
Temporal Precedence Checking for Switched Models

and its Application to a Parallel Landing Protocol

Parasara Sridhar Duggirala1, Le Wang1, Sayan Mitra1, Mahesh Viswanathan1,
and César Muñoz2

1 University of Illinois at Urbana Champaign,
{duggira3,lewang2,mitras,vmahesh}@illinois.edu

2 NASA,
cesar.a.munoz@nasa.gov

Abstract. This paper presents an algorithm for checking temporal prece-
dence properties of nonlinear switched systems. This class of properties
subsume bounded safety and capture requirements about visiting a se-
quence of predicates within given time intervals. The algorithm handles
nonlinear predicates that arise from dynamics-based predictions used in
alerting protocols for state-of-the-art transportation systems. It is sound
and complete for nonlinear switch systems that robustly satisfy the given
property. The algorithm is implemented in the Compare Execute Check
Engine (C2E2) using validated simulations. As a case study, a simplified
model of an alerting system for closely spaced parallel runways is con-
sidered. The proposed approach is applied to this model to check safety
properties of the alerting logic for different operating conditions such as
initial velocities, bank angles, aircraft longitudinal separation, and run-
way separation.

1 Introduction

Dynamic analysis presents a scalable alternative to static analysis for models
with nonlinear dynamics. The basic procedure for dynamic safety verification
has three building blocks: (a) a simulation engine, (b) a generalization or bloat-
ing procedure, and (c) a satisfiability checker. The simulation engine generates
validated simulations of the model with some rigorous error bounds. The gen-
eralization procedure uses additional model information to over-approximate
bounded-time reach sets from the simulations. This additional model informa-
tion could be, for example, statically computed Lipschitz constants [11], con-
traction metrics [7] or more general designer-provided annotations [4]. Finally,
the approximation is checked by a satisfiability procedure for inferring safety
or for iteratively refining its precision. With these three pieces it is possible to
design sound and relatively complete algorithms for bounded time safety ver-
ification that also scale to moderately high-dimensional models [4].

This paper proposes a new algorithm that extends the reach of the above
procedure in two significant ways. First, the new algorithm verifies temporal

2

precedence properties which generalize bounded safety. A model A satisfies tem-
poral precedence P1 ≺b P2 if along every trajectory of A, for any time at which
the predicate P2 holds, there exists an instant of time, at least b time units sooner,
where the predicate P1 must hold. The key subroutine in the new verification
algorithm uses a simulation-based reach set approximation procedure for es-
timating the time intervals over which the predicates P1 and P2 may or must
hold. These estimates are constructed so that the algorithm is sound. The al-
gorithm is guaranteed to terminate whenever A satisfies the given property
robustly (relatively complete). That is, not only does every trajectory ξ satisfy
P1 ≺b P2, but any small time-shifts and value perturbations of ξ also satisfy
P1 ≺b P2. Such relative completeness guarantees usually have the most preci-
sion that one can hope for in any formal analysis of models involving physical
quantities.

Secondly, a new approach to checking satisfiability of nonlinear guarantee
predicates [8] is proposed. If P1 and P2 in the above type of temporal prece-
dence property are in propositional logic or uses linear arithmetic, then exist-
ing solvers can efficiently check whether a set of states satisfy them. On the
other hand, if they are written as ∃t > 0, fp(x, t) > 0, where fp is a nonlinear
real-valued function, then the options are limited. Quantifier elimination is an
expensive option, but even that is feasible only if fp has a closed form definition
of a special form (such as polynomial functions). If fp is implicitly defined as the
solution of a set of ODEs with no analytical solution then quantifier elimination
is impossible. This paper provides a sound and relatively complete procedure
for checking bounded time guarantee predicates using simulation-based over-
approximations of fp(x, t).

The new algorithm is used in the analysis of an interesting and difficult
verification problem arising from a parallel landing protocol. The Simplified
Aircraft-based Paired Approach (SAPA) [5] is an advanced operational concept
that enables dependent approaches in closely spaced parallel runways. In the
presence of blundering aircraft, the SAPA procedure relies on an alerting algo-
rithm called Adjacent Landing Alerting System (ALAS) [10]. ALAS uses linear
and nonlinear projections of the current aircraft positions, velocity vectors, and
bank angles to detect possible conflicts between the landing aircraft. Given the
nonlinear characteristics of the ALAS logic, finding operating conditions under
which the SAPA/ALAS protocol satisfy some safety properties is a challenging
problem.

This paper presents a simplified model, written as a switched system, of the
SAPA/ALAS protocol. The safety properties that are considered on this model
state that an alert is issued at least b seconds before an unsafe scenario is en-
countered. These properties are specified as temporal precedence properties of
the form Alert ≺b Unsafe. The proposed verification algorithm is applied to this
model to formally check these kinds of safety properties for various aircraft and
runway configurations.

3

2 System Models and Properties

For a vector v in R
n, |v| stands for �2-norm. Given intervals I ,I ′, the relation

I < I ′ holds iff ∀v ∈ I, ∀v′ ∈ I ′, v < v′. For a real number b, I−b = {v−b|v ∈ I}.
Subtraction operation over intervals is defined as, I−I ′ = {v−v′ |v ∈ I, v′ ∈ I ′}.
I×I ′ = {v×v′ |v ∈ I, v′ ∈ I ′}. For δ ∈ R≥0 and x ∈ R

n, Bδ(x) ⊆ R
n is the closed

ball with radius δ centered at x. For a set S ⊆ R
n, Bδ(S) = ∪x∈SBδ(v). For any

function V : Rn×R
n → R≥0, given a δ > 0, BV

δ (x) = {y | V (x, y) ≤ δ}. For a set
S ⊆ R

n, BV
δ (S) = ∪x∈SB

V
δ (x). For a bounded set A, dia(A) = supx,y∈A |x − y|

denotes the diameter of A.
A real-valued function α : R≥0
→ R≥0 is called a class K function if α(0) = 0

and α is strictly increasing. It is a class K∞ function if additionally α(x) → ∞
as x → ∞. For a function h : R≥0 → R

n and a positive real δ > 0, the δ-left
shift of h is the function hδ : R≥0 → R

n defined as hδ(t) = h(t + δ) for any
t ∈ R≥0. A δ-perturbation of h is any function g : R≥0 → R

n such that for all t,
|g(t)−h(t)| < δ. A càdlàg function is a function which is continuous from the right
and has a limit from the left for every element in its domain.

2.1 The Switched System Model

This paper uses the switch system formalism [6] for modeling continuous sys-
tems. The evolution of an n dimensional switched system is specified by a col-
lection of ordinary differential equations (ODEs) also called as modes or locations
indexed by a set I and a switching signal that specifies which ODE is active at a
given point in time. Fixing a switching signal and an initial state, the system is
deterministic. Its behavior is the continuous, piece-wise differentiable function
of time obtained by pasting together the solutions of the relevant ODEs. The
symbol I represents the set of modes and n represents the dimension of the
system with R

n as state space.

Definition 1. Given the set of modes I and the dimension n, a switched system A
is specified by the tuple 〈Θ,F , Σ〉, with

(i) Θ ⊆ R
n, a compact set of initial states,

(ii) F = {fi : Rn → R
n}i∈I , an indexed collection of continuous, locally Lipschitz

functions, and
(iii) Σ, a set of switching signals, where each σ ∈ Σ is a càdlàg function σ : R≥0 → I.

The semantics of A is defined in terms of its solutions or trajectories. For a
given initial state x0 ∈ Θ and a switching signal σ ∈ Σ, the solution or the
trajectory of the switched system is a function ξx0,σ : R≥0 → R

n, such that:
ξx0,σ(0) = x0, and for any t > 0 it satisfies the differential equation:

ξ̇x0,σ(t) = fσ(t)(ξx0,σ(t)). (1)

When clear from context, the subscripts x0 and σ are dropped from ξ. Under
the stated locally Lipschitz assumption of the fi’s and the càdlàg assumption

4

on σ, it is well-known that Equation (1) has a unique solution and that indeed
the trajectory ξ is a well-defined function.

A bounded time switching signal can be represented as a sequence σ =
m0,m1, . . . ,mk where each mi is a pair in I × R+, with the two components
denoted by mi.mode and mi.time. The sequence define σ(t) = mi.mode for
all t ∈ [

∑i−1
j=0 mj .time,

∑i
j=0 mj .time). A set of switching signals Σ is repre-

sented as a switching interval sequence S = q0, q1, . . . qk, where each qj is a pair
with qj .mode ∈ I and qj .range is an open interval in R≥0. Given a switch-
ing interval sequence S, the set sig(S) denotes the set of switching signals
σ = m0,m1, . . . ,mk, such that mj .mode = qj .mode and mj .time ∈ qj .range.
By abuse of notation, a set of switching signals Σ and its finite representation S
with sig(S) = Σ are used intechangeably. The expression width(S) denotes
the size of the largest interval qi.range. The refinement operation of Σ, de-
noted as refine(S), gives a finite set of switching interval sequences S such that⋃

S′∈S sig(S′) = sig(S) and for each S′ ∈ S , width(S′) ≤ width(S)/2.

2.2 Temporal Precedence with Guarantee Predicates

A predicate for the switched system A is a computable function P : Rn → {�,⊥}
that maps each state in R

n to either � (true) or ⊥ (false). The predicate is said
to be satisfied by a state x ∈ R

n if P (x) = �. A guarantee predicate [8] P (x) is
a predicate of the form ∃t > 0, fp(x, t) > 0, where fp : Rn × R → R is called a
lookahead function. A guarantee predicate holds at a state x if there exists some
future time t at which fp(x, t) > 0 holds. Using a quantifier elimination pro-
cedure, a guarantee predicate can be reduced to an ordinary predicate without
the existential quantifier. However, this is an expensive operation, and more
importantly, it is only feasible for restricted classes of real-valued lookahead
functions with explicit closed form definitions. Section 3.1 presents a technique
to handle guarantee predicates with lookahead functions as solutions to nonlin-
ear ODE. As seen in Section 4, such lookahead functions are particularly useful
in designing alerting logics such as ALAS.

Temporal precedence properties are a class of properties specified by a pair of
predicates that must hold for any behavior of the system with some minimum
time gap between them. More precisely, a temporal precedence property φ is
written as φ = P1 ≺b P2, where P1 and P2 are (possibly guarantee) predicates
and b is a positive real number. The property φ = P1 ≺b P2 is satisfied by a
particular trajectory ξ of A iff

∀t2 > 0, if P2(ξ(t2)) then ∃t1, 0 < t1 < t2 − b, P1(ξ(t1)). (2)

In other words, along ξ, predicate P1 should be should be satisfied at least b
time units before any instance of P2 is satisfied. A switched system A satisfies
φ, if every trajectory of A satisfies φ. With a collection of precedence properties,
it is possible to state requirements about ordering of some predicates before
others.

The property φ is said to be robustly satisfied by a system if ∃τ > 0, δ > 0
such that all τ ′ < τ left shifts and all δ-perturbations of all trajectories ξ satisfy

5

the property. An execution ξ is said to robustly violate a precedence property
P1 ≺b P2 if there is a time instant t2 such that P2(ξ(t2)) holds, and for some
δ > 0, all δ-perturbations ξ′ of ξ and t1 ∈ (0, t2 − b), P1 does not hold in ξ′ at
time t1. A system is said to robustly violates φ = P1 ≺b P2 if some execution ξ
(from an initial state) robustly violates φ.

3 Simulation-based Verification of Temporal Precedence

This section presents an algorithm for verifying temporal precedence proper-
ties of switched systems and establish its correctness. Similar to the simulation-
based safety verification algorithm presented in an earlier work [4], this algo-
rithm has three key features: (a) it uses validated simulations for the dynamics
in F , (b) it requires model annotations called discrepancy functions for the dy-
namics in in F . Finally, (c) it requires a procedure for checking satisfiability of
nonlinear guarantee predicates arising from solutions of differential equations.

For a given initial state x0 and an ODE ẋ = f(x, t) which admits a solution
ξ, a fixed time-step numerical integrator produces a sequence of sample points
e.g., x1, x2, . . . , xl ∈ R

n that approximate the trajectory ξx0 at a sequence of
time points, say ξx0

(h), ξx0
(2h), . . . , ξx0

(l × h). However, these simulations do
not provide any rigorous guarantees about the errors incurred during numeri-
cal approximations. Rigorous error bounds on these simulations, which can be
made arbitrarily small, are required for performing formal analysis. One such
notion of a simulation for an ODE is defined as follows.

Definition 2. Consider an ODE ẋ = f(x, t). Given an initial state, x0, a time bound
T > 0, error bound ε > 0, and a time step τ > 0, an (x0, T, ε, τ)-simulation trace is
a finite sequence (R1, [t0, t1]), (R2, [t1, t2]), . . . , (Rl, [tl−1, tl]) where each Rj ⊆ R

n,
and tj ∈ R≥0 such that ∀j, 1 ≤ j ≤ l

(1) tj−1 < tj , tj − tj−1 ≤ τ, t0 = 0, and tl = T ,
(2) ∀t ∈ [tj−1, tj], ξx0

(t) ∈ Rj , and
(3) dia(Rj) ≤ ε.

Numerical ODE solvers such as CAPD3 and VNODE-LP 4 can be used to gen-
erate such simulations for arbitrary values of τ and ε using Taylor Models and
interval arithmetic.

Definition 3. A smooth function V : R2n → R≥0 is called a discrepancy function
for an ODE ẋ = f(x, t), if and only if there are functions α, α ∈ K∞ and a uniformly
continuous function β : R2n×R → R≥0 with β(x1, x2, t) → 0 as |x1−x2| → 0 such
that for any pair of states x1, x2 ∈ R

n:

α(|x1 − x2|) ≤ V (x1, x2) ≤ α(|x1 − x2|) and (3)
∀ t > 0. V (ξx1

(t), ξx2
(t)) ≤ β(x1, x2, t), (4)

3 http://capd.ii.uj.edu.pl/index.php
4 http://www.cas.mcmaster.ca/˜nedialk/vnodelp

6

where ξ denotes the solution of the differential equation. A tuple (α, α, β) satisfying the
above conditions is called a witness to the discrepancy function.

The discrepancy function provides an upper bound on the distance between
two trajectories starting from different initial states x1 and x2. This upper bound,
together with a simulation, is used to compute an overapproximation of the set
of all reachable states of the system from a neighborhood of the simulation.
For linear and affine dynamics such discrepancy functions can be computed
by solving semidefinite programs [4]. In [4], classes of nonlinear ODEs were
identified for which Lipschitz constants, contraction metrics, and incremental
Lyapunov functions can be computed. These classes are all special instances
of Definition 3. For the switched systems A with a set of differential equations
F = {fi}i∈I , a discrepancy function for each fi (namely, Vi and its witness
(αi, αi, βi)) is required. Using discrepancy function and validated simulations
as building blocks, a bounded overapproximation of the reachable set for initial
set Θ, set of switching signals S, and time step τ can be defined as follows.

Definition 4. Given an initial set of states Θ, switching interval sequence S, dynam-
ics F , time step τ > 0, and error bound ε > 0, a (Θ,S, ε, τ)-ReachTube is a sequence
ψ = (O1, [t0, t1]), (O2, [t1, t2]), . . . , (Ol, [tl−1, tl]) where Oj is a set of pairs (R, h)
such that R ⊆ R

n, and h ∈ I, such that, ∀j, 1 ≤ j ≤ l

(1) tj−1 < tj , tj − tj−1 ≤ τ, t0 = 0,
(2) ∀x0 ∈ Θ, ∀σ ∈ sig(S), ∀t ∈ [tj−1, tj], ∃(R, h) ∈ Oj , such that, ξx0,σ(t) ∈

R, σ(t) = h,
(3) ∀(R, h) ∈ Oj , dia(R) ≤ ε, and
(4) each mode in I occurs at most once in Oj .

Intuitively, for every given time interval [tj−1, tj], the set Oj contains an
(R, h) pair such that R overapproximates the reachable set for the mode h in
the given interval duration. In a previous work on verification using simula-
tions [4], an algorithm that computes overapproximation of the reachable set
via sampled executions and annotations is presented. The procedure, called
ComputeReachTube, takes as input the initial set Θ, switching signals S, par-
titioning parameter δ, simulation error ε′, and time step τ . It compute the se-
quence ψ and error ε such that ψ is a (Θ,S, ε, τ)-ReachTube. The procedure is
outline below.

1. Assign to Q, the set of initial states Θ.
2. For each qi in the switching interval sequence S = q0, q1, . . . , qk.
3. Compute X = {x1, x2, . . . , xm}, a δ-partitioning of Q, such that Q ⊆ ∪Bδ(xi).
4. Generate a validated simulation (Definition 2) η for every state x ∈ X with

error ε′, time step τ . Then, compute the ReachTube for Bδ(x0) by bloating
η as BVqi.mode

ε (η), where ε = sup{βqi.mode(y, x, t)|y ∈ Bδ(x)}.
5. Compute the union of each of the ReachTubes for Bδ(x0) as the ReachTube

for mode qi.mode.
6. Compute the initial set for the next mode by taking the projection of ReachTube

for qi.mode over the interval qi.range as Q. Repeat steps 3 - 6 for qi+1.

7

The order of overapproximation of the ReachTube computed using the proce-
dure described above is the maximum bloating performed using the annotation
Vqi.mode and βqi.mode for all the modes in S. This overapproximation and the
error in simulation gives the value of ε such that ψ is a (Θ,S, ε, τ)-ReachTube.
The nondeterminism during the switching times from one mode to another en-
ables the reachable set to be in two different modes at a given instance of time,
which is reflected in Oj . The following proposition holds [4].

Proposition 1. Given an initial set Θ, switching signals S, partitioning parameter δ,
simulation error ε′ and time step τ , let 〈ψ, ε〉 = ComputeReachTube(Θ,S, δ, ε′, τ). As
dia(Θ) → 0, width(S) → 0, δ → 0, ε′ → 0, and τ → 0, then ε → 0.

3.1 Temporal Precedence Verification Algorithm

CheckRefine (see Figure 1) performs the following steps iteratively: (1) Create
an initial partition of the set of start states Θ. (2) Compute the ReachTubes for
each these partitions as given in Definition 4. (3) Check the temporal precedence
property for the ReachTube. (4) Refine the partitioning if the above check is
inconclusive, and repeat steps (2)-(4).

A key step in the procedure is to verify whether a given ReachTube satisfies
a temporal precedence property. The collection of intervals mustInt , notInt , and
mayInt for a given predicate P and ReachTube ψ are used in the verification of
temporal precedence properties. They are defined as follows.

Definition 5. Given a ReachTube ψ = (O1, [t0, t1]), . . . , (Ol, [tl−1, tl]) and a pred-
icate P , for all j > 0,

[tj−1, tj] ∈ mustInt(P, ψ) iff ∀(R, h) ∈ Oj , R ⊆ P.

[tj−1, tj] ∈ notInt(P, ψ) iff ∀(R, h) ∈ Oj , R ⊆ P c.

[tj−1, tj] ∈ mayInt(P, ψ) otherwise.

Definition 5 classifies an interval [tj−1, tj] as an element of mustInt(P, ψ)
only if the overapproximation of the reachable set for that interval is contained
in P . Similar is the case with notInt(P, ψ). However if the overapproximation
of the reachable set cannot conclude either of the cases, then the interval is clas-
sified as mayInt(P, ψ). There are two possible reasons for this: first, the order
of overapproximation is too coarse to prove containment in either P or P c; sec-
ond, the execution moves from the states satisfying P to states not satisfying P
during that interval. Thus, better estimates of mustInt , notInt and mayInt can
be obtained by improving the accuracy of ReachTube ψ.

To compute mustInt , mayInt , and notInt as defined in Definition 5, it is nec-
essary to check if R ⊆ P or R ⊆ P c. However, for guarantee predicates with
lookahead functions that use the solutions of ODEs, it is unclear how to per-
form these checks. Section 3.2 describes a simulation-based method to address
this challenge. The algorithm in Section 3.2 will, in fact, provide weaker guar-
antees. Assuming P is an open set, the algorithm will answer correctly when

8

R ⊆ P and when for some δ > 0, Bδ(R) ⊆ P c; in other cases, the algorithm may
not terminate. Such weaker guarantees will turn out to be sufficient for the case
study considered in this paper.

Definition 6. Given ReachTube ψ and temporal precedence property P1 ≺b P2, ψ is
said to satisfy the property iff for any interval I ′, I ′ ∈ mustInt(P2, ψ)∪mayInt(P2, ψ),
exists interval I , I ∈ mustInt(P1, ψ) such that I < I ′−b. Also, ψ is said to violate the
property if ∃I ′ ∈ mustInt(P2, ψ) such that, ∀I ∈ mustInt(P1, ψ) ∪mayInt(P1, ψ),
I ′ − b < I .

From Definition 6 it is clear that if a ReachTube ψ satisfies a temporal prece-
dence property, then for all the trajectories corresponding to the ReachTube, the
predicate P1 is satisfied at least b time units before P2. Also, if the ReachTube
violates the property, then it is clear that there exists at least one trajectory such
that for an instance of time, i.e., in I ′ ∈ mustInt(P2, ψ) at all the time instances
at least b units before, the predicate P1 is not satisfied. In all other cases, the
ReachTube cannot infer whether the property is satisfied or violated. As this
inference depends on the accuracy of mustInt , notInt and mayInt . More accu-
rate ReachTubes produce better estimates of these intervals and hence help in
better inference of temporal precedence property.

Given a system A and property P1 ≺b P2, one can compute the ReachTube
for the system and apply Definition 6 to check whether the system satisfies
the temporal precedence property. This is however not guaranteed to be useful
as the approximation of ReachTube computed might be too coarse. The algo-
rithm CheckRefine refines, at each iteration, the inputs to compute more precise
ReachTubes. Proposition 1 guarantees that these ReachTubes can be made ar-
bitrarily precise.

The algorithm (in Figure 1) first partitions the initial set into δ-neighborhoods
(line 4) and compute ReachTubes for every switching interval sequence in Ω
(line 7). If all these ReachTubes (that is all the executions from neighborhood)
satisfy the property, then the neighborhood is removed from Q. Similarly, the al-
gorithm CheckRefine returns that the property is violated only when ReachTube
violates the property. If neither can be inferred, then the parameters to func-
tion ComputeReachTube are refined in line 11 to increase their precision. Since
this operation is iteratively performed to obtain arbitrarily precise ReachTubes,
Soundness and Relative completeness follow from Definition 6 and Proposi-
tion 1.

Theorem 1 (Soundness and Relative Completeness). Algorithm CheckRefine is
sound, i.e., if it returns that the system satisfies the property, then the property is indeed
satisfied. If it returns that the property is violated, then the property is indeed violated
by the system. Further, if predicates P1 and P2 are open sets, and there is a procedure
that correctly determines if for a set R, R ⊆ Pi (for i = 1, 2) or if there is δ > 0 such
that Bδ(R) ⊆ P c

i (for i = 1, 2). Then, if the system A satisfies P1 ≺b P2 or robustly
violates P1 ≺b P2 then CheckRefine terminates with the right answer.

9

1: Input: A = 〈Θ,F , Σ〉, {Vi, (αi, αi, βi)}i∈I , P1 ≺b P2, δ0, δ′0, ε′0, τ0.
2: Q← Θ; Ω ← {Σ}; δ ← δ0; δ′ ← δ′0; ε′ ← ε′0; τ ← τ0
3: while Q �= ∅ do
4: X ← δ-partition(Q);
5: for all x0 ∈ X do
6: for all S ∈ Ω do
7: 〈ψ, ε〉 = ComputeReachTube(Bδ(x0), S, δ

′, ε′, τ)
8: if ψ satisfies P1 ≺b P2 then continue;
9: else if ψ falsifies P1 ≺b P2 return “Property P1 ≺b P2 is violated”

10: else
11: Ω ← Ω \ {S} ∪ refine(S); δ ← δ/2; δ′ ← δ′/2, ε′ ← ε′/2; τ ← τ/2;
12: goto Line 4
13: end if
14: end for
15: Q← Q \Bδ(x0)
16: end for
17: end while
18: return “Property P1 ≺b P2 is satisfied”.

Fig. 1. Algorithm CheckRefine: Partitioning and refinement algorithm for verification of
temporal precedence properties.

3.2 Verification of Guarantee Predicates

As discussed in the Section 2.2, guarantee predicates are of the form P (x) =
∃t > 0, fp(x, t) > 0, where fp is called a lookahead function. Section 3.1 presents
an algorithm for time bounded verification of such predicates of the special
form P (x) = ∃0 < t < Tl, wp(ξ

′
x(t)) > 0, where wp is a continuous function

and ξ′ is solution of ODE ẏ = g(y, t). The algorihm CheckGuarantee in Fig-
ure 2 checks whether R ⊆ P or an open cover of R is contained in P c has
been defined. This algorithm, similar to CheckRefine, computes successively
better approximations for the ReachTube and checks whether the predicate
P ′ ≡ wp(x) > 0 is satisfied by the reach tube. This is done by calculating
mustInt(P ′, ψ) and mayInt(P ′, ψ) as defined in Definition 5. If the mustInt is
non-empty, then it implies that the predicate P is satisfied by the ReachTube
and hence R ⊆ P . If both the mayInt and mustInt are empty sets, then, clearly
the predicate P is not satisfied in the bounded time Tl by any state in R, and
hence an open cover of R is contained in P c. Soundness and Relative Complete-
ness of CheckGuarantee follow from CheckRefine (proofs in full version5).

4 Case Study: A Parallel Landing Protocol

The Simplified Aircraft-based Paired Approach (SAPA) is an advanced opera-
tional concept proposed by the US Federal Aviation Administration (FAA) [5].

5 https://wiki.cites.illinois.edu/wiki/display/MitraResearch/
Verification+of+a+Parallel+Landing+Protocol

10

1: Input: R, ẏ = g(y, t), S′, Vg(x1, x2), (αg, αg, βg) wp, δ, τ , Tl

2: while R �= ∅ do
3: X ← δ-partition(R);
4: for all x0 ∈ X do
5: 〈ψ, ε〉 = ComputeReachTube(Bδ(x0), S

′, δ, δ, τ);
6: if mustInt(wp, ψ) �= ∅ then R← R \Bδ(x0)
7: else if mustInt(wp, ψ) ∪mayInt(wp, ψ) = ∅ then return “UNSAT”
8: end if
9: end for

10: δ ← δ/2; τ ← τ/2;
11: end while
12: return “SAT”.

Fig. 2. Algorithm CheckGuarantee: Decides whether a lookahead predicate is satisfied in
a given set R

The SAPA concept supports dependent, low-visibility parallel approach opera-
tions to runways with lateral spacing closer than 2500 ft. A Monte-Carlo study
conducted by NASA has concluded that the basic SAPA concept is technically
and operationally feasible [5]. SAPA relies on an alerting mechanism to avoid
aircraft blunders, i.e., airspace situations where an aircraft threats to cross the
path of another landing aircraft.

NASA’s Adjacent Landing Alerting System (ALAS) is an alerting algorithm
for the SAPA concept [10]. ALAS is a pair-wise algorithm, where the two air-
craft are referred to as ownship and intruder. When the ALAS algorithm is de-
ployed in an aircraft following the SAPA procedure, the aircraft considers itself
to be the ownship, while any other aircraft is considered to be an intruder. The
alerting logic of the ALAS algorithm consists of several checks including con-
formance of the onwship to its nominal landing trajectory, aircraft separation at
current time, and projected aircraft separation for different trajectories.

A formal static analysis of the ALAS algorithm is challenging due to the
complexity of the SAPA protocol and the large set of configurable parameters
of the ALAS algorithm that enable different alerting thresholds, aircraft perfor-
mances, and runway geometries. This paper considers the component of the
ALAS alerting logic that checks violations of predefined separation minima
for linear and curved projected trajectories of the current aircraft states. This
component is one of the most challenging to analyze since it involves nonlin-
ear dynamics. Safety considerations regarding communication errors, pilot and
communication delays, surveillance uncertainty, and feasibility of resolution
maneuvers are not modeled in this paper.

For the analysis of the landing protocol, this paper considers a blundering
scenario where the intruder aircraft turns towards the ownship during the land-
ing approach. The dynamics of the aircraft are modeled as a switched system
with continuous variables sxi, syi, vxi, vyi and sxo, syo, vxo, and vyo repre-
senting the position and velocity of intruder and ownship respectively. The

11

switching system has two modes: approach and turn . The mode approach rep-
resents the phase when both aircraft are heading towards the runway with con-
stant speed. The mode turn represents the blundering trajectory of intruder. In
this mode, the intruder banks at an angle φi to turn away from the runway to-
wards the ownship. The switching signal determines the time of transition from
approach to turn . In this mode, the differential equation of the ownship remains
the same as that of approach , but the intruder’s turning motion with banking
angle φi is

˙⎡
⎢⎢⎢⎢⎢⎣

sxi

syi

vxi

vyi

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

0 0 0 ωi

0 0 −ωi 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

sxi

syi

vxi

vyi

⎤
⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎣

0

0

ωi − cy

ωi + cx

⎤
⎥⎥⎥⎥⎥⎦
, (5)

where cx and cy are constant functions of the initial states of the ownship and
intruder, and ωi is the angular speed of intruder. Given the bank angle φi, the
angular speed is given by wi = G| tan(φi)|√

vxi
2+vyi

2
, where G is the gravitational con-

stant. The upper bound on the bank angle φi is denoted as φmax.
The system starts in the approach mode with the initial position of the in-

truder at sxi = syi = 0 and the ownship at sxo = xsep and syo = ysep, where
xsep denotes the lateral separation between the runways and ysep denotes the
initial longitudinal separation between the aircraft. The initial velocities of both
aircraft along the x-axis are 0 and the initial velocities along the y-axis are pa-
rameters. The time of switching from approach mode to turn mode is nondeter-
ministically chosen from the interval Tswitch = [2.3, 2.8]. These parameters and
the initial values of the variables are constrained by the SAPA procedure [5].

4.1 Alerting Logic and Verification of Temporal Precedence Property

The alerting logic of ALAS considered in this paper issues an alert when the air-
craft are predicted to violate some distance thresholds called Front and Back [10].
To predict this violation, the aircraft projects the current state of the system with
three different dynamics: first, the intruder does not turn, i.e., banking angle 0◦,
second, the intruder turns with the specified bank angle φi and third, the in-
truder turns with the maximum bank angle φmax. If any of these projections
violates the distance thresholds, then an alert is issued. The alert predicates
for the each one of these projections are represented by Alert0, Alertφi

and
Alertφmax , respectively. Thus, the alerting logic considered in this paper is de-
fined as Alert ≡ Alert0 ∨Alertφi ∨Alertφmax .

The alert predicates Alert0, Alertφi
and Alertφmax

are guarantee predicates.
The lookahead function for Alertπ is defined as follows: from a given state x,
it computes the projected trajectory of the aircraft when intruder turns at bank
angle π. If these trajectories intersect, then it computes the times of intersection.

12

That is, it computes ti, to such that sx′
i(ti) = sx′

o(to) and sy′i(ti) = sy′o(to), where
sx′

i, sy
′
i, sx

′
o, sy

′
o represent the positions of the intruder and ownship aircraft in

the projected trajectory. If such ti and to exist, the Alertπ is defined as:

Alertπ(x) ≡ iff ti > t0 ? (Δt2 × (vx2
o + vy2o) < Back2)

: (Δt2 × (vx2
o + vy2o) < Front2),

where Δt = ti − to. If such ti and to do not exist, then Alertπ(x) = ⊥. The
expression a ? b : c is a short hand for if(a) then b else c.

As the guarantee predicates cannot be handled by SMT solvers, Section 3.2
proposes a simulation based algorithm for handling them. In this case study, the
proposed technique is used to resolve the nonlinearities of to and ti in the Alertπ
predicate. An overapproximation Alert ′π of Alertπ is computed as: Alert ′π(x) =
� if and only if

Ti > T0 ? (ΔT 2 × (vx2
o + vy2o) < Back2)

: (ΔT 2 × (vx2
o + vy2o) < Front2)

where ΔT = Ti − To. The numerical values of Ti and To computed simplify the
Alert ′π predicate and can be handled by SMT solvers.

A state of the system where the intruder aircraft is inside a safety area sur-
rounding the ownship is said to be unsafe. This paper considers a safety area of
rectangular shape that is SafeHoriz wide, starts a distance SafeBack behinds the
ownship and finishes a distance SafeFront in front of the ownship. The values
SafeHoriz , SafeBack and SafeFront are given constants. Formally, the predicate
Unsafe is defined as Unsafe(x) ≡ (syi > syo?syi− syo < SafeFront : syo− syi <
SafeBack) and |sxi − sxo| < SafeHoriz .

The correctness property considered in this paper is that an alert is raised
at least b seconds before the intruder violates the safety buffer where b is in
the range [4, 15]. This can written as a temporal precedence property Alert ≺b

Unsafe.

4.2 Verification Scenarios and C2E2 Performance

The verification algorithms of Section 3 are implemented in the tool Compute
Execute Check Engine (C2E2). C2E2 accepts Stateflow (SF) charts as inputs,
translates them to C++ using CAPD for generating rigorous simulations. For
checking SAT queries, it uses Z3 [1] and GLPK6. The discrepancy functions for
the aircraft dynamics were obtained by computing incremental Lyapunov-like
function using MATLAB [4]. The following experiments were performed on
Intel Quad Core machine 2.33 GHz with 4GM memory.

The temporal precedence property Alert ≺b Unsafe is checked for several
configurations of the system, i.e., values of parameters and initial values of state
variables. For these experiments, the time bound for verification is set to 15
seconds and the time bound for projection is set to 25 seconds.

6 http://www.gnu.org/software/glpk

13

0 2 4 6 8 10 12
0.2

0.4
0

0.5

1

ysep=0.3 0.01km

xsep=0.23 0.01km

x (km)

y
(k

m
)

time (sec)

(a) Scenario 1.

y
(k

m
)

x (km)
time (sec)2 4 6 8

0
1

2

2

4

6

10

xsep=0.23 0.01km
ysep=0.3 0.01km

(b) Scenario 2.

y
(k

m
)

x (km) time (sec)5 10 15 20
-1

-0.5
0

0
0.5

1
1.5

2

xsep=1.03 0.01km

ysep=0.3 0.01km

(c) Scenario 3.

Fig. 3. Figure depicting the set of reachable states of the system. Color coding is used to
depict whether the alert is issued by the alerting algorithm

Scenario 1. The system configuration is specified by the following param-
eters and variables: xsep ∈ [0.22, 0.24] km, ysep ∈ [0.2, 04] km, φi = 30◦,
φmax = 45◦, vyo = 0.07 km/s and vyi = 0.08 km/s. With this configura-
tion, C2E2 proves that the system satisfies the temporal precedence property
Alert ≺4 Unsafe and an alert is generated 4.38 seconds before the safety is
violated. The set of reachable states of the ownship and the intruder when the
safety property is violated is shown in red and the safe states reached are shown
in blue and green respectively in Figure 3(a).

Scen. A ≺4 U time (m:s) Refs. A ≺t U

6 False 3:27 5 2.16

7 True 1:13 0 –

8 True 2:21 0 –

6.1 False 7:18 8 1.54

7.1 True 2:34 0 –

8.1 True 4:55 0 –

9 False 2:18 2 1.8

10 False 3:04 3 2.4

9.1 False 4:30 2 1.8

10.1 False 6:11 3 2.4

Table 1. Running times. Columns 2-5: Verification
Result, Running time, # of refinements, value of b for
which A ≺b U is satisfied.

Scenario 2. Increasing the intruder
velocity to vyi = 0.11 km/s, and bank
angle φi = 45◦ from the configuration
of Scenario 1 results in Scenario 2. In
this case, the safe separation between
the intruder and the ownship is always
maintained as the intruder completes
the turn behind the ownship. Also, the
alarm is not raised and hence the prop-
erty Alert ≺b Unsafe is satisfied.

Scenario 3. Changing the configu-
ration by vyi = 0.11 km/s, xsep ∈
[1.02, 1.04] km, and φi = 45◦ from
Scenario 1 results in Scenario 3. C2E2
proves that the simplified alerting logic
considered in this paper issues a false-
alert, i.e., an alert is issued even when
the safety of the system is maintained. Though the property Alert ≺b Unsafe is
not violated, avoiding such circumstances improves the efficiency of the proto-
col and C2E2 can help identify such configurations.

Scenario 4. Placing the intruder in front of ownship, i.e., ysep = −0.3 km and
vyi = 0.115 km/s from configuration in Scenario 1 results in Scenario 4. C2E2
proves that the simplified alerting logic considered in this paper misses an alert,
i.e., does not issue an alert before the safety separation is violated. Such sce-

14

narios should always be avoided as they might lead to catastrophic situations.
This demonstrates that C2E2 can aid in identifying scenarios which should be
avoided and help design the safe operational conditions for the protocol.

Scenario 5. Reducing the xsep ∈ [0.15, 0.17] km and ysep ∈ [0.19, 0.21] km
from configuration in Scenario 1 gives Scenario 5. For this scenario, C2E2 did
not terminate in 30 mins. Since the verification algorithm presented in Sec-
tion 3 is sound and relatively complete only if the system robustly satisfies
the property, it is conjectured that Scenario 5 does not satisfy the property ro-
bustly. Upon closer inspection, it is observed that the partitioning parameter
δ = 0.0005 and time step τ = 0.001 (typical values at termination are δ = 0.005
and τ = 0.01), which support the conjecture.

The running time of verification procedure and their outcomes for several
other scenarios are presented in Table 1. Scenarios 6-8 introduce uncertainty in
the initial velocities of the aircraft with all other parameters remaining the same
as in Scenario 1. The velocity of the aircraft are changed to be vyo ∈ [0.07, 0.075]
in scenario 5, vyi ∈ [0.107, 0.117] in scenario 6, and vxi ∈ [0.0, 0.005] in scenario
7 respectively. Scenarios x.1 is similar to Scenario x (for x being 6,7,8), however
with twice the uncertainty in the velocity. Scenario 9 is obtained by changing
the runway separation to be xsep = 0.5±0.01. Scenario 10 is obtained by reduc-
ing the xsep = 0.2± 0.01. Scenario x.1 is similar to Scenario x (for x being 9,10)
however with twice the time horizon for verification and projection. These re-
sults suggest that the verification time depends on time horizon approximately
linearly.

5 Related Work and Conclusion

There are several MATLAB based tools for analyzing properties of switched
systems using simulations. Breach [3] uses sensitivity analysis for analyzing
STL properties of systems using simulations. This analysis is sound and rela-
tively complete for linear systems, but does not provide formal guarantees for
nonlinear systems. S-Taliro [9] is a falsification engine that search for counterex-
amples using Monte-Carlo techniques and hence provides only probabilistic
guarantees. STRONG [2] uses robustness analysis for coverage of all execu-
tions from a given initial set by constructing bisimulation functions. Currently
this tool computes bisimulation functions for only linear or affine hybrid sys-
tems and does not handle nonlinear systems.

This paper presents a dynamic analysis technique that verifies temporal prece-
dence properties and an approach to verify guarantee predicates that use solu-
tions of ODEs as lookahead functions. These techniques are proved to be sound
and relative complete. The verification approach is applied to a landing proto-
col that involves nonlinear dynamics. The case study demonstrated that the
proposed technique can not only verify safety properties of the alerting logic,
but also could identify conditions for false and missed alert which are crucial
in designing the operational concept.

15

References

1. Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Proceed-
ings of the 14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2008), volume 4963 of Lecture Notes in Computer Science,
pages 337–340, Budapest, Hungary, 2008. Springer.

2. Yi Deng, Akshay Rajhans, and A. Agung Julius. STRONG: A trajectory-based veri-
fication toolbox for hybrid systems. In Proceedings of the 10th International Conference
on Quantitative Evaluation of Systems (QEST 2013), volume 8054 of Lecture Notes in
Computer Science, pages 165–168, Buenos Aires, Argentina, 2013. Springer.

3. Alexandre Donzé. Breach, a toolbox for verification and parameter synthesis of
hybrid systems. In Proceedings of the 22nd International Conference on Computer Aided
Verification (CAV 2010), volume 6174 of Lecture Notes in Computer Science, pages 167–
170, Edinburgh, UK, 2010. Springer.

4. Parasara Sridhar Duggirala, Sayan Mitra, and Mahesh Viswanathan. Verification of
annotated models from executions. In Proceedings of the 13th International Conference
on Embedded Software (EMSOFT 2013), Montreal, Canada, 2013.

5. Sally C. Johnson, Gary W. Lohr, Burnell T. McKissick, Nelson M. Guerreiro, and Paul
Volk. Simplified aircraft-based paired approach: Concept definition and initial anal-
ysis. Technical Report NASA/TP-2013-217994, NASA, Langley Research Center,
2013.

6. Daniel Liberzon. Switching in Systems and Control. Systems and Control: Foundations
and Applications. Birkhauser, Boston, June 2003.

7. W. Lohmiller and J. J. E. Slotine. On contraction analysis for non-linear systems.
Automatica, 32(6):683–696, 1998.

8. Z. Manna and A. Pnueli. A hierarchy of temporal properties. In Proceedings of
the Sixth Annual ACM Symposium on Principles of Distributed Computing (PODC ’87),
pages 205–205, Vancouver, British Columbia, Canada, 1987. ACM.

9. Truong Nghiem, Sriram Sankaranarayanan, Georgios Fainekos, Franjo Ivancić,
Aarti Gupta, and George J. Pappas. Monte-carlo techniques for falsification of tem-
poral properties of non-linear hybrid systems. In Proceedings of the 13th ACM Inter-
national Conference on Hybrid Systems: Computation and Control (HSCC 2010), pages
211–220, Stockholm, Sweden, 2010. ACM.

10. Raleigh B. Perry, Michael M. Madden, Wilfredo Torres-Pomales, and Ricky W. But-
ler. The simplified aircraft-based paired approach with the ALAS alerting algorithm.
Technical Report NASA/TM-2013-217804, NASA, Langley Research Center, 2013.

11. G.R. Wood and B.P. Zhang. Estimation of the Lipschitz constant of a function. Journal
of Global Optimization, 8:91–103, 1996.

