T9 + ~nt count - out,;' " I ~,n:'tatf'
sizeo f . .

JUG i nt , i.e count. ,ta tf , , i.eot "
jUl 1£ she > 0 :
jll2 but - new ~tatl " I ;
ill 3 onor copront o~b, buf, <i.e:;

n.
m n.

error cop yout o,b , buf, , ize: ;
nturn e rror i

Ediloo lin~s in a new v'."niion w.r.l. the old v~niion are pres" nl~d in dart back)''lUund. Th" portallin"s begin with +. The ml li""s are inoon,isl"n(sla!t!ment,
delecloo by S t'A.

label s are also similar above a certai n threshold based on bi­
gram similarity (20). A bi-gram similarity detects the ratio of
the total number of hi-grams common between two strings
to the average number of bi-grams representing the strings.
Thc output rangcs from 0 to 1. A high valuc indicates that
strings are either identical or very similar i.e. , whcn developers
rename identifiers lifter porting. We sct thc similarity threshold
to a high value of 0.8 to ensure that the matehed hlbels are
very similar 10 each other, indicating truly ported nodes. OUf

definition of ported node pair is very restrictive to reduce
fal se posilives in the later sleps; we only consider one-to-one
correspondences between a reference and a target node, and
ignore node pairs with one-to-many correspondences.

PNP = { (T, t)IT e Eref f\ t E E,ar f\ clone (T, t)} (I)

PNP is a sct of ported node pairs where each pair (r, t) e
PNP represents a node ported from a reference patch to a tar­

get patch as defined in Equalion I. Each node in the pair (T, t)
is referred to as a ported node. For example. the nodes corre­
sponding to statements R5 and T l a in Table IV have the same
AST node type (declaration) and label (s i 2e= count
+ statfs si2e :), hence done(RS, TJO) is t r u e and
(R5,Tl C) is a ported lWde pair. However, no AST nodes in
Ere! are syntactically similar to the AST node corresponding
to statement TIl in Btar . Therefore, T ll is nO! a member
of any portcd node pairs. All of the statements identified with
"+" in Table IV have corresponding AST nodes in PNP.

Step 3. Identify Impacted Nodes: Next, SPA identifies the
AST nodes in Refn ow and Tarncw that are either impacted by
or impact the semantics of the ported nodes. The impacted
nodes include all of the ported nodes, and the subset of
the contcxt nodes that may affect the porting semantics or
may be affected by the ported nodes. SPA identifies the
impacted nodes using slatic intra-procedural dala- ~md control­
dependence analyses 122J with respect 10 the ported nodes.
This step bears resemblance 10 how Sydil idenlifies the eonlexl
of edit operations using control and data analysis [16].
Data Dependence. Statement 82 is datu dependent on 8 1, if
8(defines a variable tl and 82 uses v, such that there exists
a path from 8 1 to 82 along which 1J is not killed (redefined).
(ontrol Dependence. Statement 82 is cofllrol dependent on
81. if execution of 82 depends on the decision made at 8 1 .

Definition 3.1: A program dependence graph, P DC
(ON, OE), is a set of vertices ON representi ng program
statements, and a set of edges, J) B !;;; 0 N x ON, representing
the control and dUla dependencies between statemenL~.

A control dependence graph (COO) is a sub-graph of a
PDG, where the edges represent control dependencies belween
vertices (program locations), whereas a data dependence graph
(DOG) is a sub-graph of the POG where the edges represent
data dependencies between vertices.

In SPA, we construct the POO vertiees using AST nodes,
each of which represents an atomic program statement, and the
edges correspond to the control and data dependences between
statemenL". The impacted nodes in Ref""", and Tar"".v are

derived from thcir respectivc program dcpendenee graphs,
PDGref and PDGtar . Given a set of vcrtices mapping to
ported nodcs Vp !: Rcf"ew and the PIX:i for Rcf"cw, we
generate the impacted nodes Irc ,. The impacted nodes map
to vertices in the PDG reachable from Vp along the control
and dala dependence edges. Similarly, we find Itar from Vp \;
Tarncw . The vertices corresponding to statements Tt: and Tl
in Table IV are not control or data dependent on ported code,
hence they are not in the impact set.

C. Detect and Categorize Porting Inconsistencies

SPA catcgorizes porting inconsistencics according to the
types prcsented in Scction 11 , using portcd node pairs, P N P,
impacted nodes, l, ,~, and liar, and thc data- and eontrol­
dcpendence information computed in the previous steps.

ICF: Inconsistent Control Flow. To detect ICF inconsis­
tencies, SPA performs the following steps:

• Given a pair of ported nodes, (T, f), we construct isomor­
phic sub-graphs starti ng from r in CDGrer and from t in
C DGtar . A pair of vertices (1Jr , VI)' where 1Jr E C DGrel
and Vt E C DGtar, is isomorphic if (i) the vertex labels
have identical AST types and similar syntactic structures
(e.g., nodcs 'a = a + b' and 'x = y + z' have same AST
type and syntactic structure), and (ii) the vcrtices have the
same relative position with respect to the ported nodes.
We extend Komondoor ct al. 's progmm slicing based
clone detection algorithm 1141 to construct the isomorphic
sub-graphs.

• Detect inconsistent nodes in the context with respect to
(T, t) and add them to the respective inconsistent sets,
JCre! and JCtar. A node in lrp./ (Itar) is inconsistent if
it is reachable from r (t) in CDGrel (CDGlar), but it
is not contained in the respective isomorphic subgraph.

The nodes corresponding to statements R4 and '1'9 in Ta­
ble IV are a ported node pair. R4 is not control dependent
on any node within the method body, while 'Hl is control
dependent on 1'4 along the true control edge. '1'4 is then added
to J Ctar , as it is reachable frum purted node T9 although it
docs not have a corresponding nodc in thc refcrence.

IR: Inconsistent Renaming. To detect this inconsistency,
we first construct the isomorphic sub-graphs on CDGre! and
C DGtar with respect to the ported node pairs, as described
earlier. For each isomorphic node pair in COGr", and COGtar,
we extract the corresponding identifiers, i.e., variables, types,
and method names, and align them based on their syntactic
similarity. For example, given two isomorphic nodes with
labels' a = b + c' and 'x = y + z' , variable a is aligned with
x , variable b is aligned with y, and variable c is aligned with
z. We rank each identifier mapping with a confidence value
based on the number of limes the mapping is encountered.
Usi ng these alignments, we generate two identifier maps:
(a) IdMuPrc/' a map from each reference identifier to its
corresponding target identifiers, and (b) Jd Maptar, a map
from each target identifier to its correspondi ng reference
identifiers. If a one-to-many or a many-to--onc relation is
found in the maps, then an IR inconsistency is detected. Wc

consider identifier mappings with the lowest (or, all when
there is a tic) confidence valucs as the incorrect mappings,
and characterize the vcrtiees in the isomorphic sub-graphs
corresponding to the incorrect mappings as inconsistent.

Table V shows an example of J dM aPre, generated
from Table IV. SPA generates a map entry (os£1 statfs
-ostatfs) from the method signatures and (as f1 statfs
-osflsta tfs) from the isomorphic nodes R4 and '1'9.
Sinec the reference variable as f 1 stat f s maps to two target
variables, osflstatfs and ostatfs, an lR inconsistcncy
is detccted.

TABLE V
I DIlNTII~IlR M APPING FROM T ABLE tV

Nod.. Idenlif .. r

(RI.T1)

(R4.T9)

Sometimes developers forget to update reluted identijierl',
as shown in the IR-2 example in Table II. To detect this
inconsistency, we carry out a similar process at the granularity
of tokens a" opposed to identifiers after sepamting identifier
names using sepamtors '-', ,_., or a eamel case convention.
For cxample, OFDM is mapped to CCK once, while ofdm is
mapped to ofdm twice.

IDF: Inconsistent Data Flow. lOF inconsistency detection
is si milar to our ICF diagnosis but uses data dependence
graphs (DOG) instead of COGs.

In Table IV , R€ and Tl~ are Sll.ltemenl~ corresponding
to 11 ported node pair. In the reference implemcntation, RE
is data dependent on R2 for the definition of variable but.
However, statement 113 in the target implementation is data
dependent on the definition of buf at T2 and 112 . Although
R2 and T2 are isomorphic, the dependence on T12 creates an
additional data dependence in the target implementation that
is not present in the reference implementation. Therefore, the
node corresponding to T12 is added to IC tar .

Similarly, R5 and TIC arc statements corrcsponding to a
ported node pair, and both define variable s i l:' e . However, in
the reference implementation, si2e is used at statement RE ,
while in the target implementation, s i l:' e is used at statements
TIl, T13, and T14. Although RE and T13 are isomorphic,
TIl and Tl 4 create additional data dependences in the
target implementation that are not present in the reference
implementation. Therefore, the nodes corresponding to TIl
and T 14 arc added to IClnr .

RON: Redundant operations. To detect redundant ported
code. SPA checks for pairs of vertices in CDGtar that have
identical labels and types and that are control dependent on
the same impacted vertex. Note that we on ly look for an RON
inconsistency in Tarncw. In Table VI, statements Tl3 and Tl4
in the target implementation have identical syntax , and both
are control dependent on the impacted statement T 4. Thus,
SPA characterizes the nodes corresponding to statements T13

and T 14 a" redundant.

Table VI shows the nodes that are inconsistent with respect
to the ported code in Table IV. along with their corresponding
inconsistency types.

TABU! Vt
C IIA It ACT1!1t!7,.ATlON 0 1' PoRTI",(ll"'CONSISTU"'C !l>S I'" TAIH.Il IV

,-­
(00')
InctlIIMOICftI !denI, Rcnami"l
(IR)

1"ICOIWo0000000l v.I' "OOCI
(LDI'l
lUdundaru roooet
(RDN)

f). Implementation

TII .Tl2.Tl4

TIJ.Tl4

SPA is implemented us ing several existing tool chains. First.
we ex tend LASE 11 71 and Sydit (16), which extract edit scripts
to automate systematic program changes. SPA also extends the
control and data dependence analysis of Sydit to identify the
impact of ported nodes in the reference and target programs
respectively. The dependency analysis uses cry.fta/121, a static
analysis framework to amllyzc Java source code .

I V. EX PER IM ENTAL RESULTS

In this section, we present an empirical evaluation of
SPA'S abil ity 10 detect and diagnose porting inconsistencies
in FrecBSD, U nux, Eclipse COT. and Mozilla. We compare
the aceuracy of the results computed by SPA with the results
computed by two state-of-the-art lools. Jiang et al.'s clone
related error detection tool 19) and DejaVu (6). Jiang et al.
model the context of ported code in tenns of their immediate
precedi ng lines, even if the context does nOl have any control
or data dependence on ported code. Though DejaVu eXlends
Jiang el a l. by re fi ning clone detection results to detemline
ported code, it still suffers from the same limitation as Jiang
et al., lL~ Ihe context is ident ified based on physical location
proximity not on control and datn now dependences with the
ported code.

We also compute SPA'S accuracy to characterize potential
inconsistencies based on Ule categories defined in Section U.
To this end we investigate two research questions:

• RQI. Can SPA aceumtcly detect porting inconsistencies?
• RQ2. Can SPA uceumtcly categorize differcnt types of

porting inconsisteneics?

A. Srudy Subjects

To evaluate SPA, we use porting cxample.<; from four dif­
ferent projects: FrecBSD, Linux. Eclipse COT, and Mozilla.
Execpt for MozilJa, the reference and target patches for eaeh
art ifact are computed using REPERTOI RE (18). From these. we
randomly select (a) 20 examples [rom FreeBSD. (b) 10 exam­
ples from Linux, (c) 60 examples from Eclipse CDT that are
ported from COT versions CDT_2_0 to CDT_8_1 _ 1, and (d)
42 Mozilla examples from the annotated data set of copy-pasle
errors provided by Gabel c t al. 161. The FreeBSD and Unux
artifacts are from the data sel" used in Section II. To retrieve
a large number of porting instances, we choose CDT_2_C
and CDT_E_l_l versions which are 98 months apart. The

Mozilla examples were obtained from DcjaVu's annotated data
setl , because Dcjavu is not an open-souree tool. Ln the Morilla
examples, we treat an enti re progr.un as a progmm patch
whose old version is empty, because SPA works on program
patches as opposed to entire programs. We use a combination
of commit logs and manual inspection to annOlate the types of
potent ial port ing errors in selected target patches of the subject
arti facts.

The current version of SPA analyzes only Java souree code,
so we convert the C and C++ porting examples from Linux,
FreeBSD and M07.i lla examples using a free a c++ 10 Java
code converter (II.

B. Study Methodology

We measure SI'A'S cupability to detect and categori ze port­
ing errors in terms of precision and recall. For each error
type c defined in Section II , suppose that S is the set of
examples where a porting inconsistcney is detected by SPA and
it~ error type is reported by SPA to be c. Suppose that A is the
set of examples where a porting inconsistency is manually
detennincd to be of type c. Then thc precision and recall
of SPA in categorizing JXIrting inconsistencies are defined as
follows:

Precbiion. the perecntage of porting ineonsislencie."IAf Iff!
e found by SPA that are also known to be type e i.e., ~

Recall. the pereentage of the Icnown inconsistencies of trre

('" which are also found to be type e by SPA, i.e., IAI~IS
To evaluate the accur.tcy of SPA'S error detcetion capability,

we calculate precision and recall wi thout considering individ­
ual error types.

C. Study Res/l/u and Discussions

RQ I. Can SI'A accurately detect porting inconsistencies?
We compare SPA'S ability to detect porting inconsistencies

with liang e t a l. 's clone related bug detection algori thm 19P
and DejaVu [6J. Tuble VO sununarizes the comparison of SPA
with Jiang et at using the Eclipse COT artifact and with
DejaVu on the Mozilla examples. The first row represents the
number of potential porting errors, regardless of error type,
that were detected by the respective tools. We also report the
number of fal se posit ivc.<;, false negatives, precision, and recall
of the error detcetion capability of each tool . The re.<;ul ts of our
study show that SI'A improves the error detection capabiliti c.~

considembly over Jiang el a t SPA improve.<; the precision from
48% to 65%. and marginally improves the recall from 87% to
90%.

Out of the 42 randomly selected examples from the DejaVu
annotated MoziJla dma sel, our manual inspection shows that
only 25 of them eont:lin true porting inconsistencies. Thus,
DcjaVu's precis ion is 59.52%. For the same data sct, SPA
reports inconsis tencies for 34 examples. Thus, SPA'S precision

l hll p:Jlwwwcsif.C$. LiCdavi S.edul- gabcVresearchidejavu_mozilla.zip
)Jiang et al.·s clune okleelor Deckard and the associated clune bug okteelor

were duwnload.:t.I from hl1ps:llgilhub.cumlskyhcwerlDechrd.

in detecting errors on the Mozilla data set is 73.53% as
shown in Table vn. Because this data set docs nut cuntain
any examples where DcjaVu fails to report an inconsistency,
we are unable to assess the number of faJse negatives for
either DejaVu or SPA. Furthennore, because our comparison
is limited to the data set where DejaVu already found porting
inconsistencies, the precision of SPA could be lower if the
comparison was done on a different data set.

We fin d that SPA reduces false positives over Jiang et al .'s
tool and OejaVu in 14 and 8 cases respectively. For example,
consider a case when a variable is initial ized differently in the
referenec and targct contcxts. Later, both the referenec and
the target contexts reinitialize the variable in the same manncr
before using it in the ported code. In this case, SPA correctly
does not report any inconsistency unlike other tools, because
there is no data now between the inconsistent initialization
and the ported code.

The cases where all three tools incorrectly detect inconsis­
tencies include porting code from a whil e comext to a f or
context, porting code from an if context to a switch-case
context, ctc.

TABLE VII
INCO NS ISTE NCY DETECTION RESU LTS FOR ECLIPSE eDT AND MOZILLA

Eclipse CDT Mo~illa

SPA Jia" I('s TIKlt SPA IkjaVu

Detected 43 56 34 42
Fatse Positive IS 29 9 17
False Negative 3 4
Precision 65. 11 % 411.2 1% 73.53%· 59.52%·
Recall 90.32% IIHJ9%

0100 companson IS done on 100 dala sct whCi'C OCJaVu already rcpot1ed
porting errors.

RQ2. Can S PA accurately categorize difTCr£nt typcs of
purting inconsistcncies?

Table VlII shows the precision and recall for SPA III

categorizing potential porting errors in FreeBSO and Linux
for the error types JCF, IR-I , lR-2, IDF, and RON. SPA
has precision ranging from 50% for ICF to 100% for RDN.
The recall for SPA ranges from 62.5% for RDN to 100% for
ICF and IDF w.r.1. the porting errors reported in the version
histories (see 2nd row in Table VIlI). Version history based
evaluation is often conservative in the sense that when there is

TAIl LE VIII
I NCONSISTENC Y Cl III RIlCTE IlI ZIlTlON II E.~ U I.T.~ ON FltmlHS D liND LlNUX

ICY fR-t fR-l lOY RDN

Sf"1I Detected 10 8 6 9 ,
!'rom commit logs , , 5 6 ,
Precisi on SO% 111.5% 66.66% 66.66% 100%
Recall 100% 81.5% 80% 100% 62.5%

Manu all y annotated , , , 8 8
Precision '''' 111.5% 66.66% 111.5% 100%
Recall 100% 111.5% 80% 100% 62.5%

no mention of porting errors in the commit messages, it docs
not necessarily imply thc absenec of porting ineonsistencics.
To uvereome this limitation, we cumpare SPA results against
the type and location of inconsistencies that were identified
by manual inspection of individual patches. The comparison
against this annotated set is shown in Rows 5-7 in Table VIII.

Table IX summarizes the number of porting inconsistencies
for each error type, and the precision and recall based on the
manually identified error types for Eclipse COT and Mozilla
data sets. In Eclipse COT, SPA detects and characterizes 62
porting inconsistencies- 77% arc lCF, 16% are JR-I , J2% arc
IR-2, and 40% are IDP. In Mozilla, SPA detects 54 instances
of porting incunsistencies, of which 28%, 22%, 7%, and 43%
arc of type JCF, IR- I, fR-2, and IDF respectively. No RON
inconsistency is reported in these two data sets. On average,
SPA achieves 58% precision and 92% recall in Eclipse COT,
and 63% precision and 100% recall in MoziUa data set.

In detecting ICF inconsistencies, SPA may report fal se
posilives when, for example, code is ported from a f or
block to an equivalent while block, because these two loops
have different syntaxes. SPA may gencrale a false positive of
type JR-I when the relative ordering of program variables is
changed, but the semantics remain unchanged, e.g., a statemcnt
x = x+y in the reference implementation is modified to x = y+x
in thc target. When characterizing fR-2 inconsistencics, SPA
may report false positives when, for instance, the names cannot
be tokenized properly due to inconsistent naming conventions.
For example, if a ported node pair contains the variables
fooBar and foobar, SPA correctly splits the first one into
faa and Bar but does not split fooba r . Thus, SPA mi saligns
the tokens. In the case of IOF inconsistencies, SPA may report
a fal se positive when, for example, a variable is declared
and defined in a single program statement in the reference,
but the declamtion and definition arc separate statements in
the target. Here, SPA reports an inconsistency because the
AST node types are different (declaration versus assignment).
With respect to false negatives, SPA is not able to detect
redundancies that require a deeper semantic analysis, such as
redundant locking calls in a concurrency construct.

In spite of these limitations, there are some suc­
cess stories. A bug was fixed in FreeBSD souree fil e:
src/sys/dev/rnxge/i f _ rnxge c, version 1.27, with a
commit message: ,. Fix an mhuf leak caused hy a Cul&pasle
hug where the small ring s mhuf~ were never freed. hw the
hig ring was freed twice". A buffer rx_ big was mistakenly
freed twice. SPA detects this bug successfully and categorizes
it as an RON bug, which is also confinmxl by the dcvelopers
and took 26 releases and 432 days to detect and fix. Jiang et
aI 's tool is not able to detect this bug since it does not handle
redundancy.

Another identifier renaming bug was fixed in Linux
at commit id 2b9460. Code was ported from method
rnl x4 _ ib-post_ send to rnl x4 _ ib-post_ r ecv, but
variable send_ cq was never updated to recv_ cq. This bug
caused a queue overflow in the infiniband driver module
(a high-speed network driver) and took 974 days to fix. SPA

TABLE [X
SPA INCONSIS TENCY DIAGNOSIS RESULTS

Eclipse CI>T
ICF IR-I IR-2 lDF

SI'A Deted oo 3.> (53%) 7 (11 %) 5 (8%) 17 (27%)
Annotated 23 7 4 ,
Fa[se Positive 12 2 2 12
False Negative 2 2 I 0
Prcdsion 63.63% 7 [.43% 60% 29.4 1%
Recall 9 1.30% 7 1.43% 75% 100% - , .. oo'

successfull y detected this error. Olher tools were unable to
detecl this error because they do not check whether related
variables were updated eonsistenlly (lR-2).

V. R EL ATED WORK

Juergens ct al. 11 0J conduct an empirical study on the
impact of inconsistent clones in a code base. They detect
inconsistent clones using a suffix- tree based, lex.icaJ clone
deteclion algorithm. Their interviews with developers confino
that inconsislencies in the found clones are indeed bugs and
report that ,. nearly every second, unintentional incon.~istent

chanKes to clone.~ lead to a fault."
Chou et al. show that porting is an important source of

bugs in operating systems [4] . In 65% of the ported code, at
least one identifier is renamed, and in 27% cases at least one
statement is inserted, modified, or deleted 1151. An incolTect
adaptation of ported code often leads to porting errors 19]. This
observation is aligned with our findings-where we find 113
and 182 porting crrors by mining FrecBSO and Linux. version
histories respectively.

Using CP-Miner, a mi ning based clone delection tool, Li et
a!. find 28 and 23 elTors in Linux and FreeBSD respectively,
which developers created by forgetting to rename identifiers
consistently after copy and paste 11 51. Jablonski et al. 171
detect similar errors by tmcking eopy-paste cooc within an
Eclipse IDE and by comparing the corresponding AST rep­
rescnrntions. Though the rcsults of these studies are aligned
with our fi ndings of IR inconsistencies, we observe that such
inconsistent renaming is a special case of a more general cate­
gory of porting inconsislencies-forgetting to adapt identifiers
according to the target contexi (IR- l and IR-2).

SPA detccts a broader scope of inconsistcnt rcnamings by
tokenizing function names, fil e names, and identifier names us­
ing a camel case naming convention and mapping correspond­
ing IOkens. Our algorithm detects an inconsistency when a
loken in one context maps to multiple lokens in the other con­
text. For example, when code is ported from Expo r t ~ ava
to Imp o rt ~ ava, SPA checks whether all names related
to expor t are updated to import .

Jiang el al. show that an inconsistem context can also
cause porting errors [9] . However, their definition of context is
limited to the innennosl comrol How construct surrounding the
cloned code. They identify syntactic clones using AST level
similarity 18], and then detect inconsistencies by comparing
the contexts. While their diagnosis partially overlaps with our

Mozina
Total ICF IR- I IR-2 IDF Total

62 15(28%) 12 (22%) 4 (7%) 23 (43%) " 39 13 6 2 13 34
26 2 6 2 10 20
3 0 0 0 0 0

58.06% 86.66% 50.0% 51\0% 56.52% 62.96%
92.3 1%

I_
100% 100% 100% 100%

1l1C<""'o;tcncy

categori7.ation of porting errors (ICF and IR- I), they do not
report renaming errors on groups of identifiers (IR-2), data
flow inconsistencies (IDF), or redundant opemtions (RON).
Also, their error detection analysis is purely syntactic, and
thus suffers from a higher rate of false positivcs than our
semantic, control- and data-flow based approach. SPA reports
17 percentage point better precision and 3 percentage point
more recall in detecting porting inconsistencies than Jiang et
al. on the Eclipse COT data set.

Deja Vu extends the work by Jiang et a!. by using severaJ
filtering heurislics, such as assessing textual similarity and
pruning non-cloned contexts, to improve its precision [6].
As shown in our evaluation, SPA'S error detection still out­
performs DejaVu with 14 percemage point better precision.
Also, DejaVu does nOI report potential error types, while SPA
automatically chamcterizes the detected inconsistencies to hclp
developers detect porting errors.

VI. C ONCLUSION

When porting code from one contexi to another, the se­
mantics of the ported code often change due to differences
in the surrounding comexts. Developers may overlook such
subtle differences, inadvertently creating a porting error. By
analyzing the version histories for Linux and FrccBSD, wc
identify five common categories of porting errors, and then usc
this categorization to design SPA, a novcl algorithm to detect
and characterize semantic inconsistencies in ported cooe. Our
evaluation of SPA on seveml large open-source code bases
shows that SPA can detect porting inconsistencies with high
precision and recall , and it outperfonns the precision of two
state-of-the-art techniques with 14 to 17 percentage point.

As part of our futu re work, we plan to investigate methods
for further reducing fa lse positives, such as comparing the
dynamic program behaviors of ported code. Based on the
observation that not all inconsistencies lead to an error, we
also plan to investigate heuristics to rank the inconsistencies
based on their error potemial. Finally, we plan to integrate SPA
with an integmted devclopment environment so that developers
can detect porting inconsistencies during the porting process.

ACKNOWL EDGMENT

We thank Na Meng for the discussions that inspired the
design of the SPA algorithm and for her help in reusing the
implementation of Sydit and LASE. This work was supported
in part by the National Science Foundation under gmnts CCF-
114939 1, CCF-1 11 7902, SHF-09 J08 1 8, and CNS-1 239498.

ReFERENC ES

III c++ 10 java converler: hup:lfwww.tllng iblewftwaresolutions.oom.
121 Crystal a stalic analysis framewort for edocalioo and resean:h:

hup:Jfoode.google.comIplcrystlilsaf/.
131 R. AI -Ekram. C . Kaps.er. R. Holt. and M. Godfrey. Cloning by accidenl:

an empirical study of source cock cloning "'-"'US'! !IOI'tware "Y"1em<. In
£mpiricuJ S"/"'·a~ EII~int:t:rintl, 2005 .• page 10 !'P., nov. 2005.

14] A. Chou. J. Yang. 8 . Chelf. S. Hal lem. and D. Engler. An empirical
... udy of operuling systems mur.!. In Proct!edinxs ofrM eiXlu""",II AeM
rymposium (.... OpullIinX syslem.< principles. SOSP ·01 . pages 73--88,
New York, NY, USA. 2001. ACM.

lSI B. F1uri, M. Wijrsch. M. Pinzger. aoo H. C. Gal l. Change distilling­
Iree differencing for fine-grained source code change extraction. IEEE
TrnlUllCliQIIS (}11 Sofl"'Wll Enginuring, 33(11): 18. November 2007.

161 M. Gabel, J. Yang, Y. Yu. M. GoIdszmidl, and Z. Suo Scalable
and sySlemalic detcclion o r buggy inconsistencies in source code, In
Proct!edings Q/ille AeM i"'ertWliQlla/ ron/ul!nCt! Qn Objecl Qrie",ed
programming sySlem$ /(lI1gU(lgU and appficaliQtlS. OOPSLA · 10. pages
175-190. New York . NY. USA, 2010. ACM.

171 P. Jablonski and f) . I~ou . Cren: a 1001 for loading copy-and-pa<le code
c lones aoo renaming i<lenlifiers consi.,lently in the i<le. In I'm<:uding .•
of Ille 2007 OOI'SIA "·""bll",,, on ee/ip .• e lechlU)logy eXdUlnge, eclirse
·07, pages 16-20 . Nt."W York. NY. USA. 2007. ACM.

181 L. Jiang. G. Misherghi. Z. Suo ~nd S. Glondu. Deckard: Scalahle and
accurate tree-hased tJclC(.1ion of code clOIle.'. In f'rocudings oflM 29111
i",enwlimwl evnlelV!nctI , !iv11W<l1V! Engineering. ICSE '07. pages 96-
lOS. Washi ngton, DC, USA. 2007. IEEE COl11puk.T Socicly.

191 L Jiang, Z. Su, and E. Chiu. Contellt-bascd delcelion of clone-related
bugs. In E.S£C·FS£ '07; Procudingt of liu! lite 6111 joinl muling of
1M &ropron !iv1''''U1V! Enginuring Con/t!fI!nct! <!lid 1M ACM SIGSO fT
symposium Oft Tht! /~lif)IIJ/ of so{t"~If"t! enginuring, pages S5--64.
New York, NY. USA. 2007. ACM.

1101 E. Juergens. F. Ikissenboe.::k, U. Ilummel, and S. Wagner. Do rode
clonc:s maller" In Proc""di"IJ1 of tilt! 31.11 IniertUllWNU Cotr/t!fI!tlCe
0fI Soft" "D1'"t! Engillt!t!ring. IC.<; E ·09, pages 485----495, Washington, OC,
USA, 2009. IEEE Compukr Society.

I II I T. Kamiya, S. Kusumoto. and K. I"""",. CCFinder: A mullil inguislic
token-h;a.'<Cd cock clone <lelCCtion syskm for louge scale soun:e cock.
11::1:;1:; 1"ratUUCf;/?IU I Sn/IW<lf"t! EIIgin""ring. 28(7):654----670. 2002.

11 21 M. Kim. 1_ Bergman, T. Lau. and D. Notki n. An etlmogoaphic
study .. f cupy and pa.~tt progr.mming Jlf".K.1K:e. in <><>pl . In ISES£
(#: Proceedinll' 0/ tile 2OfJ.I InlenwlilltUll S)'mposiwn QII Empirical

Sn{/W(lF't! £J!gillt!t!r1ng, pages 83-92. W hin),'Ioo, DC, USA, 2004. [EEE
Compute.- Society.

r 131 M. Kim, V. Sa:caw_t D. NOlkin. and G. Murphy. An empirical study
o f code clone genealogies. In ESEClFSE·I1; Proc""dings 01 1M
IOtil £ uropt!lllf Sofj"~""t! Enginet!ring Con{tffl!fIU Mid joinl/)' "'ilh 13111
ACM SIGSOfT Inlef1WliOtWI Symposium on fOutrtkuioru 01 Sofj,,-aF't!
Engi"""ring. pages 187- 196, New York.. NY, USA. 2005. ACM.

r 141 R. Komondoor and S. l forwib"~ Semantics_preserving procedure ClI IIl1C­
lioo. In 1'01'1. 00: Proc""dingl of 1M 271h ACM SIGPI..AN-SIGACT"
Sympos,·"m on Pri...:;ples of Programming lAnguages. pages IS5-I69,
New York . NY. USA. 2(J(J(). ACM Press.

]l SI 7~ Li. S. Lu. S. Myagmar. and Y. 71tou. Cp-miDeIC a tool for linding
copy-paste aoo related hugs in """oating 5}'!'tem cock. In Pm<:eedings
"I lire 6/11 ron/eF't!nCl! IHI Symposium Oft O~arling Syslem.J iHsign of:
lmp/e_nl/l/;()tI - .."Iu_ 6. 05DI"04. pagel! 20----20. Berkeley, CA, USA,
2004. USENIX As.wc;alioo.

[161 N. Meng, M. Kim, and K. S. McKinley. Systematic editing: generating
progrom transfonnations from an example. [n Procudings 0/ lire
32nd ACM SIGPU,N clJII/ullnctf UIl Progrumming language design ,urd
imp/emt!nlllliUll. [' LDI ' 11 , pages 329--342, New York. NY, USA, 20 11 .
ACM.

1171 N. Meng. M. Kim, and K. S. McKi nley. Lase: localing and applyitlg
syslematic edit~ by learning ff'Q1II e~alllpies. In Procudings ollhe 2013
In/Un/llioMI CQIIle""nu on SoII"11F't! F",ginuring, ICSE · 13, pages
502- S II , I'iscalaway. NJ . USA. 20 13. IEEE Press.

1181 8 . Kay aoo M. Kim. A ca.o;c study ofcn>:S.~-.ystelll porting in forked
projects. In I'roc~t!dingJ "'(rile ACM SlGSOJ<T 20lh IntertUllimwl
Sytnllllsium ",n 1M fOundalions of So(nmF't! En1l.illt!ering. FSE · 12, pag""
53: 1- 53:1 1. New Yon:. NY, USA. 20 12. ACM.

119 1 B. Ray, C. Wiley. and M. Kim. Reper1uire: A cros.'<-system porting
analyi 1001 for forked software projects. In FSE-20: ACM SIGSOfT

1M 20tll IntertUll;DMJ Symposium /?II the I'oundLilinns nf Sofr-.."D~
Eng;lIt!tfring. ACM. 2012, to appear.

1201 Ii M. Kiseman and A. R. Han A conleJ<tuai poslp"-,ccssing symm
for error com:clion u.~ing binary n·gr.uns. 1£££ ·Ira..... CompUl. ,
23(S):4l!O--493, May 1974.

121] J. Sl iwer.<k i, T. Zimmennatln. and A. Zeller. When do changes induce
lil<Cs? In J'roc""dinIlJ of tlte 2005 international worlcslwp on Mining
W/I""Df"t! rrposi/()rit!S, MSR ·M. pages I- S, New York, NY. USA. 2OOS.
ACM.

1221 M . Weiser. I'rogr.utl slicing. In Pwcudinp o/IM 5111 inlt!nwlional CtJII­

/e~nCt! Oft Sn/I""/lF't! engintuing, ICSE '8 1. pages 43~9, Piscataway.
NJ, USA, 198 1. IEEE Press.

