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TECHNICAL PUBLICATION

ON THE RELATIONSHIP BETWEEN GLOBAL LAND-OCEAN TEMPERATURE  
AND VARIOUS DESCRIPTORS OF SOLAR-GEOMAGNETIC  

ACTIVITY AND CLIMATE

1.  INTRODUCTION

 It has long been recognized that a close association must exist between variations on the Sun 
and variations in Earth’s climate.1–59 As previously noted by Gray et al.60 in modern times, it was  
Sir William Herschel61 who first speculated (in 1801) that the Sun’s variations might directly influ-
ence Earth’s climate. More recently, Stauning62 (in 2011) reported that a strong statistical linear cor-
relation appears to exist between averages of solar activity (i.e., sunspot number (SSN)) and global 
terrestrial temperature anomalies (at least up until 1985) when they are averaged over the same inter-
val lengths (i.e., the sunspot cycle (SC)) but with the global temperature anomaly averages delayed by 
three years. Examined in this Technical Publication (TP) are determinations of the relative strengths 
of the inferred statistical correlations (incorporating lag = 0–5 yr) between SC-length averages of the 
Global Land-Ocean Temperature Index (GLOTI) and SC-length averages of various descriptors of 
solar-geomagnetic activity and climate, including: (1) SSN, (2) sunspot area (SSA), (3) the number of 
sunspot groups (G), (4) the aa-geomagnetic (aa) index, (5) aa(SSN) (i.e., that portion of the aa index 
attributable directly to yearly variations in SSN), (6) the aa(I:SSN) (i.e., that portion of the aa index 
not attributable to yearly variations in SSN), (7) aa(G) (i.e., that portion of the aa index attributable 
directly to yearly variations in G), (8) aa(I:G) (i.e., that portion of the aa index not attributable to 
yearly variations in G), (9) the Atlantic Multidecadal Oscillation (AMO) index, (10) the Southern 
Oscillation Index (SOI), (11) the North Atlantic Oscillation (NAO) index, (12) the Pacific Decadal 
Oscillation (PDO) index, and (13) the Mauna Loa carbon dioxide (CO2) (MLCO2) index. Based 
on the best inferred preferential linear correlation, an estimate is also given for the expected average 
GLOTI for SC24 (and for SC25), where SC24 is the current ongoing SC, which had a cycle minimum 
annual amplitude based on SSN, SSA, and G in 2008.
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2.  RESULTS

 Figure 1 displays the variation of the annual January–December averages of (a) GLOTI 
for the yearly interval 1880–2012, and (b) SSN, (c) SSA, and (d) G, where the variations of SSN, 
SSA, and G span the interval 1875–2012. For GLOTI, it appears to have been trending down-
wards (cooling) between 1880 and about 1910, but rising (warming) thereafter with a somewhat 
flattening occurring between about 1935 and 1975. The lowest (coolest) annual value of the GLOTI  
(to date) measures –0.46 °C in 1909, and the highest (warmest) annual value (to date) measures 
0.66  °C in 2010. For the interval 1880–2012, the GLOTI averages 0.013 °C and has a standard 
deviation sd = 0.289 °C. For the interval 1976–2012, which corresponds to SC21 through the rising 
portion of ongoing SC24, linear regression analysis suggests that the GLOTI is related to year by 
the expression y = –33.227 + 0.017x, having a coefficient of linear correlation r = 0.896, a coefficient 
of determination r2 = 0.803 (meaning that about 80% of the variance in the GLOTI for the interval 
1976–2012 can be explained by the inferred regression), a standard error of estimate se = 0.109 °C, 
and a confidence level for the regression cl > 99.9%. Extrapolation of the inferred regression beyond 
2012 suggests that the GLOTI possibly will continue to rise with the passage of time at the rate of 
about 0.017 °C per year, inferring that the GLOTI is expected to measure about 0.80 ± 0.11 °C in 
the year 2020 (the ±1 se prediction interval), unless of course another flattening occurs or another 
downward trend develops. The annual values of the GLOTI represent deviations (anomalies) from 
the mean using the base period 1951–1980. (The values of the GLOTI used in this TP were taken 
from <http://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts+dSST.txt> in October 2013.)
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 For SSN, its annual variation describes the episodic nature of sunspots, a variation directly 
attributable to the action of the SC. Plainly, SSN increases from a minimum value marking the onset 
of the SC (called cycle minimum amplitude and identified by the unfilled triangles) to a maximum 
value (called cycle maximum amplitude and identified by the filled triangles), which occurs about 
3–5 yr after cycle minimum amplitude, and then decreases over time to another minimum amplitude, 
marking the onset of the next SC. Samuel Heinrich Schwabe63 was the first to suggest the existence 
of the ‘sunspot cycle,’ a term used today to describe the overall variation of SSN over time, where 
each individual cycle has a minimum-to-minimum length (or period) of about 10–12 yr, with stronger 
cycles attaining cycle maximum amplitude more quickly than weaker cycles and often also being of 
shorter duration. In the span of SC12 to SC23, SC19 is the strongest cycle (to date), having the high-
est cycle maximum amplitude, measuring 190.2 in 1957, while SC14 is the weakest cycle (to date), 
having cycle maximum amplitude measuring only 63.5, a value slightly smaller than SC12’s cycle 
maximum amplitude of 63.7. For the yearly interval 1875–2012, SSN averages 54.8 and has sd = 45.1. 
While the trend in SSN has been generally upwards between SC14 and SC19, it now appears to be 
trending downwards. The most reliable values of SSN are those found to span the yearly interval 
1882–2012, based on comparison of SSN against group SSN.64 Prior to 1981, the SSN was deter-
mined by the Swiss Federal Observatory based upon observations made at Zürich, Switzerland, 
and its two branch stations at Arosa and Locarno, and was known as the ‘Zürich relative sunspot 
number.’ Beginning in 1981 and continuing through today, the task of determining the SSN, now 
called the International Sunspot Number, was taken up by the Solar Influences Data Analysis Cen-
ter, formerly known as the Sunspot Index Data Center, which is located at the Royal Observatory of 
Belgium <http://www.ngdc.noaa.gov/stp/solar/ssndata.html>. (The SSN values are available online 
at <http://sidc.oma.be/index.php3>.)

 For SSA, its variation generally mimics that of SSN, although the occurrences of some of 
the extremes sometimes differ. For example, the cycle minimum amplitude for SC20 in terms of SSA 
is found to precede the cyclic minimum amplitude in terms of SSN by 1 yr, and the cycle maximum 
amplitude in terms of SSA for SC20, SC21, and SC23 is found to follow the cycle maximum ampli-
tude in terms of SSN by 2, 3, and 2 yr, respectively. Also, about half  of the cycles display a more 
double-peaked appearance in terms of SSA than in terms of SSN. The highest SSA (to date) mea-
sures 3,048.5 millionths of a solar hemisphere in 1957, associated with SC19. Interestingly, the cycle 
maximum amplitude in terms of SSA for SC12 is slightly smaller than that for SC14: 1,148.9 versus 
1,195.9 millionths of a solar hemisphere (in contrast to that found using SSN). For the interval 
1875–2012, the SSA averages 838.7 millionths of a solar hemisphere and has sd = 747.7 millionths of 
a solar hemisphere. (Annual values of the SSA were taken from <http://solarscience.msfc.nasa.gov/
greenwch.shtml>.)

 For G, it too generally mimics the behavior of SSN, although like SSA, the individual cycle’s 
maximum amplitude sometimes falls later than is seen in SSN. For example, the cycle maximum 
amplitude in terms of G for SC12 follows that of the cycle maximum amplitude in terms of SSN by 
1 yr. Also, the cycle maximum amplitudes in terms of G for SC14, SC19, and SC22 follow the cycle 
maximum amplitudes in terms of SSN by 2, 1, and 1 yr, respectively; however, the cycle maximum 
amplitude in terms of G for SC20 is found to precede the cycle maximum amplitude in terms of 
SSN by 1 yr (a later-occurring, slightly smaller secondary maximum amplitude in terms of G was 
observed simultaneously with the maximum amplitude in terms of SSA some 2 yr after the SSN 
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maximum amplitude). About one-third of the cycles are found to display a double-peaked appear-
ance. The highest G (to date) measures 14.90 in 1979, associated with SC21. For the interval 1875–
2012, G averages 4.73 and has sd = 3.70. (G is determined directly from the SSA data set.)

 Figure 2 depicts the ratios (a) SSN/G, (b) SSA/SSN, and (c) SSA/G for the yearly interval 
1875–2012, where the ratios are used to infer the variation of the ‘magnetic complexity’ of sunspots 
over individual SCs, with larger ratios, on average, suggesting greater magnetic complexity and smaller 
ratios suggesting lesser magnetic complexity for each individual SC. For SSN/G, although the maxi-
mum value is 19.68 in 1877, the year prior to the minimum amplitude for SC12, this value appears to 
be erroneous. Recall that the most reliable portion of the SSN record spans 1882 to 2012. A change 
occurred in the SSN record around 1882, when the k factor was reduced from 1 to 0.6 (Waldmeier65) 
in order to account for smaller spots that were being counted (the relative SSN is calculated based 
on the formulation SSN = k(10G + N), where k is a reduction coefficient, G is the number of groups, 
and N is the number of actual individual spots). Because the maximum value of the ratio SSN/G 
occurs near the minimum amplitude for SC12 (1878), because G is accurately determined from the 
Royal Greenwich Observatory photographic plate record, and because all SSN/G values during the 
early yearly interval 1875–1882 (except the value for 1881) are higher than all succeeding values 
during the interval 1882–2012 together, this suggests that the ratio values SSN/G during the early 
yearly interval 1875–1881 probably are in error, inferring that the SSN values during the early yearly 
interval 1875–1881 probably are too high. For the overall yearly interval 1875–2012, SSN/G averages 
11.38 and has sd = 1.84. Ignoring the early ratios, the largest ratios (to date) measure 14.30 in 1957 
(SC19) and 14.28 in 1980 (SC21). Generally, the largest ratio occurs near SC maximum amplitude, 
and the smallest ratio occurs near SC minimum amplitude for individual cycles. The lowest observed 
ratio (to date) measures 7.50 in 1911 (late SC14 near cycle minimum amplitude for SC15). For the 
subyearly interval 1957–2012, one infers that SSN/G appears to be trending downwards, given by the 
expression y = 80.572 – 0.035x, having r = –0.436, r2 = 0.19, se = 1.186, and cl > 99.9%, inferring that 
the maximum value of the ratio SSN/G for SC24 probably will be ≤11.56. Interestingly, the observed 
ratios during the rise of SC24 are smaller than were seen for similar phasing during SC14, suggest-
ing perhaps that SC24 might turn out to be smaller in terms of SSN than that of SC14. (To date, the 
maximum ratio SSN/G during SC24 measures 11.43, occurring in 2012, having risen from 8.79 in 
2009. For an overview of the history of SSN indices, see <http://www.aavso.org/dances-wolfs-short-
history-sunspot-indices>.)

 For SSA/SSN, because values of SSN appear to be too high for the interval 1875–1882, the 
early values of SSA/SSN probably are too low. The largest ratio of SSA/SSN (to date) measures 19.77 
in 1926 (SC16), slightly larger than two other large ratios, both measuring 19.70 that occurred in 1946 
(SC18) and 1982 (SC21). The smallest ratio of SSA/SSN (to date) measures 5.28 in 1964 (SC20, cycle 
minimum). For the yearly interval 1875–2012, SSA/SSN averages 14.01 and has sd = 3.20. Unlike 
SSN/G, there appears to be no preferential downward trend in SSA/SSN. For the current ongoing 
SC24, SSA/SSN has varied between 7.86 in 2008 and 13.86 in 2012, values that are lower than were 
seen in SC14, which varied between 10.33 and 18.83 for similar phasing (1901–1905).
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 For SSA/G, the two largest ratios (to date) measure 230 in 1883 (SC12) and 234.4 in 1946  
(SC18). The smallest ratio (to date) measures 44.1 in 1913 (SC15, cycle minimum). For the yearly 
interval 1875–2012, SSA/G averages 158.7 and has sd = 40.4. Like the ratio SSN/G, the ratio SSA/G 
appears to be trending downwards with the passage of time, given by the expression y = 1,379.3 – 0.617x, 
having r = –0.278, r2 = 0.08, se = 41.9, and cl > 95%. For the current ongoing SC24, SSA/G has varied 
between 69.1 in 2008 and 157.8 in 2012, values that are lower than were seen in SC14, which varied 
between 126.8 and 225.2 for similar phasing (1901–1905).

 Figure 3 displays the annual values of (a) the aa index, (b) aa(SSN), and (c) aa(G) for the 
yearly interval 1875–2012. For the aa index, it has varied between 6.1 nT in 1901 (SC14) and 37.1 nT 
in 2003 (SC23), averaging 19.3 nT and having sd = 6.3 nT for the overall yearly interval 1875–2012. 
The aa index correlates strongly with the solar wind speed and the occurrences of the southward-
pointing interplanetary magnetic field at Earth.66–68 It should be noted that Svalgaard et al.69 have 
suggested that the observed aa index values before 1957 be increased by about 3 nT to compen-
sate for movements of the magnetometers in Australia, which are used in the computation of the  
aa index. Doing so, one finds that the minimum amplitude of the aa index value (aamin) would now 
become 8.6 nT, which is the minimum amplitude value for SC24 in 2009. (The value of aamin usually 
follows SSN cycle minimum by one year and correlates strongly with the later-occurring SSN cycle 
maximum for each individual SC.)66,70–72

 For aa(SSN) and aa(G), as previously noted, these parameters represent those portions of 
the aa index value directly attributable to the variation of the SC (dependent upon whether one uses 
SSN or G, respectively, to describe the SC). For aa(SSN), its peak value (to date) measures 26.2 nT 
in 1957 (SC19), and aa(SSN) is found to average 11.6 nT and have sd = 4.8 nT for the yearly interval 
1875–2012, while for aa(G), its peak value (to date) measures 22.5 nT in 1979 (SC21), and aa(G) is 
found to average 11.1 nT and have sd = 4.1 nT. (Notice that the minimum value for aa(G) is of com-
parable size for SC12, SC14, SC15, and SC24.)

 Figure 4 displays scatter plots of aa versus (a) SSN and (b) G, where the diagonal lines rep-
resent aa(SSN) and aa(G), respectively, following the approach used by Feyman (ignoring the lone 
outlier associated with SSN for 1980, the point plotted below the aa(SSN) line).73,74 In the scatter 
plots, aa(SSN) = 5.81 + 0.107SSN, and aa(G) = 5.85 + 1.117G. As an example, SC19 had a maximum 
amplitude in terms of SSN (Rmax) equal to 190.2 in 1957, thus yielding aa(SSN) = 26.2 nT.
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 Figure 5 shows the annual values of (a) aa(I:SSN) and (b) aa(I:G), those portions of the  
aa index not attributed to SSN or G, respectively. Recall that Feyman suggested that the aa index can 
be simply decomposed into two components: aa(SSN) and aa(I:SSN) (or aa(G) and aa(I:G)).73,74 
The aa(SSN) (or aa(G)) component is that component due to the sporadic, short-lived events occur-
ring on the Sun, which varies over the SC in phase with SSN (or G). The aa(I:SSN) (or aa(I:G)) 
component is that component due to the recurrent, long-lived events, like coronal holes (regions  
on the Sun that are the sources of the high-speed recurrent streams of solar wind, typically seen 
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Figure 5.  Annual variation of (a) aa(I:SSN) and (b) aa(I:G).

during the declining portion of the SC between SSN cycle maximum amplitude and the succeeding 
cycle minimum amplitude marking the onset of the next SC) occurring on the Sun, which varies over 
the SC but is out of phase with respect to the phasing of aa(SSN) (or aa(G)). For aa(I:SSN), its peak 
value (to date) measures 24.5 nT in 2003, and for the yearly interval 1875–2012, aa(I:SSN) averages 
7.8 nT and has sd = 5.1 nT. For aa(I:G), its peak value (to date) measures 24.7 nT in 2003, and for 
the yearly interval 1875–2012, aa(I:G) averages 8.2 nT and has sd = 5.0 nT. (In the above example for 
SC19, the maximum amplitude of aa(I:SSN) is found to be 15 nT in 1960.) 

 Figure 6 displays the variation of the asymmetry in the aa index for (a) [aa(I:SSN) – aa(SSN)]/
aa and (b) [aa(I:G) – aa(G)]/aa for the yearly interval 1875–2012. When the values are negative, this 
simply means that the sporadic component contributes more to the value of the aa index than the 
recurrent component, the opposite being true for positive values. For [aa(I:SSN) – aa(SSN)]/aa, it 
averages –0.24 and has sd = 0.37. For [aa(I:G) – aa(G)]/aa, it averages –0.20 and has sd = 0.35. Thus, 
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Figure 6.  Annual variation of asymmetries (a) [aa(I:SSN) – aa(SSN)]/aa 
and (b) [aa(I:G) – aa(G)]/aa.

on average, the sporadic component has been the stronger contributor to the value of the aa index 
than the recurrent component. Close inspection reveals that this was especially true during SC14 
(1901–1912).

 Table 1a identifies the epochs of the cycle minimum (Emin) and maximum (Emax), the  
minimum-to-minimum SC-length, the Rmax, the aamin, and SC averages of SSN, SSA, G, aa, 
aa(SSN), aa(I:SSN), aa(G), and aa(I:G) for each SC12–SC23. Also, table 1b identifies SC averages 
for the GLOTI, incorporating lags of 0–5 yr, relative to Emin.
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Table 1a.  Sunspot cycle epochs and selected parametric values—epochs and values.

Cycle Emin Emax Length Rmax aamin <SSN> <SSA> <G> <aa> <aa(SSN)> <aa(I:SSN)> <aa(G)> <aa(I:G)>
12 1878 1883 11 63.7 7.1 34.6 526.4 2.70 14.8 9.5 5.1 8.9 6.1
13 1889 1893 12 85.1 10.7 38.8 607.2 3.54 15.7 10.0 5.7 9.8 5.9
14 1901 1905 12 63.5 6.1 31.1 477.8 2.84 13.1 9.1 3.9 9.0 4.0
15 1913 1917 10 103.9 8.7 44.2 657.3 4.44 17.1 10.5 6.7 10.8 6.3
16 1923 1928 10 77.8 10.2 41.0 706.9 4.00 17.2 10.2 7.0 10.3 6.9
17 1933 1937 11 114.4 13.4 55.0 914.2 4.64 20.3 11.7 8.6 11.3 9.0
18 1944 1944 10 151.6 16.4 75.7 1,203.4 6.02 23.2 13.9 9.3 12.6 10.6
19 1954 1957 10 190.2 17.2 95.0 1,492.0 7.18 24.6 16.0 8.6 13.9 10.7
20 1964 1968 12 105.9 14.0 58.8 819.2 5.09 21.1 12.1 9.0 11.5 9.5
21 1976 1979 10 155.4 20.3* 82.9 1,273.0 7.39 24.9 13.8 11.8 14.1 10.8
22 1986 1989 10 157.6 19.0 78.5 1,141.7 6.82 25.9 14.2 11.6 13.5 12.4
23 1996 2000 12 119.6 16.1 56.6 839.0 4.92 21.9 11.9 10.1 11.4 10.6
24 2008 2012? – 57.5? 8.7 – – – – – – – –

 Note: * SC21 had an aamin in the vicinity of Emin; however, its observed aamin was 18.3 occurring near Emax.

Table 1b.  Sunspot cycle epochs and selected parametric values—SC-length 
 GLOTI values for lag = 0–5 yr.

Lag (yr)
Cycle 0 1 2 3 4 5

12 – – –0.217 –0.222 –0.238 –0.256
13 –0.246 –0.241 –0.253 –0.260 –0.271 –0.265
14 –0.373 –0.388 –0.382 –0.365 –0.358 –0.371
15 –0.295 –0.282 –0.283 –0.289 –0.262 –0.236
16 –0.174 –0.173 –0.158 –0.151 –0.152 –0.131
17 –0.022  0.014 0.023 0.029 0.023 0.023
18 –0.032 –0.057 –0.070 –0.080 –0.072 –0.059
19 –0.018 –0.027 –0.025 –0.011 –0.016 –0.025
20 –0.023 –0.016 0.005 0.013  0.024 0.048
21 0.128 0.155 0.169  0.198  0.210 0.226
22 0.291 0.309  0.325 0.351 0.367 0.368
23 0.526 0.539 0.551 0.555 0.568 0.583

 Figure 7 plots the SC averages of the GLOTI (taken from table 1b). For all lags (0–5 yr), it is 
quite apparent that SC averages of GLOTI track upwards with the passage of time, with a noticeable 
flattening spanning SC17–SC20. Since SC20 (1964–1975), the GLOTI values have consistently risen 
with the passage of time, with the current ongoing rise in the SC average value of the GLOTI being 
of steeper slope than the previous one found for the preceding interval SC14–SC17.
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 Figure 8 plots the SC averages of the eight solar-geomagnetic parameters (taken from  
table 1a). Some similarity is noticeable between these parameters and <GLOTI>, in particular with 
<aa(I:SSN)> and <aa(I:G)>.
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 (e) <aa(SSN)>, (f) <aa(I:SSN)>, (g) <aa(G)>, and (h) <aa(I:G)>.
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 Figure 9a displays the scatter plots of <GLOTI> versus <SSN>, and figure 9b displays  
scatter plots of <GLOTI> versus <aa> for lags of 0–5 yr for the groupings SC12–SC21 and SC12–
SC23. It is apparent that SC23 (and possibly SC22, both plotted as filled squares) is a statistical out-
lier with respect to the inferred regression based on SC12–SC21. In contrast to that of Stauning,62 
the strongest inferred linear correlation between <GLOTI> and <SSN> using SC12–SC21 is the one 
incorporating lag = 0 yr, having r = 0.83 and se = 0.09 °C. (This is also true for <GLOTI> versus <aa> 
for lag = 0 yr, having r = 0.93 and se = 0.07 °C.)
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Figure 9a.  Scatter plots of <GLOTI> versus <SSN> for lag 0–5 yr.
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Figure 9b.  Scatter plots of <GLOTI> versus <aa> for lag 0–5 yr.

 Figure 10a shows the scatter plots of <GLOTI> versus <aa(I:SSN)>, and figure 10b shows the 
scatter plots of <GLOTI> versus <aa(I:G)> for lags of 0–5 yr. All inferred correlations are stronger 
than those based on either <SSN> or <aa> (shown in figs. 9a and 9b). The strongest inferred linear 
correlation using the grouping SC12–SC21 appears to be that of <GLOTI> versus <aa(I:SSN)> for 
lag = 5 yr, having r = 0.97 and se = 0.05 °C. (For <GLOTI> versus <aa(I:G)>, the strongest inferred 
correlation using the grouping SC12–SC21 appears to be the one incorporating lag = 0 yr, having 
r = 0.95 and se = 0.05 °C.)
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 Table 2 provides the statistics for each of the correlations of <GLOTI> versus the eight solar-
geomagnetic parameters, arranged according to r2, the coefficient of determination, for both group-
ings SC12–SC21 and SC12–SC23 and for lags 0–5 yr. For every case, the strongest inferred linear 
correlation is the one based on <aa(I:SSN)>. In table 2, the statistic a is the y-intercept, b is the slope, 
r is the coefficient of linear correlation, r2 is the coefficient of determination, se is the standard error 
of estimate, t is the t-statistic for determining the statistical importance of the inferred linear correla-
tion, n is the number of SC used in the analysis, and cl is the confidence level of the inferred linear 
correlation (based on n and t).
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 Figure 11 displays the yearly variation of (a) AMO (1875–2012), (b) SOI (1875–2012),  
(c) NAO (1875–2012), (d) PDO (1900–2012), and (e) MLCO2 (1959–2012). The AMO is a fluctua-
tion in the detrended sea surface temperature (SST) in the North Atlantic Ocean north of the equa-
tor (lat. 0°–70° N.).75–79 The AMO has a cycle length of about 65–70 years, alternating between 
warm (positive) and cold (negative) phases believed to be associated with variations in the North 
Atlantic thermohaline circulation (THC), a density-driven global circulation pattern that involves 
the movement of warm equatorial surface waters to higher latitudes and the subsequent cooling 
and sinking of these waters into the deep ocean (also called the Atlantic Meridional Overturning 
Circulation; see <http://www.eoearth.org/view/article/150290>). The warm phase of the AMO 
appears to represent intervals of faster THC, while the cold phase appears to represent intervals of 
slower THC. The AMO index values are available online at <http://www.esrl.noaa.gov/psd/data/ 
correlation/amon.us.long.data>.

 The SOI describes the atmospheric response to anomalous changes in surface air pressure 
between Tahiti, French Polynesia, and Darwin, Australia, which generally varies inversely with the 
Oceanic Niño Index (ONI), an index that describes anomalous changes in SST in the Niño 3.4 region 
of the Pacific Ocean (located ±5° either side of the equator and ±25° either side of long. 145° W.).80 
Together, the variations in SOI and ONI often are used to describe the anomalous warming  
(El Niño) and cooling (La Niña) events associated with the El Niño Southern Oscillation (ENSO) 
pattern.81 During warm events of the ENSO, the ONI ≥ 0.5 °C, and the SOI typically is ≤–8 for at 
least five consecutive months, while during cool events, the ONI ≤ –0.5 °C and SOI ≥ 8 for at least five 
consecutive months. Values of SOI (based on means and standard deviations over the period 1933–
1992 inclusive) are available online at <http://www.bom.gov.au/climate/current/soihtml.shtml>.

 The NAO describes the differences in surface air pressure between two widely separated loca-
tions, in particular Iceland and the subtropical Atlantic Ocean basin (e.g., the Azores, Portugal, or 
Gilbraltar).82–85 The large-scale air mass movements described by the NAO controls the strength 
and direction of the westerly winds and storm tracks across the North Atlantic Ocean. During the 
positive phase of the NAO, there is a stronger subtropical high-pressure center and a deeper-than-
usual Icelandic low, while during the negative phase, the opposite is true. Values for the NAO index 
are available online at <http://www.esrl.noaa.gov.psd/gcos_wgsp/Timeseries/Data/nao.long.data> 
and <http://www.cru.uea.ac.uk~timo/datapages/naoi.html>.

 The PDO is defined as the leading principal component of the monthly SST anomalies in the 
North Pacific Ocean northward of lat. 20° N. The PDO fluctuates between warm (positive) and cool 
(negative) phases.86–88 During the warm phase, the western Pacific Ocean surface waters become 
cool, and part of the eastern Pacific Ocean surface waters becomes warm, while during the cool 
phase, the opposite is true. Values of the PDO index are available online at <http://jisao.washington.
edu/pdo/PDO.latest>. 

 The MLCO2 is a measure of the atmospheric concentration of CO2 as measured at the Mauna 
Loa Observatory on the Big Island of Hawaii.89–95 The observatory is located on the northern slope 
of the volcano Mauna Loa at an elevation of 3,400 m above sea level and 800 m below its summit. 
Annual means of MLCO2 (in units of ppm) are available online at <ftp://ftp.cmdl.noaa.gov/ccg/co2/
trends/co2_annmean_mlo.txt>. 
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Figure 11.  Annual variation of (a) AMO, (b) SOI, (c) NAO, (d) PDO, and (e) MLCO2.
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 Regarding the AMO, the highest value (to date) measures 0.452 °C in 1878, and the low-
est value (to date) measures –0.422 °C in 1974. Overall, the long-term mean is –0.009 °C, having 
sd = 0.187 °C. Clearly, the AMO has been increasing in value (i.e., becoming more positive in value, 
indicating warming) since 1974, with all values since 1995 (except the value for 1996) being of posi-
tive value.

 Regarding the SOI, the highest value (to date) measures 20.8 in 1917, and the lowest value  
(to date) measures –20 in 1905. Overall, the long-term mean is 0.12, having sd = 6.88.

 Regarding the NAO, the highest value (to date) measures 1.23 in 1990, and the lowest value 
(to date) measures –2.19 in 2010. Overall, the long-term mean is 0.07, having sd = 0.51.

 Regarding the PDO, the highest value (to date) measures 1.99 in 1941, and the lowest value 
(to date) measures –1.95 in 1955. Overall, the long-term mean is 0.01, having sd = 0.77.

 Regarding the MLCO2, its values have consistently risen year to year from 315.97 ppm in 
1959 to 393.82 ppm in 2012. The long-term mean measures 349.03 ppm, having sd = 23.48 ppm. 
Close inspection of the annual MLCO2 values reveals that not only is the atmospheric concentration 
of CO2 increasing with the passage of time, but it is increasing at an accelerated rate (as placement 
of a straight edge along the curve clearly shows).

 Table 3 gives the SC-length averages of each of the climatic parameters for SC12–SC23, and 
figure 12 displays them. For <AMO>, the warm phase is associated with SC12, SC16–SC18, and 
SC23, while the cool phase is associated with SC14, SC15, and SC20–SC22 (SC13 and SC16 appear 
to be cycles in transition). Since the warm phase is expected to persist at least three cycles in length, it 
is anticipated that SC24 and SC25 very likely will both be associated with the warm (positive) phase 
of the AMO as well. Interestingly, both the lows and highs of each individual phase appear to be 
increasing in value with the passage of time; i.e., SC23 (the current warm phase) is of higher positive 
value than SC18 (during the previous warm phase), which was higher than the value for SC12 (dur-
ing the earliest warm phase). Similarly, the low of SC20 (during the just past cool phase) is higher 
than the low of SC15 (during the previous cool phase).

 Regarding <SOI>, it appears that SC19 and SC20 were both associated with positive SOI, 
inferring cooler waters in the Niño 3.4 region (i.e., the likely occurrence of more La Niña-like condi-
tions, on average), while SC21 and SC22 were both associated with negative SOI, inferring warmer 
waters in the Niño 3.4 region (i.e., the likely occurrence of more El Niño-like conditions, on average). 
SC20 is associated with the highest <SOI> (to date), while SC22 is associated with the lowest <SOI> 
(to date).

 Regarding <NAO>, it has tended to be mostly of positive value. The highest positive value 
(to date) of <NAO> is associated with SC22, while the lowest value (to date) of <NAO> is associ-
ated with SC23. It is unclear whether SC24 will be of positive or negative <NAO> value.
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Table 3.  SC-length climate parametric mean values.

Cycle <AMO> <SOI> <NAO> <PDO> <MLCO2>
12 0.087 0.58 0.03 – –
13 0.013 –0.49 0.25 – –
14 –0.168 0.24 0.23 – –
15 –0.225 1.48 0.22 –0.06 –
16 –0.012 1.06 0.11 0.33 –
17 0.126 –0.43 –0.004 0.72 –
18 0.137 0.16 0.22 –0.61 –
19 0.094 2.63 0.09 –0.58 –
20 –0.184 2.73 –0.05 –0.64 325.10
21 –0.170 –3.43 0.05 0.54 339.19
22 –0.091 –4.60 0.30 0.55 354.42
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 Regarding <PDO>, its highest positive value (to date) occurs in SC17, and its lowest negative 
value (to date) occurs in SC20. In appearance, its behavior looks similar to that of <AMO>, but of 
slightly different phase. Whereas the SC variation in <AMO> tends to have a smoother appearance, 
the SC variation in <PDO> is less smooth.

 Regarding <MLCO2>, every cycle has a value that is higher than its preceding cyclic value. 
Hence, SC21 has a higher <MLCO2> than SC20, SC22 has a higher <MLCO2> than SC21, and 
SC23 has a higher <MLCO2> than SC22. Clearly, the expected value of <MLCO2> for SC24 is 
higher than that measured for SC23.

 Figures 13a–e display scatter plots (for lag = 0–5 yr) of <GLOTI> versus <AMO>, <SOI>,  
<NAO>, <PDO>, and <MLCO2>, respectively. For <GLOTI> versus <AMO>, two inferred 
regressions are drawn, one for SC12–SC19 and the other for SC20–SC23. For <GLOTI> versus 
<MLCO2>, only the inferred regression for SC20–SC23 is drawn. The statistics for the inferred 
regressions are given in table 4.
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Figure 13a.  Scatter plots of <GLOTI> versus <AMO> for lag 0–5 yr.



28

<G
LO

TI
> (

0)

0.6

–0.6

0

22

23

2017

15
16

13
14

18
19

21

<G
LO

TI
> (

1)

0.6

–0.6

0

22

23

2017

15

16
13

14

18
19

21
<G

LO
TI

> (
2)

0.6

–0.6

0

22

23

2017

15
16

13
12

14

18
19

21

<G
LO

TI
> (

3)
<G

LO
TI

> (
5)

0.6

–0.6

0

22

23

2017

15
16

13
12

14

18 19

21

<G
LO

TI
> (

4)

0.6

–0.6

0

22

23

2017

15
16

13
12

14

18
19

21

0.6

–0.6

0

22

23

2017

15
16

13
12

14

18
19

21

<SOI>
0 6–6

<SOI>
0 6–6

0 6–60 6–6

0 6–60 6–6

Figure 13b.  Scatter plots of <GLOTI> versus <SOI> for lag 0–5 yr.



29

<G
LO

TI
> (

3)

0.6

–0.6

0

22
23

17
20

16
15

13
12

14

18
19

21

<G
LO

TI
> (

4)

0.6

–0.6

0

2223

17
20

16
15

13
12

14

18
19

21

<NAO>
0 0.3–0.3

<NAO>
0 0.3–0.3

0 0.3–0.3 0 0.3–0.3

0 0.3–0.3 0 0.3–0.3

<G
LO

TI
> (

5)

0.6

–0.6

0

22
23

1720
16

15
13

12
14

18
19

21

<G
LO

TI
> (

2)

0.6

–0.6

0

22
23

17
20

16
15

13

14
12

18
19

21

<G
LO

TI
> (

1)

0.6

–0.6

0

22
23

17
20

16
15

13

14

18
19

21

<G
LO

TI
> (

0)

0.6

–0.6

0

22
23

17
20

16
15 13

14

18
19

21

Figure 13c.  Scatter plots of <GLOTI> versus <NAO> for lag 0–5 yr.



30

<G
LO

TI
> (

1)

0.6

–0.6

0

22
23

17
20

16
15

14

18

19 21

<G
LO

TI
> (

2)

0.6

–0.6

0

2223

17
20

16
15

14

18

19 21
<G

LO
TI

> (
3)

0.6

–0.6

0

2223

17
20

16
15

14

18

19 21

<G
LO

TI
> (

4)

0.6

–0.6

0

2223

17
20

16
15

14

18

19
21

<PDO>
0 0.8–0.8

<PDO>
0 0.8–0.8

0 0.8–0.8 0 0.8–0.8

0 0.8–0.8 0 0.8–0.8

<G
LO

TI
> (

5)

0.6

–0.6

0

2223

17
20

16
15

14

18

19
21

<G
LO

TI
> (

0)

0.6

–0.6

0

22
23

17
20

16
15

14

18

19 21

Figure 13d.  Scatter plots of <GLOTI> versus <PDO> for lag 0–5 yr.



31

<MLCO2>
400300

<G
LO

TI
> (

5)

0.6

–0.6

0

22
23

20
21

y20–23 
(r = 0.9987)

y20–23 (r = 0.9987)

<MLCO2>
400300

400300400300

400300400300

 <G
LO

TI
> (

4)

0.6

–0.6

0

22
23

20
21

y20–23 
(r = 0.9987)

y20–23 (r = 0.9987)

 <G
LO

TI
> (

3)

0.6

–0.6

0

22
23

20

21

y20–23
(r = 0.9987)

 <G
LO

TI
> (

2)

0.6

–0.6

0

22
23

20

21

y20–23 
(r = 0.9994)

 <G
LO

TI
> (

1)

0.6

–0.6

0

22

23

20

21

y20–23 
(r = 0.9992)

 <G
LO

TI
> (

0)

0.6

–0.6

0

22

23

20

21

y20–23 
(r = 0.9989)

Figure 13e.  Scatter plots of <GLOTI> versus <MLCO2> for lag 0–5 yr.



32

T
ab

le
 4

.  
C

or
re

la
ti

on
s 

of
 S

C
-l

en
gt

h 
av

er
ag

es
 o

f 
G

L
O

T
I 

ag
ai

ns
t 

SC
 a

ve
ra

ge
s 

of
 s

el
ec

te
d 

cl
im

at
e 

pa
ra

m
et

er
s.

La
g 

0, 
SC

13
–S

C1
9

La
g 

0, 
SC

20
–S

C2
3 (

n =
 4)

Pa
ra

m
et

er
a

b
r

r 2
se

t
n

cl
Pa

ra
m

et
er

a
b

r
r 2

se
t

cl
<A

MO
>

–0
.16

1
0.9

25
0.9

10
0.8

28
0.0

66
4.8

95
7

>9
9.5

%
<M

LC
O2

>
–3

.75
62

99
0.0

11
46

0
0.9

98
9

0.9
97

8
0.0

15
27

.66
6

>9
9.8

%

<A
MO

>
0.3

26
65

4
1.3

68
73

9
0.9

40
1

0.8
83

8
0.0

98
3.9

00
>9

0%

La
g 

1, 
SC

13
–S

C1
9

La
g 

1, 
SC

20
–S

C2
3 (

n =
 4)

Pa
ra

m
et

er
a

b
r

r 2
se

t
n

cl
Pa

ra
m

et
er

a
b

r
r 2

se
t

cl
<A

MO
>

–0
.16

0
0.9

25
0.8

90
0.7

93
0.0

74
4.3

62
7

>9
9%

<M
LC

O2
>

–3
.75

32
24

0.0
11

49
8

0.9
99

2
0.9

98
4

0.0
12

34
.07

5
>9

9.9
%

<A
MO

>
0.3

42
16

9
1.3

58
28

1
0.9

30
1

0.8
65

2
0.1

06
3.5

82
>9

0%

La
g 

2, 
SC

12
–S

C1
9

La
g 

2, 
SC

20
–S

C2
3 (

n =
 4)

Pa
ra

m
et

er
a

b
r

r 2
se

t
n

cl
Pa

ra
m

et
er

a
b

r
r 2

se
t

cl
<A

MO
>

–0
.17

6
0.8

27
0.8

10
0.6

57
0.0

88
3.3

89
8

>9
9%

<M
LC

O2
>

–3
.68

32
48

0.0
11

34
2

0.9
99

4
0.9

98
8

0.0
12

34
.96

4
>9

9.9
%

<A
MO

>
0.3

56
74

6
1.3

41
57

6
0.9

31
5

0.8
67

7
0.1

04
3.6

22
1

>9
0%

La
g 

3, 
SC

12
–S

C1
9

La
g 

3, 
SC

20
–S

C2
3 (

n =
 4)

Pa
ra

m
et

er
a

b
r

r 2
se

t
n

cl
Pa

ra
m

et
er

a
b

r
r 2

se
t

cl
<A

MO
>

–0
.17

4
0.8

15
0.7

96
0.6

33
0.0

91
3.2

20
8

>9
8%

<M
LC

O2
>

–3
.62

10
20

0.0
11

21
1

0.9
98

7
0.9

97
5

0.0
17

23
.33

5
>9

9.8
%

<A
MO

>
0.3

70
43

6
1.2

98
02

6
0.9

11
2

0.8
30

3
0.1

16
3.1

28
>9

0%

La
g 

4, 
SC

12
–S

C1
9

La
g 

4, 
SC

20
–S

C2
3 (

n =
 4)

Pa
ra

m
et

er
a

b
r

r 2
se

t
n

cl
Pa

ra
m

et
er

a
b

r
r 2

se
t

cl
<A

MO
>

–0
.17

3
0.7

47
0.7

48
0.5

59
0.0

98
2.7

57
8

>9
5%

<M
LC

O2
>

–3
.62

84
28

0.0
11

27
0

0.9
98

7
0.9

97
5

0.0
15

26
.39

1
>9

9.8
%

<A
MO

>
0.3

83
67

4
1.3

01
41

5
0.9

08
8

0.8
25

9
0.1

18
3.0

80
>9

0%

La
g 

5, 
SC

12
–S

C1
9

La
g 

5, 
SC

20
–S

C2
3 (

n =
 4)

Pa
ra

m
et

er
a

b
r

r 2
se

t
n

cl
Pa

ra
m

et
er

a
b

r
r 2

se
t

cl
<A

MO
>

–0
.17

0
0.7

11
0.7

02
0.4

93
0.1

06
2.4

26
8

>9
0%

<M
LC

O2
>

–3
.53

00
94

0.0
11

02
8

0.9
98

7
0.9

97
4

0.0
12

33
.61

8
>9

9.9
%

<A
MO

>
0.3

96
92

6
1.2

90
76

2
0.9

21
1

0.8
48

5
0.1

08
3.3

47
>9

0%



33

 For the interval SC20–SC23, clearly, the strongest inferred regressions are those between 
<GLOTI> and <MLCO2>, having cl > 99.8% and >99.9%, and se = 0.01 °C. This suggests that 
one might be able to better estimate <GLOTI> for the current ongoing SC24, and perhaps future 
SC25 and beyond (presuming the validity of the fit), on the basis of having accurate estimates of 
<MLCO2> for these cycles.

 From figure 12 (and table 3), it is clear that <MLCO2> is increasing over time. A simple lin-
ear fit of <MLCO2> versus SC yields y = 7.344 + 15.839x, where y refers to <MLCO2> and x refers 
to the SC. The inferred regression has r = 0.99807, r2 = 0.99615, se = 1.557, t = 22.74, and cl > 99.8%. 
Presuming the validity of the fit, one estimates the <MLCO2> for SC24 and SC25, respectively, to 
be 387.48 ± 1.56 ppm and 403.32 ± 1.56 ppm (±1 se prediction interval). Applying these values in the 
inferred linear regressions (dependent upon selection of lag) results in <GLOTI> = 0.68 ± 0.02 °C for 
SC24 (lag = 0 yr) to 0.74 ± 0.01 °C (lag = 5 yr) and <GLOTI> = 0.87 ± 0.02 °C for SC25 (lag = 0 yr) to 
0.92 ± 0.01 °C (lag = 5 yr). Hence, the projected <GLOTI> for SC24 appears very likely to be higher 
than that measured for SC23; namely, <GLOTI> > 0.526 °C (lag = 0 yr) for SC24. If  true, then this 
finding contradicts the prediction of Solheim et al.,96,97 who suggest that the <GLOTI> will be 
much cooler for SC24 as compared to SC23, a prediction based on the ongoing declining solar activ-
ity and the long duration of SC23.

 Figure 14 compares annual values of the GLOTI for SC23 and SC24 for similar phasing 
(i.e., the elapsed time in years t from Emin). Plainly, the GLOTI measured during SC24 (2008–2012) 
has been higher every year than was seen for similar phasing in SC23, suggesting that, indeed, the 
<GLOTI> for SC24 will be higher than was measured for SC23 (0.526 °C).
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Figure 14.  Annual variation of GLOTI for SC23 (filled circles) and SC24 (filled triangles) 
 for similar phasing.
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3.  DISCUSSION AND SUMMARY

 This TP has examined SC-length averages of the January–December values of the GLOTI in 
relation to SC-length averages of various annual values of descriptors of solar-geomagnetic activity 
and climate, incorporating lags of 0–5 yr. For the interval SC12–SC21, the best inferred linear cor-
relation is the one found between <GLOTI> and <aa(I:SSN)>, incorporating lag = 5 yr and having 
r = 0.969 and se = 0.048 °C. The descriptor <aa(I:SSN)> is a proxy for the strength of the recurrent, 
long-lived events, like coronal holes, which tend to be more prevalent during the decline of the SC 
between cycle maximum amplitude and next SC minimum amplitude. For the interval SC20–SC23, 
the best inferred linear correlation is the one found between <GLOTI> and <MLCO2>, incorporat-
ing lag = 2 yr and having r = 0.9994 and se = 0.012 °C. A comparison of <GLOTI> and <SSN> for 
SC12–SC21 shows that its best correlation is for lag = 0 yr, having r = 0.831 and se = 0.093 °C, a result 
that contrasts that found by Stauning, who reports the best correlation to be the one incorporating 
lag = 3 yr.62 Since the global temperature values (i.e., the GLOTI) are found to change slightly from 
year to year, it might be that this slight variation in their determination and the use of a slightly 
longer database (2–3 yr longer) used in the present study can account for the difference in the fits  
(i.e., best fit being lag = 0 yr versus lag = 3 yr). For the overall interval SC12–SC23, the correla-
tion between <GLOTI> and <SSN> weakens considerably, having r < 0.57 and se > 0.23 °C for all 
lags 0–5 yr. Hence, SC22 (1986–1995) and SC23 (1996–2007) appear to be statistical outliers with 
respect to the inferred preferential linear relationship found between <GLOTI> and SC-length aver-
ages of solar-geomagnetic activity descriptors based on SC12–SC21. Recall that both GLOTI and 
<GLOTI> continue to rise (through SC23), while solar activity appears to be waning, suggesting 
that something other than solar-geomagnetic activity must now be responsible for the continued rise 
of global temperatures, especially since SC20.

 Based on the inferred preferential linear correlation found between <MLCO2> and SC for 
SC20–SC23, having r = 0.998 and se = 1.56 ppm, one estimates <MLCO2> for SC24 to be about 
387.48 ± 1.56 (the ±1 se prediction interval). Using this estimate (and lag = 2 yr) for <MLCO2>, 
one further predicts <GLOTI> = 0.71 ± 0.02 °C for SC24, a value considerably larger than that seen 
for SC23 (0.551 °C for lag 2 yr). Hence, based on this analysis and assuming the validity of the 
inferred preferential linear correlation, one expects <GLOTI> to continue to rise in SC24 and to be 
warmer than was seen in SC23, a result in contrast to that given by Solheim et al.,96,97 who suggest 
that <GLOTI> will instead be much cooler for SC24 as compared to SC23, a prediction based on 
the declining levels of solar activity and long duration of SC23. (Based on extrapolated levels of 
<MLCO2>, one expects <GLOTI> to exceed 1 °C in SC26, its expected onset about 2030–2032.)

 Now, while solar irradiance has been found to vary with solar activity98–105 (i.e., over the 
SC), it cannot account for the observed continued warming evident in <GLOTI>, especially since 
SC20. Nor can climate factors, such as the AMO, SOI, NAO, or PDO, account for the continuing 
increase in <GLOTI> that is currently being experienced. Instead, it appears that increased levels of 
greenhouse gases106–109 must be the underlying cause for the continued warming that has occurred, 
especially over the past 50 years or so (i.e., since onset for SC20). 
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 Figure 15 compares (a) GLOTI, (b) aa(SSN) and aa(I:SSN), (c) the annual greenhouse gases 
index (AGGI), and (d) the global radiative forcing of CO2, methane (CH4), nitrous oxide (NO2), 
and total greenhouse gases for the interval 1979–2012 (available online at <http://www.esrl.noaa.
gov/gmd/aggi/aggi.html>). Plainly, while the GLOTI is rising (in particular since 1985, with year-
to-year variations of ±0.21 °C or less) during the interval 1979–2012, the overall cyclic variation 
of solar-geomagnetic activity (i.e., aa(SSN) and aa(I:SSN)) is now declining, and greenhouse gas 
radiative forcing is continuously rising. The decreasing solar-geomagnetic activity suggests that the 
Sun’s total irradiance must also be declining, while the increase in greenhouse gases suggests that 
more heat is being trapped than is being reradiated back into space. In particular, the GLOTI is 
found to correlate strongly with the AGGI, the total radiative forcing of greenhouse gases and the 
radiative forcing of CO2 (the chief  contributor to the radiative forcing of greenhouse gases: >64% 
in 2012). For GLOTI versus AGGI, the inferred regression is y = –0.691 + 1.014x, having r = 0.875, 
r2 = 0.765, se = 0.09, t = 10.096, and cl > 99.9%. For GLOTI versus the total radiative forcing of 
greenhouse gases, the inferred regression is y = –0.691 + 0.466x, having r = 0.874, r2 = 0.765, se = 0.09, 
t = 10.405, and cl > 99.9%. For GLOTI versus the radiative forcing of CO2, the inferred regression is 
y = –0.535 + 0.653x, having r = 0.878, r2 = 0.771, se = 0.09, t = 10.597, and cl > 99.9%.

 In conclusion, the inferred preferential linear relationship between <GLOTI> and SC-length 
averages of solar-geomagnetic activity that was apparent prior to SC21 (onset 1986) no longer 
appears to be the dominate factor once it was in the ongoing warming expressed by <GLOTI>. 
Instead, it is the increase in greenhouse gases (primarily CO2) that better correlates with the increase 
in <GLOTI>, in particular since SC20.
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