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This paper provides a brief overview of the state-of-the-art for aeroelastic tailoring of 
subsonic transport aircraft and offers additional resources on related research efforts.     
Emphasis is placed on aircraft having straight or aft swept wings.  The literature covers 
computational synthesis tools developed for aeroelastic tailoring and numerous design 
studies focused on discovering new methods for passive aeroelastic control.  Proprietary 
information, which is not available in the open literature, is understandably not included.  
Several new structural and material technologies are presented as potential enablers of 
aeroelastic tailoring, including selectively reinforced materials, functionally graded 
materials, fiber tow steered composite laminates, and various nonconventional structural 
designs.  In addition, smart materials and structures whose properties or configurations 
change in response to external stimuli are presented as potential active approaches to 
aeroelastic tailoring.  
 

1 Introduction 
The Fixed Wing project of NASA’s Fundamental Aeronautics program has been actively developing 

manufacturing techniques, new materials, and structural design tools to address a suite of technical challenges facing 
current and future subsonic transport aircraft.  A primary challenge of the Fixed Wing project is to reduce fuel burn 
in transport aircraft. Targeted design advancements include wing structural weight reduction and increased wing 
aspect ratio to decrease lift-induced drag.  High aspect ratio wings operating at minimum weight are typically highly 
flexible structures prone to aeroelastic instabilities.  Therefore, aeroelastic tailoring is one important approach to 
achieve light weight airframe designs.  Aeroelastic tailoring was defined as “the embodiment of directional stiffness 
into an aircraft structural design to control aeroelastic deformation, static or dynamic, in such a fashion as to affect 
the aerodynamic and structural performance of that aircraft in a beneficial way,” [1].  More simply, aeroelastic 
tailoring has also been defined as “passive aeroelastic control” [2].  In addition to stiffness, mass distribution also 
has an effect on the dynamic properties of a structure, although it is typically considered less during initial design 
efforts and more to mitigate harmful unforeseen dynamics found later in the design process.  Weight minimization is 
only one objective associated with aeroelastic tailoring; other objectives include, but are not limited to, flutter, 
divergence, stress, roll reversal, control effectiveness, lift, drag, skin buckling, and fatigue. 

The goal of this paper is to provide a brief overview on the state-of-the-art of aeroelastic tailoring for subsonic 
transport aircraft and to guide the reader to additional resources on related research efforts.  Research areas are 
broken down as follows: 

• Aeroelastic tailoring methods 
o Computational synthesis tools  
o Global (uniform) tailoring 
o Local (non-uniform) tailoring 
o Additional tailoring approaches 

• Potential material/structural enabling technologies  
o Passive technologies, including selectively reinforced materials, functionally graded materials, 

fiber tow steering within composite laminates, and nonconventional structural designs 
o Active technologies 
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Material/structural enabling technologies for aeroelastic tailoring pertain to materials and structural designs that can 
directly affect a wing’s stiffness, mass, or aerodynamics.  The amount of research already dedicated to aircraft 
aeroelastic tailoring is substantial; furthermore, the extent of the research related to potential solutions or 
technologies for aeroelastic tailoring is even greater.  Therefore, a limited timeframe of a few months was dedicated 
to perform a brief yet sufficient literature survey to guide NASA’s current research in wing weight reduction.  
Proprietary information (which is not available in the open literate) is understandably not included.  Of the research 
papers found, only the most relevant, which are usually the most recent, are included here. 

Emphasis is placed on passive solutions to aeroelastic control of subsonic transport aircraft having straight or aft 
swept wings.  Papers that approach aeroelastic tailoring in a more detailed and possibly localized manner (as 
opposed to globally reorienting the composite laminate of a wing skin, e.g.) are more heavily scrutinized and 
summarized here.   

2 Aeroelastic Tailoring 
According to Shirk et al. [1], the first record of aeroelastic tailoring is from 1949 by Munk [3] who oriented the 

grain of his wooden propeller blade to create desirable deformation couplings when operated.  In the late 1960s, 
there was a thrust in aeroelastic tailoring research, which has continued fairly steadily through to today.  The 
forward swept wings of the X-29 and the Active Aeroelastic Wing are two aeroelastic tailoring examples 
highlighted by Weisshaar [2]. Today the use of composite materials is becoming more prevalent in transport aircraft, 
including the 787, the A380, and the upcoming A350.  Enhanced fabrication processes for composite laminates offer 
new design possibilities that have not been fully exploited for optimal aeroelastic performance and weight savings.   
Continued research into advanced aircraft materials and structures is likely to lead to new aeroelastically tailored 
designs.  Table 1 lists papers on the broader subjects of aeroelastic tailoring, aeroelasticity, airframe materials, 
and/or airframe structural design.  For additional information, the ‘author’ column also includes the number of 
references that were cited in a particular work.  

 
Table 1. Papers on the broader subjects of aeroelastic tailoring, aeroelasticity, airframe materials, and/or 

airframe structural design. 

Year [Ref] Authors (#Cited works) Title 
1986 [1] Shirk, Hertz, Weisshaar 

(89) 
Aeroelastic Tailoring – Theory, Practice, and Promise 

2000 [4] Bucci, Warren, Starke 
(33) 

Need for New Materials in Aging Aircraft Structures 

2002 [5] Kuzmina, Amiryants, 
Schweiger, Cooper, 
Amprikidis, Sensberg (7) 

Review and Outlook on Active and Passive Aeroelastic Design 
Concepts for Future Aircraft 

2002 [6] Siochi, Anders, Cox, 
Jegley, Fox, Katzberg (116) 

Biomimetics for NASA Langley Research Center: Year 2000 Report of 
Findings From a Six-Month Survey 

2003 [7] Livne (508) Future of Airplane Aeroelasticity 
2003 [8] Livne, Weisshaar (205) Aeroelasticity of Nonconventional Airplane Configurations 
2004 [9] Renton, Olcott, Roeseler, 

Batzer, Baron, Velicki (14) 
Future of Flight Vehicle Structures (2002-2023) 

2009 [2] Weisshaar (35) Aircraft Aeroelastic Design and Analysis – Chapter 1 
2011 [10] Barbarino, Bilgen, Ajaj, 

Friswell, Inman (342) 
A Review of Morphing Aircraft  
(also included later in Table 19) 

2.1 Computational Synthesis Tools 
Synthesis tools for aeroelastic tailoring have been developed to varying degrees of modeling fidelity.  The 

literature emphasizes the following four tools as the most utilized: Wing Aeroelastic Synthesis Procedure (TSO), 
Wing Design Optimization with Aeroelastic Constraints (WIDOWAC), Flutter and Strength Optimization Procedure 
(FASTOP), and the Automated Structural Optimization System (ASTROS).  ASTROS is still in development, and 
various versions have been utilized over its existence.  Table 2 includes summaries of the three tools.  
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Table 2. Aeroelastic tailoring tools. 

Tool [Ref] Objective Function Constraints Structural Analysis 
TSO [11] “minimum weight skin 

thickness and composite ply 
orientations”* 

“including strength, 
minimum gage, weight, lift-
curve, flexible-to-rigid lift 
ratios, deflected shape, and 
flutter and divergence 
speeds”* 

Ritz equivalent plate 
model* 

WIDOWAC [12]   Minimum weight Flutter, strength, minimum 
gage constraints 

Finite element based 

FASTOP [13] Minimum weight* Minimum gage, flutter, 
deflection* 

Finite element based 

ASTROS [14] - [16]  Modules for finite elements, smart structures, aerodynamics, 
sensitivity analysis, aeroservoelasticity, optimization, 
aeroelastic stability, trim analysis  

Finite element based 

* Ref. [1] 

2.2 Global (Uniform) Tailoring 
Figure 1 (from Ref. [17]) shows that certain aeroelastic tailoring methods can modify the wing’s primary 

stiffness direction, changing the wing’s bending and torsional stiffness as well as the degree of coupling between the 
two.  The wing’s primary stiffness direction is defined as the “locus of points where the structure exhibits the most 
resistance to bending deformation,” [17].  The structural reference axis is the “conventional wing structure elastic 
axis,” [17]. If the primary stiffness axis is not coincident with the structural reference axis, the wing will have bend-
twist coupling.   When the primary stiffness direction is moved forward of the structural reference axis, the bend-
twist coupling causes the wing to have more “wash-out” (leading edge down) characteristics.   When the primary 
stiffness direction is moved aft of the structural reference axis, the bend-twist coupling causes the wing to have more 
“wash-in” (leading edge up) characteristics [18].  Moving the primary stiffness axis in either direction produces 
desirable changes in wing performance, as labeled in Figure 1, but the two directions clearly involve trade-offs with 
one another.    
 

 
 

Figure 1. The effect that the location of the primary stiffness direction has on the characteristics of the wing 
(adapted from Ref. [17]). 
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Weisshaar, et al. [17] also discuss how the wing’s sweep and it flexural axis relate to Figure 1, where the 
flexural axis is the “locus of points along the beam where, if a concentrated load were applied there, bending and 
twisting deformation combine to produce no additional angle of attack.” The wing will tend to rotate about its 
flexural axis.  With no built-in bend-twist coupling, the location of the flexural axis for a forward swept wing is aft 
of the location of aerodynamic loading, causing natural “wash-in” when the wing is loaded.  For the aft swept wing, 
the location of the flexural axis is forward of the location of aerodynamic loading, causing natural “wash-out” when 
the wing is loaded.  The location of the flexural axis will vary with the addition of bend-twist coupling.  This is 
important in aeroelastic design since, “airloads applied close to this axis will be relatively uncoupled from the 
aerodynamic loads so that aeroelastic interaction is minimal,” [17]. The fundamental work and more detailed 
explanations on this subject are found in Table 3. 
 

Table 3. Papers covering the fundamental work and further details behind Figure 1. 

Year [Ref] Authors (#Cited works) Title 
1986 [19] Weisshaar, Ryan (9) Control of Aeroelastic Instabilities Through Stiffness Cross-Coupling 

1987 [20] Weisshaar (49) Aeroelastic Tailoring - Creative Uses of Unusual Materials 
1998 [17] Weisshaar, Nam, 

Batista-Rodriguez (38) 
Aeroelastic Tailoring for Improved UAV Performance 

 
Table 4 includes examples of optimization routines or parametric studies that vary the global (as opposed to the 

local panel level) composite ply orientations or ply sequence on straight or aft swept wings, which is somewhat 
similar to the approach taken on the forward swept wings of the X-29.  The last column summarizes the general 
approach of a particular effort.  The results were usually positive, although Eastep et al. [21] found that the optimal 
composite structural configurations are fairly insensitive to laminate orientations when imposing various constraints.  
Some papers focused on the challenges of optimizing in a discontinuous design space since small alterations in wing 
design can change the active constraint from flutter to either divergence or another flutter mode.  Ghiasi et al. [22] 
provides a review on various approaches used for optimizing the constant stiffness of composite laminates. 

Weisshaar et al. [17] performed parametric studies on a wing (modeled as a beam) in order to reduce induced 
drag and increase the control reversal speed by considering a stiffness cross coupling parameter, wing sweep, wing 
taper, aspect ratio, airspeed, and leading/trailing edge control.  Strength, in terms of elastic stress-based failure, was 
not considered.  The main findings were as follows: 

• “The amount of stiffness coupling required [to reduce induced drag] is relatively small.” 
• “Aeroelastic tailoring can increase the control reversal speed of swept wings and that different laminate 

designs are needed depending on whether leading edge or trailing edge controls are used.” 
• Considering an Unmanned Air Vehicle (UAV), “Aeroelastic tailoring may not produce a structure with a 

drastically reduced weight compared to an untailored structure. However, the vehicle performance that is 
possible with tailoring may produce the innovative, low-cost design with nearly the same weight but with 
improved performance. However, to be effective, aeroelastic interaction must be large; we may be required 
to operate close to the divergence speed at a given altitude or have noticeable wing flexibility.” 

• “When the aspect ratio is large, tailoring is less effective [with regard to induced drag] and the effects of 
wing distortion on induced drag are more difficult to control.” 

• “Although an elliptically shaped lift distribution creates the least induced drag, when compromising for 
minimum weight (as in aircraft design) the optimal lift distribution becomes more triangular.” 

 
Table 4. Global aeroelastic tailoring papers that vary the ply orientations of composite wing skins. 

Year [Ref] Authors (#Cited works) Title General approach/emphasis 
1987 [23] Green (14) Aeroelastic Tailoring of Aft-Swept 

High-Aspect-Ratio Composite Wings 
Parametric study 

1989 [24] Isogai (16) Direct Search Method to Aeroelastic 
Tailoring of a Composite Wing under 
Multiple Constraints 

Optimization – 
Discontinuous design space 
(flutter and divergence 
modes) 
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1999 [25] Visser (16) Aeroelastic and Strength Optimisation 
of a Composite Aircraft Wing Using a 
Multilevel Approach 

Optimization – positive 
outcome 

1999 [21] Eastep, Tischler, 
Venkayya, Khot (10) 

Aeroelastic Tailoring of Composite 
Structures 

Optimization – negative 
outcome 

2002 [26] Qin, Marzocca, Librescu 
(28) 

Aeroelastic Instability and Response of 
Advanced Aircraft Wings at Subsonic 
Flight Speeds 

Parametric study – a focus 
on warping restraint 

2004 [27] Hirano, Todoroki (23) Stacking Sequence Optimizations for 
Composite Laminates Using Fractal 
Branch and Bound Method: 
Application for Supersonic Panel 
Flutter Problem with Buckling Load 
Condition 

Optimization – positive 
outcome 

2005 [28] Kim, Hwang (17) Optimal Design of Composite Wing 
Subjected to Gust Loads 

Optimization – positive 
outcome 

2006 [29] Seresta, Abdalla, Mulani, 
Marzocca (33) 

Stacking Sequence Design of Flat 
Composite Panel for Flutter and 
Thermal Buckling 

Optimization – positive 
outcome 

2007 [30] Kim, Oh, Kweon, Choi 
(5) 

Weight Optimization of Composite Flat 
and Curved Wings Satisfying Both 
Flutter and Divergence Constraints 

Optimization – positive 
outcome 

2007 [31] Kameyama, Fukunaga 
(19) 

Optimum Design of Composite Plate 
Wings For Aeroelastic Characteristics 
Using Lamination Parameters 

Optimization – 
discontinuous design space 
(flutter and divergence 
modes) 

2008 [32] Manan, Cooper (44) Uncertainty of Composite Wing 
Aeroelastic Behaviour 

Optimization – positive 
outcome 

2009 [33] Harmin, Cooper (19) Aeroelastic Tailoring Using Ant 
Colony Optimization 

Optimization – positive 
outcome 

2009 [22] Ghiasi, Pasini, Lessard 
(139) 

Optimum Stacking Sequence Design of 
Composite Materials, Part 1: Constant 
Stiffness Design 

A review of optimization 
routines used for 
determining constant 
stiffness designs of 
composite laminates 

2011 [34] Attaran, Majid, Basri, 
Mohd Rafie, Abdullah (18) 

Structural Optimization of an 
Aeroelastically Tailored Composite 
Flat Plate Made of Woven 
Fiberglass/Epoxy 

Parametric study 

2.3 Local (Non-uniform Tailoring) 
When separate sections of the wing are tailored differently from one another, aeroelastic tailoring is applied in a 

more “local” manner over the wing.   The following four tables list references that pertain to this less common, local 
approach to aeroelastic tailoring.  Certain local approaches to wing structural design are not included here but in a 
later section, since they did not explicitly account for aerodynamic interactions.  Table 5 covers papers that vary ply 
orientations of separate composite laminate panels (as opposed to one “global” panel) making up the wing’s skin.  
Table 6 provides papers that utilize non-conventional structural topologies. By comparing the topologies among 
these designs, general insights into the best arrangement of structure and stiffness may be possible.  Table 7 
considers the employment of various aeroelastic tailoring techniques into a single study or optimization routine.  In 
particular, De Leon et al. [35] studies extremely localized aeroelastic tailoring by orienting composite fibers at the 
elemental level.  Finally, Table 8 covers papers that utilize highly idealized wing models, such as simple 1D beams 
where the optimal thickness of each beam section is determined.  
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Table 5. Aeroelastic tailoring papers using varying ply orientations amongst separate composite panels. 

Year [Ref] Authors 
(#Cited works) 

Title Summary 

2006 [36] Guo, 
Cheng, Cui 
(17) 

Aeroelastic 
Tailoring of 
Composite 
Wing 
Structures by 
Laminate 
Layup 
Optimization 

• Conducted a parametric study on a wing box comprised of 20 
different panels.  Varied the wing planform and also optimized the 
laminate fiber orientations over each panel. 

• The weight of each wing box was constant. 
• Utilized gradient and discrete optimization methods to optimize for 

maximum flutter speed. 
• The results are summarized in Figure 3 (of the paper).  The quasi-

isotropic laminate [0/-45/45/90]° had the worst results.  Maximum 
torsional rigidity [-45/45]° showed much improvement.  Best 
results came from optimizing each panel individually.  Optimized 
designs are summarized by their calculated EI (bending stiffness), 
GJ (torsional stiffness), and CK (coupling rigidity). When 
performing aeroelastic tailoring, it is more effective to optimize CK 
for straight wings and GJ for swept wings.    

• Did not consider structural strength or skin buckling. 
2007 [37] Guo (26) Aeroelastic 

optimization of 
an aerobatic 
aircraft wing 
structure 

• Performed optimization on a wing comprised of 24 panels (6 
spanwise by 4 circumferentially).  Each panel had 8 plies.   

• Results show that wings with the highest flutter speed have 
increased torsional rigidity (GJ) and decreased bending rigidity 
(EI). This would separate the uncoupled bending and torsional 
frequencies, increasing the flutter speed at which they coalesce.  
Wings with highest flutter speed also had some bend-twist coupling 
(CK). 

• The results indicate that the optimization routines did not reach 
global optimums (for example, the design space of case 1 included 
the design space of case 2, yet the final result of case 2 was better 
than case 1), thus nothing can be concluded here about the benefits 
or shortcomings of varying fiber angles per spanwise wing section.   

2007 [38] Herencia, 
Weaver, 
Friswell (51) 

Morphing 
Wing Design 
via Aeroelastic 
Tailoring 

• Optimized a composite wing box having 5 segments from root to 
tip.  Each skin and spar panel was optimized for ply sequence 
(flexural anisotropy) and ply volume fraction (membrane 
anisotropy) using only 0°, +45°, -45° and 90° ply orientation 
permutations.   

• Optimized first for only structural constraints (strength, buckling, 
practical design, etc.).  Optimized second for both structural and 
aerodynamic (lift and drag) constraints. 

• In areas of higher buckling, there was less use of anisotropy.  When 
more anisotropy was used, the wing panels were typically thicker.  
Consequently, drag was able to be reduced by 1.4% but weight was 
increased by 18.7%.   
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2010 [39] Chang, 
Yang, Wang, 
Wang (32) 

Design 
Optimization 
of Composite 
Wing Box for 
Flutter and 
Stiffness 

• Optimized three composite wing boxes each having 5 segments 
from root to tip.  One wing box was constrained to have uniform 
thickness across the 5 segments. Three studies were performed on 
each wing box to determine optimum fiber orientations.   

• The weight of each wing box was constant. 
• Utilized a genetic algorithm to optimize for maximum flutter speed 

and minimum tip deflection simultaneously. 
• Designs with the maximum flutter also had the most tip deflection. 
• Comparisons cannot be made between the 1st study and the other 

two studies since the thickness per ply was not constant.  
Comparing the results of the 2nd and 3rd study suggest that 
optimizing the fiber orientation per panel, verses keeping it uniform 
across the panels, increases flutter speed. 

• The wing box of uniform thickness had highest flutter speeds, and 
its panels closer to the root had greater impact on flutter.  For the 
nonuniform thickness wing boxes, the panels furthest from the root 
had greater impact on flutter. 

• Did not consider strength or skin buckling. Plans for more studies 
using additional load cases and objectives. 

 
Table 6. Aeroelastic tailoring papers using isotropic materials and structural design optimization. 

Year [Ref] Authors 
(#Cited works) 

Title Summary 

1975 [40] Haftka (10) Parametric 
Constraints 
with 
Application to 
Optimization 
for Flutter 
Using a 
Continuous 
Flutter 
Constraint 

• Used WIDOWAC to compute the optimal thickness distribution of 
a low aspect ratio titanium wing with a beryllium patch. 

• Wing mass was minimized subject to a flutter constraint 
• Results indicate that, due to the discontinuous nature of the 

aeroelastic flutter mechanism (i.e., the advent of hump modes, or 
the loss of criticality of a conventional flutter mechanism), an 
equivalent nonparametric “minimum value” constraint is preferred 
to a conventional flutter-based parametric constraint. 

2002 [41] Stroud, 
Krishnamurthy, 
Mason, Smith, 
Naser (11) 

Probabilistic 
Design of a 
Plate-Like 
Wing to Meet 
Flutter and 
Strength 
Requirements 

• Developed a reliability-based design approach to aeroelastic 
tailoring of a metallic plate-like wing.  

• Minimized weight by varying the wing thickness distribution using 
nine locations on the wing. 

• Determined that reliability can be increased with relatively small 
increases in weight. 

• Figures 7 and 12 (in the paper) show two designs with similar 
weight but different load paths. The thickest regions are the leading 
edge at midspan and the root.  The thinnest regions are the rear 
trailing edge, the tip, and the very forward root area.  

• Considered strength and flutter.  
2004 [42] Martins, 

Alonso, Reuther 
(23) 

High-Fidelity 
Aerostructural 
Design 
Optimization 
of a 
Supersonic 
Business Jet 

• Reduced weight on a natural-laminar flow supersonic business jet 
by employing multidisciplinary design optimization. 

• Minimized weight and drag simultaneously by optimizing the 
OML and spar/rib thicknesses and depths.  

• The surface density distribution of the optimized wing in Figure 12 
(of the paper) shows more material toward the leading edge at both 
the midspan and tip. 

• Considered strength and aeroelasticity. Utilized previously 
developed analysis tools.  Did not consider flutter and skin 
buckling. 
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2004 [43] Maute, 
Allen (61) 

Conceptual 
Design of 
Aeroelastic 
Structures by 
Topology 
Optimization 

• Performed two examples of topology optimization. 
• The first example showed that fluid-structure interaction cannot be 

overlooked when performing aeroelastic tailoring.  When including 
this interaction, drag was reduced and the topology showed one 
thick spar that terminated at the leading edge where additional 
material was also located. 

• The second example minimized mass by identifying areas in the 
spars and ribs that can be less stiff.  The results showed that ribs 
were stiffer toward the outboard of the wing and the spars were 
stiffer toward the inboard of the wing.  The ribs had the greatest 
stiffness at the leading edge and underside of the wing, where the 
pressures are greater.   

• Considered stress and aerodynamics.  Did not account for flutter 
nor buckling of skin and stiffeners. 

2005 [44] Okada, 
Furuya (21) 

Robust 
Structural 
Optimization 
of Plate Wing 
Corresponding 
to Bifurcation 
in Higher 
Mode Flutter 

• Developed robust structural design optimization of a constant 
mass, varying thickness plate-like delta wing to maximize the 
critical dynamic speed associated with supersonic flutter.   

• Increased the flutter speed by 6 times. 
• Improved convergence by constraining adjacent modes to be a 

constant distance apart from one another. 
• Future work will consider the effects of damping.  Did not consider 

strength. 
2008 [45] Gomes, 

Suleman (27) 
Topology 
Optimization 
of a 
Reinforced 
Wing Box for 
Enhanced Roll 
Maneuvers 

• Developed a level-set method to reinforce the upper skin of a wing 
torsion box for increased aileron reversal dynamic pressure. 

• Optimized the thickness variation over the upper surface. 
• Utilized COBYLA, a derivative-free optimization tool. 
• Despite different initial designs, the optimizer always led to 

material reinforcement at the leading and trailing edges. 
• Considered only torsional loads to simulate aerodynamic loads. 

Did not consider stress, skin buckling, and flutter constraints. 
2009 [46] Kobayashi, 

Pedro, Kolonay, 
Reich (27) 

On a Cellular 
Division 
Method for 
Aircraft 
Structural 
Design 

• Developed a biologically inspired topology optimization method 
that breaks a wing structure into “cells”. 

• Utilized a wing box model of a generic fighter aircraft and varied 
the topology variables, thicknesses, and stiffnesses via a genetic 
algorithm. 

• Displayed results by using a Pareto set between mass and stress.  
With additional mass available, more stiffeners were added in the 
optimization verses adding more structural thickness. 

• Utilized the doublet lattice method.  Did not indicate flutter as a 
constraint. Did not consider skin buckling. 

2011 [47] Stanford, 
Beran (23) 

Optimal 
Structural 
Topology of a 
Plate-Like 
Wing for 
Subsonic 
Aeroelastic 
Stability 

• Studied the Pareto front between mass and aeroelastic instability 
using an aluminum plate of different planforms. 

• Varied the thickness of each element. 
• Experienced slower convergence due to switching between 

resultant flutter and divergence modes while using a gradient based 
optimizer. 

• The optimized variable thickness wing was always better than the 
uniform-thickness wing.  

• The straight and aft-swept wings had some similarities, including 
the following: most of the mass was towards the leading edge, 
lower mass designs have rib-like distributions of mass, and the 
mass at the root is focused at the leading and trailing edges. 

• Considered flutter but did not include strength as a constraint. 
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2011 [48] Harmin, 
Ahmed, 
Cooper, Bron 
(13) 

Aeroelastic 
Tailoring of 
Metallic Wing 
Structures 

• Varied the unidirectional orientation of the ribs and skin 
crenulations (ridges) in both rectangular and tapered wing boxes to 
assess their effects on flutter speed and bending and twist 
deflection. 

• The structural weight was constrained as a constant. 
• Demonstrated bending and torsion coupling and also increased 

flutter speed by 3%. 
• Did not consider stress, skin buckling, or the variation of 

orientations between adjacent ribs or crenulations. 
2012 [49] Stanford, 

Beran (39) 
Computational 
Strategies for 
Reliability-
Based 
Structural 
Optimization 
of Aeroelastic 
Limit Cycle 
Oscillations 

• Optimized the thickness distribution of a cantilevered plate in 
supersonic flow for minimum mass. 

• Used a constraint on the nonlinear post-flutter limit cycle 
oscillation amplitude, rather than the flutter point itself. 

• Considered both deterministic LCO constraints, as well as 
probabilistic (i.e., the probability that an LCO amplitude will be 
larger than required). 

• Utilized proper orthogonal decomposition (POD)-based model 
reduction and time-periodic spectral elements to reduce LCO 
optimization cost. 

• Low-mass plates with feasible LCO amplitudes were found by 
lumping mass along the leading edge of the wing.  A very minor 
increase in the leading edge material could drop the probability of 
LCO failure substantially. 

2012 [50] 
Sleesongsom, 
Bureerat (33) 
 

New 
Conceptual 
Design of 
Aeroelastic 
Wing 
Structures by 
Multi-
Objective 
Optimization 
 

• Used structural sizing and topology variables to solve multi-
objective aeroelastic optimization problems for wing weight, 
buckling, and lift effectiveness. 

• Considered constraints on divergence, flutter, and stress metrics. 
• Topological variables based on a ground structure approach, and 

was found to give superior designs to those with just conventional 
sizing variables, via a multi-objective population-based 
incremental learning algorithm. 

2013 [51] Dunning, 
Brampton, Kim 
(20) 
 

Multidisciplin-
ary Level Set 
Topology 
Optimization 
of the Internal 
Structure of an 
Aircraft Wing 
 

• Used level set methods to find the optimal internal distribution of 
material within a rectangular aeroelastic wing box. 

• Element mesh composed of tri-linear finite elements, which could 
appear or disappear during the optimization: design problem was to 
minimize compliance subject to a weight and a lift constraint. 

• Optimal topology was not found to have rib and spar-like patterns 
(instead large sections of mass were lumped along the root and/or 
tip), though results are preliminary. 
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Table 7. Aeroelastic tailoring papers using tailoring techniques that are not specific to a single category. 

Year [Ref] Authors 
(#Cited works) 

Title Summary 

1991 [52] Bohlmann, 
Scott (8) 

A Taguchi 
Study of the 
Aeroelastic 
Tailoring 
Design 
Process 

• Implemented a Taguchi Method to determine important design 
components to consider when aeroelastically tailoring a generic F-16 
wing model. 

• Considered laminate orientation, ply thickness, built in camber, 
control surface deflections, and others. 

• Evaluations included weight, roll rate effectiveness, hinge moment 
effectiveness, roll damping flex-to-rigid ratio, and others.  Utilized 
TSO (tool) for determining strength, flutter, and roll moment 
effectiveness.   

• One conclusion states that when the laminate orientations are not 
constrained, the structural weight increases.  For example, the bi-
directional laminate [-45/45]° which had the best torsional rigidity 
required additional plies to compensate for its low bending rigidity. 

• Provides design guidelines but the study is “not all encompassing.”  
1992 [53] Rehfield, 

Chang, Zischka 
(12) 

Modeling And 
Analysis 
Methodology 
For 
Aeroelastically 
Tailored 
Chordwise 
Deformable 
Wings 

• Introduced enhanced-lift design concepts that elastically increase 
camber when bent or twisted.  “Elastically produced camber is 
created by establishing a differential chordwise membrane strain 
between the upper and lower box covers while preserving the 
structural box.”   

• In the bending example of a generic transport wing, the 
‘Exaggerated Poisson’s Effect’ is produced by both composites and 
the orientation of unidirectional stiffeners.  

• Performed an experiment on a wing box to validate the analysis 
methodology for the bending-camber concept. 

• Considers stress, skin buckling, and divergence.  Did not account for 
flutter. 

• Appendix D (in the paper) provides rib concepts for the proposed 
designs. 

2005 [54] Arizono, 
Isogai (14) 

Application of 
Genetic 
Algorithm for 
Aeroelastic 
Tailoring of a 
Cranked-
Arrow Wing 

• Developed a genetic algorithm to optimize the laminate orientation 
and the spar, rib, and skin thicknesses of a cranked-arrow wing of a 
supersonic jet for minimum structural weight. 

• To minimize the number of design variables, the wing was 
subdivided into regions of uniform structural thicknesses. 

• The inclusion of laminate orientations provided additional weight 
reduction. 

• Considered strength, local buckling, and flutter constraints.   
2012 [55] Kennedy, 

Martins (32) 
A Comparison 
of Metallic and 
Composite 
Aircraft Wings 
using 
Aerostructural 
Design 
Optimization 

• Multidisciplinary design optimization of a high aspect ratio subsonic 
transport wing box, using either metallic structures or composite 
structures. 

• Obtained the Pareto front between fuel burn and gross take-off 
weight via wing shape and wing structure variables, under trim 
constraints, strength constraints, and skin buckling constraints, but 
did not consider flutter. 

• Extra design freedom afforded by orthotropic composites was found 
to provide sizeable improvements in aspect ratio, weight, and fuel 
burn. 
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2012 [35] De Leon, 
de Souza, 
Fonseca, da 
Silva (42) 

Aeroelastic 
Tailoring 
Using Fiber 
Orientation 
and Topology 
Optimization 

• Optimized laminated flat plate designs by first optimizing elemental 
fiber orientations for increased flutter speed and then by optimizing 
the elemental material density for minimum weight. 

• Developed a procedure to exploit tow steering fabrication. 
• Increased the flutter speed by maximizing the eigenvalue associated 

with the eigenmode involved with the flutter onset. 
• Tools included ZAERO (including ZONA 6 unsteady lifting surface 

method). 
• Did not consider strength. 

2013 [56] Dillinger, 
Klimmek, 
Abdalla, 
Gürdal (32) 

Stiffness 
Optimization 
of Composite 
Wings with 
Aeroelastic 
Constraints 
 

• Optimized stacking sequence of wing skins for either mass or aileron 
effectiveness, with constraints on laminate failure and buckling. 

• Gradient based optimization via response surface methods, with the 
elements of the in-plane and the bending stiffness matrices used 
directly as design variables. 

• Unbalanced laminates showed superior performance over balanced 
for all optimization problems. 

 
Table 8. Aeroelastic tailoring papers having simplified, highly idealized wing models, typically comprised of 

1D beam elements. 

Year [Ref] Authors (#Cited works) Title 

1982 [57] Seyranian (42) Sensitivity Analysis and Optimization of Aeroelastic Stability 

1988 [58] Craig, McLean (8) Spanload Optimization for Strength Designed Lifting Surfaces  

1996 [59] Butler, Banerjee (13) Optimum Design of Bending-Torsion Coupled Beams with Frequency or 
Aeroelastic Constraints 

1999 [60] Barboni, Mannini, 
Gaudenzi (11) 

On the Use of the P-TFE Method for Panel Flutter Optimization 

1999 [61] Langthjem, Sugiyama 
(21) 

Optimum Shape Design Against Flutter of a Cantilevered Column With 
an End-Mass of Finite Size Subjected to a Non-Conservative Load 

2004 [62] Lemanski, Weaver (5) Flap-Torsion Coupling in Prismatic Sections 

2006 [63] Palaniappan, Beran, 
Jameson (9) 

Optimal Control of LCOs in Aero-Structural Systems 

2007 [64] Pastilha (45) Structural Optimization for Flutter Instability Problems 

2013 [65] Stanford, Beran (37) Direct Flutter and Limit Cycle Computations of Highly-Flexible Wings 
for Efficient Analysis and Optimization 

2.4 Additional Tailoring Approaches 
This section covers a variety of research papers that are relevant to aeroelastic tailoring but are not directly 

applicable to either global or local tailoring or the goal of weight reduction in transport aircraft.  Table 9 includes 
research papers on the accurate weight calculation of aircraft.  Table 10 provides research papers on the aeroelastic 
tailoring of micro air vehicles.  Table 11 includes additional papers concerning aeroelastic tailoring that have 
insightful conclusions that are important to consider during wing design.  Finally, Table 12 covers papers that are 
relevant to modeling, analysis, and optimization of aeroelastically tailored structures. 
 

Table 9. Research on accurate weight calculation of aircraft. 

Year [Ref] Authors (#Cited 
works) 

Title 

2000 [66] Boynton, Weiner (3) Measuring Mass Properties of Aircraft Control Surfaces 
2004 [67] Regis, de Mattos (28) Wing Structural Weight Evolution With The Cruise Mach Number Of A 

Commercial Transport Aircraft 
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Table 10. Aeroelastic tailoring of micro air vehicles. 

Year [Ref] Authors (#Cited 
works) 

Title 

2008 [68] Stanford, Ifju (148) Fixed Membrane Wings for Micro Air Vehicles: Experimental 
Characterization, Numerical Modeling, and Tailoring 

2009 [69] Stanford, Ifju (34) Aeroelastic Topology Optimization of Membrane Structures for Micro Air 
Vehicles 

2009 [70] Stanford, Ifju (27) Multi-Objective Topology Optimization of Wing Skeletons for Aeroelastic 
Membrane Structures 

 
Table 11. Relevant outcomes of aeroelastic tailoring work. 

Year [Ref] Authors 
(#Cited works) 

Title Summary 

2001 [71] Inglesias, 
Mason (18) 

Optimum Spanloads 
Incorporating Wing 
Structural Weight 

Concluded that when minimizing weight, optimizing the 
spanloads to reduce root bending moment is more 
effective than optimizing spanloads for reduced drag. 

2003 [72] Pettit, 
Grandhi (20) 

Optimization of a Wing 
Structure for Gust 
Response and Aileron 
Effectiveness 

Optimized for weight reduction with gust response and 
aileron effectiveness constraints.  Future work will 
include stress and flutter considerations. “[A result] 
indicates that the structure’s aeroelastic properties are 
much more sensitive to Young’s modulus variability in 
the skin panels than to variability in their thickness or 
spar and rib thickness.”   

2004 [73] Papila, 
Haftka, Mason, 
Alves (12) 

Tailoring Wing Structures 
for Reduced Drag Penalty 
in Off-Design Flight 
Conditions 

Optimized a wing for reduced drag and had better results 
when considering off-design flight conditions instead of 
a single flight condition. 

2005 [74] Love, Zink, 
Wieselmann, 
Youngren (8) 

Body Freedom Flutter of 
High Aspect Ratio 
FlyingWings 

Did not have success with aeroelastically tailoring a 
flying wing aircraft to delay body freedom flutter, 
although it is mentioned that too many simplifications 
may have been made, including not accounting for 
weight addition when adding stiffness.  Promotes active 
aeroelastic tailoring. 

2012 [75] Wang, Liu, 
Tang, Yang (15) 
 

The Influence of Spar 
Position on Aeroelastic 
Optimization of a Large 
Aircraft Wing 
 

Found that the position of the leading edge spar had a far 
greater impact on the aeroelastic optimization process 
than the trailing edge spar.  Results indicated better 
designs with composite wings, as compared to metallic, 
but the optimal wing weight of both increased 
substantially if design constraints were difficult to 
satisfy. 

 
Table 12. Modeling, analysis, and optimization approaches for aeroelastic tailoring. 

Year [Ref] Authors 
(#Cited works) 

Title Emphasis 

1989 [76] Livne (6) An Integrated Approach To The Optimum Design Of Actively 
Controlled Composite Wings 

Multidisciplinary 
design, analysis, 
and optimization 
(MDAO) 

1998 [77] Komarov, 
Weisshaar (18) 

Aircraft Structural Design - Improving Conceptual Design Level 
Fidelity 

MDAO 

1998 [78] Blair, Hill, 
Weisshaar (10) 

Rapid Modeling with Innovative Structural Concepts Model – (includes 
organic wing 
design) 
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1999 [79] Livne, 
Navarro (24) 

Nonlinear Equivalent Plate Modeling of Wing Box Structures Model 

1999 [80] Reuther, 
Alonso, Martins, 
Smith (28) 

A Coupled Aero-Structural Optimisation Method for Complete 
Aircraft Configurations 

MDAO 

2001 [81] Gumbert, 
Hou, Newman 
(42) 

Simultaneous Aerodynamic and Structural Design Optimization 
(SASDO) for a 3-D Wing 

MDAO 

2009 [82] Demasi, 
Livne (65) 

Dynamic Aeroelasticity of Structurally Nonlinear Configurations 
Using Linear Modally Reduced Aerodynamic Generalized Forces 

Analysis 

2010 [83] Yoon (46) Topology Optimization for Stationary Fluid-Structure Interaction 
Problems using a New Monolithic Formulation 

MDAO 

2010 [84] Fazelzadeh, 
Marzocca, 
Mazidi, Rashidi 
(19) 

Divergence and Flutter of Shear Deformable Aircraft Swept 
Wings Subjected to Roll Angular Velocity 

Analytical model 

2011 [85] Seeger, 
Wolf (27) 

Multi-Objective Design of Complex Aircraft Structures Using 
Evolutionary Algorithms 

MDAO 

2012 [86] Bhatia, 
Kapania, Haftka 
(17) 

Structural and Aeroelastic Characteristics of Truss-Braced 
Wings: A Parametric Study 

MDAO 

2012 [87] Daoud, 
Petersson, 
Deinert, Bronny 
(12) 

Multidisciplinary Airframe Design Process: Incorporation of 
Steady and Unsteady Aeroelastic Loads 
 

MDAO 

3 Potential Enabling Technologies of Aeroelastic Tailoring 
This section highlights technologies that can directly affect a wing’s stiffness, mass, or aerodynamics, although 

not all papers below explicitly account for aerodynamic loading. If a technology does not require controls for 
aeroelastic tailoring purposes, it is considered ‘passive’.  Otherwise, the technology is considered ‘active’.  The 
following sections are broken down by this active/passive distinction.   

3.1 Passive 
Various developments in materials and structures may contribute to the aeroelastic tailoring of wings for further 

weight reduction and improved performance.  This section introduces various potential enabling technologies, 
including: selectively reinforced materials, functionally graded materials, fiber tow steered composite laminates, and 
various nonconventional structural designs. 

3.1.1 Selectively Reinforced Materials 
Selectively reinforced materials are a particular type of composite material.  One example is metal matrix 

composites (MMCs), which are metals or alloys that are reinforced by another material.  Porous metals, also called 
metal foams or microcellular metals, are also included within this category [88].  MMCs have been applied to 
various aeronautic vehicles, including the ventral fin of the F-16 [89].  These composites take advantage of the best 
properties of their individual constituents, but their usage is limited due to their relatively high manufacturing cost 
[90].  Table 13 and Table 14 list brief summaries of papers relevant to either MMCs in general or their application in 
aerospace.  There is no record of MMCs being used specifically for the aeroelastic tailoring of wings.   

A subset of MMCs is fiber metal laminates (FMLs).  A common example is GLARE, a “Glass Laminate 
Aluminium Reinforced Epoxy”, which is comprised of layers of glass fiber that are interspersed and bonded 
between layers of metal [91].  Like MMCs, the composite laminates have attractive properties, but are relatively 
expensive.  However, GLARE is currently used in the upper fuselage skin of the A380 [92].  Table 15 and Table 16 
list brief summaries of papers relevant to either GLARE or its integration into aerospace applications. 

Finally, Reinforced Core Sandwich (RCS) and Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) 
panels are two specific examples of lightweight, reinforced constructions of materials.  Bednarcyk et al. [93] 
developed and verified a tool to incorporate and size RCS and PRSEUS panels for lightweight designs.  They 
describe the two reinforcement methods as follows: 
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• “Reinforced core sandwich (RCS) panels combine aspects of foam core sandwich panels and stiffened 
panels in a concept that includes integral composite webs for optimum through thickness shear capabilities 
and excellent damage tolerance.” 

• “Boeing’s Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) panels rely on pre-cured 
unidirectional composite rods for high axial stiffness, integral foam core frames of transverse support, and 
stitching for superior damage tolerance.” 
 

Table 13. Papers on the state-of-the-art and aeronautical applications of MMCs. 

Year  [Ref] Authors 
(#Cited works) 

Title Overview 

1991 [94] Ibrahim, 
Mohamed, 
Lavernia (127) 

Particulate 
Reinforced Metal 
Matrix Composites - 
a Review 

Describes the state-of-the-art of particulate reinforced MMCs as 
of 1991.  Provides historic examples of weight savings.  
Presents physical and material properties.  

 
1997 [95] Degischer 

(20) 
Innovative Light 
Metals: Metal 
Matrix Composites 
and Foamed 
Aluminum 

Describes particulate reinforced light metals, continuous fiber 
reinforced light materials, and aluminum foam. 

2001 [89] Miracle 
(1) 

Aeronautical 
Applications for 
Metal Matrix 
Composites 

Describes aeronautical applications of MMCs, including the use 
in the ventral fin on the F-16.  The MMC design had a 40% 
increase in specific stiffness and reduced the tip deflection by 
50%. 

2005 [90] Miracle 
(47) 

Metal Matrix 
Composites – From 
Science to 
Technological 
Significance 

Describes the state-of-the-art of MMCs as of 2005.  States that 
many of the technical challenges of MMCs have been overcome 
or minimized, although their cost is still relatively high. Figure 1 
(in the paper) compares the stiffness vs. strength properties of 
metals and MMCs.  Provides examples of applications of 
MMCs, including selective reinforcement of an engine block.  
Explains that MMC’s can be functionally graded. 

2010 [88] 
Mortensen, 
Llorca (140) 

Metal Matrix 
Composites (Annual 
Review) 

Describes the state-of-the-art as of 2010.  Provides a thorough 
introduction of MMCs and their benefits. Describes newly 
developed MMC materials and the research focused on 
understanding the physics and micromechanics of these 
materials. Microcellular metals (metal foams) have seen a recent 
thrust in research. 

 
Table 14. Recent but less relevant papers on MMCs. 

Year [Ref] Authors (#Cited works) Title Emphasis 
2000 [96] Kaczmar, Pietrzak, Wlosinski 

(68) 
The Production and Application of Metal 
Matrix Composite Materials 

Overview on 
MMCs 

2001 [97] Rawal (10) Metal-Matrix Composites for Space 
Applications 

Space applications 
of MMCs 

2009 [98] Fernández, González-Doncel 
(38) 

Additivity of Reinforcing Mechanisms 
During Creep of Metal Matrix Composites: 
Role of the Microstructure and the 
Processing Route 

Creep in MMCs 

2009 [99] Scherm, Völkl, van Smaalen, 
Mondal, Plamondon, L’Espérance, 
Bechmann, Glatzel (20) 

Microstructural Characterization of 
Interpenetrating Light Weight Metal 
Matrix Composites 

MMCs at the 
microstructural 
level 

2012 [100] Ricks, Lacy, Bednarcyk, 
Arnold (14) 

A Multiscale Modeling Methodology for 
Metal Matrix Composites Including Fiber 
Strength Stochastics 

Modeling MMCs 
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Table 15. Papers on the state-of-the-art and aeronautical applications of GLARE. 

Year [Ref] Authors 
(#Cited works) 

Title Overview 

2007 [101] Slingerland, 
Alkemadey, 
Vermeulenz (11) 

A Preliminary 
Prediction 
Method for the 
Effect of New 
Fuselage 
Materials on 
Transport 
Aircraft Weight 

Developed a method for predicting aircraft weight when 
fuselage materials are either metals or fiber metal laminates like 
GLARE.  Describes the composition and material properties of 
GLARE.  Conclusion provides estimated aircraft weight savings 
when using GLARE. 

2008 [92] Alderliesten, 
Benedictus (46) 

Fiber/Metal 
Composite 
Technology for 
Future Primary 
Aircraft 
Structures 

Describes the state-of-the-art as of 2008.  States that GLARE is 
tailorable.  Emphasizes that damage tolerance must be 
considered when making aircraft weight assessments between 
materials. Provides a good description of the benefits of 
combining the two materials: “Metals have a high bearing 
strength and impact resistance and are easy to repair, whereas 
full composites have excellent fatigue characteristics and high 
strength and stiffness.” 

 
Table 16.  Additional papers on GLARE. 

Year [Ref] Authors 
(#Cited works) 

Title Emphasis 

2003 [102] Schmidt, 
Schmidt-Brandecker 
(4) 

Damage Tolerant Design And Analysis Of Current 
And Future Aircraft Structure 

Damage requirements, 
GLARE vs. aluminum 
comparison 

2010 [103] Seo, Hundley, 
Hahn, Yang (17) 

Numerical Simulation of Glass-Fiber-Reinforced 
Aluminum Laminates with Diverse Impact 
Damage 

Damage considerations, 
modeling GLARE 

3.1.2 Functionally Graded Materials 
Functionally graded metals are especially beneficial to high temperature applications like supersonics since they 

eliminate discrete changes in the coefficient of thermal expansion which can cause significant stress at the boundary 
between two adjacent materials [104].  Marzocca, et al. provides a literature survey on nonlinear aero-thermal-
elasticity of functionally graded panels.  The survey’s relevance is limited though since the extent of functional 
grading is modeled by a simple volume fraction parameter.  Also, the benefits did not cover subsonic transports or 
detailed wing designs [104].   

A paper by Venkataraman and Sankar [105] demonstrates the benefits of reinforcing a hole with continuously 
graded material.  New manufacturing processes, such as the electron beam freeform fabrication (EBF3) [106], are 
helping to enable the fabrication of functionally graded metals.  Pettit and Grandhi [72] concluded that a wing 
“structure’s aeroelastic properties are much more sensitive to Young’s modulus variability in the skin panels than to 
variability in their thickness or spar and rib thickness.”   For this reason, the grading of the Young’s modulus may be 
very effective in aeroelastic tailoring efforts, at least for the configuration considered in [72]. 

3.1.3 Fiber Tow Steering 
Fiber tow steering is a fabrication process that enables fibers of a composite laminate to be applied along 

curvilinear paths within a single ply.   This adds increased design freedom in composite laminate design.  The 
earliest work referenced on fiber tow steering was in 1972 [107]. Advanced Fiber Placement (AFP) is a larger 
category of manufacturing processes that includes fiber tow steering.  Kisch states [108] that the A380 and 787 
fuselages are both fabricated using AFP.  Although not specifically stated, it is likely that AFP has been employed 
for its efficiency in fabricating large composite laminate structures and less for its ability to exploit intricate fiber 
orientations via fiber tow steering.   

Many research efforts have involved improving the strength or buckling resistance of plates or plates with cut-
outs.   It has been shown that a simple “S” shaped fiber path (one that aligns axially, curves to 45°, and then realigns 
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axially again) improves the buckling resistance of axially loaded plates by “shifting the load away from the 
unsupported center,” [109].  With additional buckling resistance in skin panels, fewer stiffeners may be needed.  
When designing for fiber tow steering, practical constraints like the fiber tow turning radius must be met.  The 
papers chosen for Table 17 are recent and cover a broad group of topics relevant to fiber tow steering, including 
manufacturing processes and applications. In particular, Ghiasi, et al. [110] provides a review of “variable stiffness 
design” in composite laminates, which includes to the use of curvilinear fiber paths.  It also discusses methods for 
determining optimal fiber paths based on principle stresses or load paths.  The paper by De Leon, et al. [35] 
discussed above obtains the fiber angle of each finite element, which may also be considered a type of tow steering.  
The last two papers in the table consider aeroelastic metrics, with Ref. [111] in particular considering flutter-based 
optimization of a tow-steered thin walled beam. 

 
Table 17. Papers on fiber tow steering. 

Year [Ref] Authors 
(#Cited works) 

Title Emphasis 

2006 [108] Kisch (10) Automated Fiber Placement Historical 
Perspective 

Manufacturing processes and 
applications 

2010 [112] Ijsselmuiden, 
Abdalla, Gürdal (33) 

Optimization of Variable-Stiffness Panels 
for Maximum Buckling Load Using 
Lamination Parameters 

State-of-the-art on methods used to 
parameterize and optimize fiber 
path orientations 

2009 [113] Weaver, 
Potter, Hazra, 
Saverymuthapulle, 
Hawthorne (30) 

Buckling of Variable Angle Tow Plates: 
From Concept to Experiment 

Optimizing for buckling resistance 

2010 [114] Alhajahmad, 
Abdalla, Gürdal (16) 

Optimal Design of Tow-Placed Fuselage 
Panels for Maximum Strength with 
Buckling Considerations 

Optimizing for strength and 
buckling resistance 

2009 [109] Butler, Baker, 
Liu (10) 

Damage Tolerance of Buckling Optimized 
Variable Angle Tow Panels 

Optimizing for maximum buckling 
resistance and analyzing for 
damage tolerance 

2009 [115] Honda, Narita, 
Sasaki (20) 

Maximizing the Fundamental Frequency of 
Laminated Composite Plates with 
Optimally Shaped Curvilinear Fibers 

Optimizing for desired frequency 

2005 [116] Tatting, 
Setoodeh, Gürdal 
(8) 

Enhancements of Tow-Steering Design 
Techniques: Design of Rectangular Panel 
Under Combined Loads 

Optimizing a panel for combined 
loads (axial and shear) 

2010 [110] Ghiasi, 
Fayazbakhsh, 
Pasini, Lessard 
(118) 

Optimum Stacking Sequence Design of 
Composite Materials, Part II: Variable 
Stiffness Design 

A review paper on variable 
stiffness designs using curvilinear 
fiber paths in composite laminates  

2010 [117] Lopes, 
Gürdal, Camanho 
(23) 

Tailoring for Strength of Composite 
Steered-Fibre Panels with Cutouts 

Optimizing a panel with a cutout 

2011 [118] Croft, 
Lessard, Pasini, 
Hojjati, Chen, 
Yousefpour  (26) 

Experimental Study of the Effect of 
Automated Fiber Placement Induced 
Defects on Performance of Composite 
Laminates 

Manufacturing defects pertaining 
to tow steering and their effect on 
structural performance 

2012 [119] Kim, Potter, 
Weaver (20) 

Continuous Tow Shearing For 
Manufacturing Variable Angle Tow 
Composites 

Manufacturing processes to 
mitigate fabrication defects 

2012 [111] Haddadpour, 
Zamani (27) 

Curvilinear Fiber Optimization Tools for 
Aeroelastic Design of Composite Wings 
 

Flutter optimization of a tow-
steered thin walled beam 
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2013 [120] Stodieck, 
Cooper, Weaver, 
Kealy (39) 

Improved Aeroelastic Tailoring Using Tow-
Steered Composites 

Parameter studies of an aeroelastic 
flat plate 

3.1.4 Nonconventional Structural Designs 
Research in lightweight structural design covers various architectures, including trusses, curvilinear stiffeners, 

and stiffeners/ribs of various cross-sections or topologies. As previously mentioned, new manufacturing processes, 
such as the electron beam freeform fabrication (EBF3) [106], can enable the fabrication of complex lightweight 
structures by depositing material rather than removing bulk material.  The papers in Table 18 pertain to methods or 
concepts for reducing weight through detailed structural arrangement; direct aerodynamic interaction is not 
considered in most cases.    
 

Table 18. Papers on nonconventional structural design research. 

Year [Ref] Authors 
(#Cited works) 

Title Summary 

1990 [121] 
Swanson, 
Gurdal, 
Starnes (10) 

Structural Efficiency 
Study of Graphite-
Epoxy Aircraft Rib 
Structures 

Compared rib designs comprised of corrugated panels, hat- 
and blade-stiffened panels, and unstiffened flat panels using 
various combinations of axial compression, in-plane shear, 
and out-of-plane normal pressure loadings.  The designs 
were highly dependent on the load conditions. Did not 
consider aerodynamics. 

1994 [122] 
Balabanov, 
Haftka (15) 

Topology Optimization 
of a Transport Wing 
Internal Structure 

Modeled the internal structure of a wing box with a dense 
lattice network of beams, and used topology optimization to 
find the best layout. 

2000 [123] Malla, 
Adib-Jahromi, 
Accorsi (37) 

Passive Vibration 
Suppression in Truss-
Type Structures with 
Tubular Members 

Modeled a truss structure with an integrated damping 
element and found it difficult to characterize.  Therefore they 
developed a tool for conducting quick parametric studies on 
damped truss designs.  Did not consider aerodynamics. 

2000 [124] 
Campanile, 
Sachau (23) 

The Belt-Rib Concept: 
A Structronic Approach 
to Variable Camber 

Introduces the belt-rib concept for aircraft wing ribs that 
allow or produce (if actuated) variable camber. 

2001 [125] 
Eschenhauer, 
Olhoff (134) 

Topology Optimization 
of Continuum 
Structures: a Review 

Obtains the optimal topology of a rib cross-section under 
prescribed aerodynamic loads. 

2002 [126] Krog, 
Tucker, 
Rollema (2) 

Application of 
Topology Sizing and 
Shape Optimization 
Methods to Optimal 
Design of Aircraft 
Components 

Reduces the weight in ribs using topology optimization.  
Explains the challenges of modeling the load and boundary 
conditions accurately.  Did not consider aerodynamics. 

2003 [127] Ragon, 
Gurdal, 
Haftka, Tzong 
(11) 

Bilevel Design of a 
Wing Structure Using 
Response Surfaces 

Proposes a technique for local size optimization of a panel 
stiffened with “upside down L-shaped” stiffeners.  
Considered weight, buckling, strength, and tip deflection.  
Did not consider aerodynamics. 

2003 [128] Murphy, 
Hinkle (20) 

Some Performance 
Trends In Hierarchical 
Truss Structures 

Determines that trusses having truss members comprised of 
trusses (i.e., 2nd order hierarchy) have better performance 
than other orders of hierarchy under certain conditions and 
assumptions.  Assumptions are explained in the conclusions.  
Did not consider aerodynamics. 

2004 [129] 
Cadogan, 
Smith, 
Uhelsky, 
MacKusick 
(13) 

Morphing Inflatable 
Wing Development for 
Compact 
Package Unmanned 
Aerial Vehicles 

Discusses research on morphing inflatable wings.  Proposes 
a concept of attaching an inflatable extension at a wing tip to 
increase wing aspect ratio. Describes ‘nastic’ structures 
which can undergo large strain while providing structural 
functions. 
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2005 [130] 
Bushnell, 
Rankin (46) 

Optimum Design Of 
Stiffened Panels With 
Substiffeners 

Found that adding substiffeners to panels did not                       
reduce the weight significantly.  Did not consider 
aerodynamics. 

2005 [131] 
Campanile, 
Anders (26) 

Aerodynamic and 
Aeroelastic 
Amplification in 
Adaptive Belt-rib 
Airfoils 

Analyzes aeroelastic amplification to minimize the energy 
required to actuate the belt-rib concept.  Actuation methods 
for the structure are not yet determined. 

2006 [132] 
Herencia, 
Weaver, 
Friswell (42) 

Local Optimisation of 
Long Anisotropic 
Laminated Fibre 
Composite 
Panels with T Shape 
Stiffeners 

Developed a two-step local optimization routine for a 
composite laminate panel with T-shaped stiffeners that 
enabled weight reduction.  Considered a combined loading 
case along with strength, buckling, and manufacturing 
constraints.  Did not consider aerodynamics.  

2008 [133] 
Bostandzhiyan
,  Bokov, 
Shteinberg 
(11) 

Flexural Characteristics 
and Aerodynamic 
Aspects 
of the Design of the 
Bird Feather Shaft 

Describes how the bending stiffness of bird feather shafts 
enables high angles of attack without flow separation.  It also 
shows how the cross-section of the bird feather shaft has a 
unique, asymmetric branching design for beneficial response 
in both downward and upward flapping. 

2009 [134] 
Cavagna, 
Ricci, 
Riccobene 
(38) 

A Fast Tool for 
Structural Sizing, 
Aeroelastic Analysis 
and Optimization in 
Aircraft Conceptual 
Design 

Developed an MDAO that includes weight calculation, 
aeroelastic analysis, and local structural sizing.  Structural 
details such as the truss-core sandwich, unflanged integrally 
stiffened shell, and Z-stiffened shell are included in the 
optimization. 

2010 [135] Dang, 
Kapania, 
Slemp, Bhatia, 
Gurav (16) 

Optimization and 
Postbuckling Analysis 
of Curvilinear-Stiffened 
Panels Under Multiple 
Load Cases 

Describes how curvilinear stiffeners reduced the weight of a 
panel with holes by 7% compared to using straight stiffeners.  
Considered buckling, damage tolerance, stress, and 
crippling.  Did not consider aerodynamics.                                 

2011 [136] 
Locatelli, 
Mulani, 
Kapania (39) 

Wing-Box Weight 
Optimization Using 
Curvilinear Spars and 
Ribs (SpaRibs) 

Describes how curvilinear stiffeners reduce the weight of 
wing boxes.  Considered weight, buckling, and stress.  Did 
not consider aerodynamics. 

2012 [137] Ning, 
Pellegrino (29) 

Design of Lightweight 
Structural Components 
for Direct Digital 
Manufacturing 

Optimizes the material arrangement within a beam’s cross-
section for both minimum weight and maximum stiffness.  
Result is similar to an I-beam with most material at the top 
and bottom edges of the cross-section.  The results show 
improved performance over solid beam (much improvement) 
and simple truss (little improvement).  Did not compare to an 
I-beam though. 

2012 [138] 
Oremont, 
Schultz (18) 

An Efficient Analysis 
Methodology for 
Fluted-Core Composite 
Structures 

Presents an efficient analysis methodology for fluted-core 
sandwich composite panels that can be used to guide 
analyses for other structural concepts.   

2013 [139] Stanford, 
Beran (58) 
 

Aerothermoelastic 
Topology Optimization 
with Flutter and 
Buckling Constraints 
 

Optimizes the internal topology of a sandwich panel 
structure exposed to high-speed, high-temperature flow over 
its upper surface.  Showed substantial improvements in 
unheated flutter boundaries, thermal buckling, and heated 
flutter boundaries. 

3.2 Active 
The benefits of aeroelastic tailoring can also be achieved through active means.  For example, conventional 

materials and structures can be replaced with smart materials and structures whose properties or configurations 
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change in response to external stimuli.  Control effectors that directly interact with the air flow, such as control 
surfaces, can also be utilized for aeroelastic tailoring.  Two examples of this are found in Zeiler and Weisshaar [140] 
and Weisshaar and Duke [18].  Table 19 includes survey papers on smart materials/structures and their application 
in aeronautics.  In particular, Barbarino, et al. [10] are extremely thorough in their review of morphing aircraft and 
include a pictorial timeline of the morphing aircraft since the Wright Flyer, which includes the Mission Adaptive 
Wing of 1985, the Active Aeroelastic Wing of 2002, and numerous wings from university based research programs. 

Table 20 and Table 21 provide more detailed examples of smart structures and smart materials research in 
aircraft wing design, respectively.  Despite the research invested in smart materials, Fontanazza, et al. [141] claim 
“the capability of current smart materials is relatively limited.  Hence their use for morphing has mainly been 
applied to micro UAVs, which are subject to smaller wing loads and are easier and cheaper to flight test than 
traditional aircrafts.”  Examples of smart materials application on the smaller scale are found in papers by Barret 
[142], Lim et al., [143], Vos et al., [144], and Stanford et al., [145].  Kornbluh, et al. [146] provides a thorough table 
of smart materials and their properties shown in Table 22 (many of these materials are also compared to one another 
in Figure 2). 

The materials in Table 22 are broken down into two categories “(1) materials whose intrinsic mechanical 
properties can be controlled, such as by the application of an electromagnetic field or thermal control, and (2) active 
materials that function as actuators and generators in adding to or subtracting from the elastic and viscous (damping) 
energy of deformation of the material and thereby effectively modulating the viscoelastic properties,” [146].  They 
add that “Each of these [smart] materials is suitable for some applications, but no single technology is capable of 
fast and efficient response that can produce a very wide range of stiffness and damping with a high elongation 
capability, that is, go from rubber to rigid.”  For this reason, Kornbluh et al. [146] suggest configuring materials, 
structures, and mechanisms on the meso-scale to fabricate desired structural properties since “advances in micro- 
and nano-scale fabrication technologies could begin to allow us to make these meso-scale composite materials 
appear as true active materials.” 

Table 23 provides some examples of how the integration of materials and mechanisms can achieve a more 
desirable material or structural response.  One of these examples is fluid flexible matrix composites (F2MC), which 
can be tailored to meet any of the properties depicted as open circles in Figure 2 (taken from Shan et al., [147]).  
 

Table 19. Survey papers on smart materials and structures that include aeronautical applications. 

Year [Ref] Authors (#Cited works) Title 
2000 [148] Giurgiutiu (65) Active-Materials Induced-Strain Actuation for Aeroelastic 

Vibration Control 
2004 [146] Kornbluh, Prahlad, Pelrine, 

Stanford, Rosenthal, von Guggenberg 
(35) 

Rubber to Rigid, Clamped to Undamped: Toward Composite 
Materials with Wide-Range Controllable Stiffness and 
Damping 

2006 [141] Fontanazza, Talling, Jackson, 
Dashwood, Dye, Iannucci (38) 

Morphing Wing Technologies Research 

2007 [149] Njuguna (160) Flutter Prediction, Suppression and Control in Aircraft 
Composite Wings as a Design Prerequisite: A Survey 

2011 [10] Barbarino, Bilgen, Ajaj, Friswell, 
Inman (342) 

A Review of Morphing Aircraft 

 
Table 20.  Papers on structures designed to actively change wing stiffness, camber, and twist. 

Year [Ref] Authors 
(#Cited works) 

Title Overview 

2002 [150] Khot, 
Zweber, Veley, 
Oz, Eastep (7) 

Flexible Composite Wing 
with Internal Actuation for 
Roll Maneuver 

Developed a wing model that is actuated by 
antagonistic axial forces near the root to induce twist 
without ailerons. 

2003 [151] Kota, 
Hetrick, Osborn, 
Paul, Pendleton, 
Flick, Tilmann 
(14) 

Design and Application of 
Compliant Mechanisms 
for Morphing Aircraft 
Structures 

Developed conformable leading and trailing edge flaps. 
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2003 [152] Zink, 
Raveh, Mavris 
(28) 

Integrated Trim and 
Structural Design Process 
for Active Aeroelastic 
Wing Technology 

Integrated active aeroelastic wing design process via 
ASTROS, with gear ratio and structural design 
variables. 

2004 [153] Chen, 
Sarhaddi, Jha, 
Liu, Griffin, 
Yurkovich (16) 

Variable Stiffness Spar 
Approach for Aircraft 
Maneuver Enhancement 
Using ASTROS 

Developed a variable stiffness spar, a “segmented spar 
having articulated joints at the connections with wing 
ribs and an electrical actuator capable of rotating the 
spar” for the F/A-18 pre-roll-modification aircraft 
model.  Showed improvement in roll rate while 
satisfying deflection, flutter, and hinge moment 
constraints.  

2006 [154] Cooper 
(12) 

Adaptive Stiffness 
Structures for Air Vehicle 
Drag Reduction 

Developed demonstrative prototypes of wings of 
variable stiffness due to rotatable spars and movable 
spars in the chordwise direction.  Still need to determine 
if the concept is scalable to larger aircraft. 

2006 [155] Maute, 
Reich (51) 

Integrated 
Multidisciplinary 
Topology Optimization 
Approach to Adaptive 
Wing Design 

Used topology optimization to determine the best 
arrangement of material, actuators, and pivot points 
within a wing’s cross-section to achieve desired 
external shape change.  Couples an Euler CFD solver to 
a finite element method. 

 
Table 21.  Papers that incorporate SMAs or piezoelectrics in wing design. 

Year [Ref] Authors 
(#Cited works) 

Title Overview 

1993 [156] Ehlers, 
Weisshaar (25) 

Static Aeroelastic Control of an 
Adaptive Lifting Surface 

Developed a non-dimensionalized laminated 
composite aeroelastic beam model having 
embedded piezoelectric actuators.  Studied lift and 
lift effectiveness.  Concluded that “strength 
parameters indicate that available materials may 
fall short of the demands that are placed upon 
them” and that “available actuator strength is 
inversely proportional to the wing loading W/S.” 

1996 [157] Nam, Kim, 
Weisshaar (25) 

Optimal Sizing and Placement 
of Piezo-Actuators for Active 
Flutter Suppression 

Optimized the thickness, location, and size of 
piezo-actuators on a non-dimensionalized 
composite plate wing model. Determined that 
flutter speed could be increased. 

2000 [158] Cesnik, 
Ortega-Morales, 
Patil (41) 

Active Aeroelastic Tailoring of 
High Aspect Ratio Composite 
Wings 

Developed a composite wing model with 
embedded piezoelectric strain actuators at the wind 
tunnel scale.  Determined optimal actuator 
configurations for gust load alleviation, increased 
stability, and a combination of both objectives.   

2001 [159] Forster, 
Livne (21) 

Integrated Structure/Actuation 
Synthesis of Strain Actuated 
Devices for Shape Control 

Developed an approach for synthesizing devices 
for shape control using strain actuated devices. Did 
not account for aerodynamic loads. 

2002 [160] Nam,  
Chattopadhyay, 
Kim (21) 

Application of Shape Memory 
Alloy (SMA) Spars for Aircraft 
Maneuver Enhancement 

Modified an F-16 wing model to have two spars 
made of SMA material.  Showed an increase in roll 
effectiveness.  

2004 [161] Kudva (15) Overview of the DARPA 
Smart Wing Project 

Demonstrated various benefits to actuating 
conformable leading and trailing edge surfaces 
with smart materials through several wind tunnel 
tests.  Piezoelectric motors showed better 
performance over the SMA actuators.   
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2004 [162] Bartley-
Cho, Wang, 
Martin, Kudva, 
West (11) 

Development of High-rate, 
Adaptive Trailing Edge 
Control Surface for the Smart 
Wing Phase 2 Wind Tunnel 
Model 

Explains the various design concepts considered 
for the Smart Wing wind tunnel models with 
emphasis on the actuator and conformable control 
surface options.  Describes the final designs in 
detail. 

 
Table 22. Comparison of smart materials by their properties (from Ref. [146]). 

 
 

Table 23.  Papers on systems that manipulate the output of smart materials to achieve additional 
performance. 

Year [Ref] Authors 
(#Cited works) 

Title Overview 

2008 [163] Sofla, 
Elzey, Wadley 
(32) 

Two-way Antagonistic Shape 
Actuation Based on the One-way 
Shape Memory Effect 

Creates a two-way flexural actuator from 
combining a mechanism with (one-way) SMA 
actuators 

2009 [164] Philen, 
Phillips, Baur 
(30) 

Variable Modulus Materials 
based upon F2MC Reinforced 
Shape Memory Polymers 

Creates a highly variable modulus material by 
integrating ‘flexible matrix composite tubes 
having an active fluid-filling function’ into 
shape memory polymers, both of which already 
have variable modulus capabilities 
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Figure 2.  A comparison of smart materials based on their variable modulus capabilities.  The open circles 
represent various F2MC configurations (from Ref. [147]). 

4 Conclusions 
Much of the applied aeroelastic tailoring work in aircraft wings has taken a more “global” approach by 

exploiting a single laminate orientation parameter within the wing skin.  However, with newer manufacturing 
processes such as fiber tow steering and EBF3, researchers have begun to focus their design efforts more locally 
along the wing with favorable results.  Nonetheless, the greatest challenge is designing a high performance, 
lightweight wing that accounts for all factors encountered in flight.  Many of the paper studies described above 
either simplify or ignore constraints to lessen the design problem’s complexity.  For this reason, in at least one 
instance above, the outcomes of two papers somewhat contradict one another.  Guo et al. [36] and Bohlmann and 
Scott [52] both discovered the various benefits of [-45/45]° ply orientations with respect to aeroelastic tailoring , but 
only Bohlmann and Scott accounted for strength, and realized that particular design had a weight penalty.  As 
always, caution must be taken before directly applying the result of a research effort.  In addition to aeroelastic 
tailoring approaches, numerous potentially enabling technologies are being studied today.  Further research into 
these new capabilities may substantially deviate from the typical approach to aeroelastic tailoring and reveal game 
changers of either an active or passive nature. 
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