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Overview

* Protein crystal quality infers X-ray diffraction quality (intensity or
signal to noise ratio and resolution limit)

e There are a vast number (thousands) of articles published on the
subject matter

*Protein crystal quality can be enhanced by any number of means
(crystallization methodology 1s standardized):

1)
2)
3)
4)

Various additives or precipitating agents
Varying supersaturation (density, temperature, etc.)
Minimizing physical “handling”

Chemical/genetic modification of proteins

e Physical processes are suggested, but not readily verified
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Scope

e Physical description for protein crystal growth

1) Modes of crystal growth

2) Kinetic roughening transition

3) Growth rate data collection

4) Growth rate beyond the roughening transition
5) Ciritical roughening crossover supersaturation
6) Implications of a critical supersaturation

eSpeculations on microgravity effects
1) Depletion zone formation
2) Impurity partitioning
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Growth by 2d nucleation tep eneration) and adition to step edge
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vy - effective step free energy (erg/molecule-cm)

Growth by continuous addition anywhere on crystal surface
V.(¢.T)=B(c-c, (T))exp[-E,_/k,T]
E. - energy barrier for continuous addition (erg/molecule)
Ref: Y. Saito, Statistical Physics of Crystal Growth (World Scientific, Singapore, 1996)
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Kinetic Roughening

Kinetic Roughening of Lysozyme Crystals
S. Gorti, E.L. Forsythe & M.L. Pusey,

Cryst. Growth & Design (2004) 4:691-699

S. Gorti, E.L. Forsythe & M.L. Pusey,

Cryst. Growth & Design (2005) 5:473-482

S. Gorti, J. Konnert, E.L. Forsythe & M.L. Pusey,
Cryst. Growth & Design (2005) 5:535-545

Crossover Supersaturation

Lysozyme: 6 =2.0+0.2
Glucose Isomerase: 0 =5.0+0.1

Kinetic Roughening of Glucose Isomerase Crystals
M. Sleutel, D. Maes, L. Wyns, and R. Willaert
Cryst. Growth Des., (2008) 8:4409-4414

Kinetic Roughening Layer Growth

Note: A causal relationship between modes of crystal growth and X-ray diffraction “quality” has yet to be determined.
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Change in crystal size, growth (zm)
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Average growth rate 1.1 £ 0.1 x 10 cm/s
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Crystal Growth by Nucleation

Growth Rate (cm/s)
=
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Deviation: Kinetic Roughening

Lysozyme in 0.1 M NaAc 3% NaCl pH4.6
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Estimates

Values of energy barriers for linear and 2d nucleation growth models

Solution Condition

E. (erg/molecule) | y (erg/molecule) o,
3% NaCl, pH 4.6 58+02x10"° | 12+0.1x10" 20+0.2
4% NaCl, pH 5.0 74+02x 10" Atk 20+0.1
5% NaCl, pH 5.0 7+1x10" 1.3+0.1x 10" 19+02
3% NaCl,6°CpH4.0-54 | 6.0+£0.1x10" [ 10+02x10" 19+0.1
5% NaCl, 14°CpH40-54 | 60+02x 10" | 13+0.1x10" 21+02
5%,22°C pH4.0 - 5.4 59+02x10"° | 14+03x10" 19+02
8°CpH44 2%-7%NaCl| 58+04x10" | 1.0+£0.1x10" 20+0.2
14°CpH4.8 2% -7%NaCl | 62+04x10" | 13+02x10" 22+0.1
18°C,pH4.02% -5% NaCl | 6.1+05x10" | 1.5+05x10" 19+02
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@ Crystallographic Bond Energies
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Numerical Estimates

Free Energy for Crystal Growth:
Varies with AG™ for ¢ > c,:

AG_ = -AuN +y/4nN

@ Crossover supersaturation O, (T, pH, NaCl):

* 2 2
N =gy / Au ~ 8 £5 molecules in adatom

AG;C = TTY 2/AM ~ 7 x 10°13 erg/molecule

O, =Ty 2 / k]23 T2 ~ 37  For single molecule addition
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Crystal Quality

Journal of Crystal Growth 237-239 (2002) 295-299
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Fig. 1. Average maximum resolution limit (the line with circks)
and average {I) [/ {al) (the line with squares) of crystals from
each supersaturation condition. Note that both the resolution
limit and the average {[I)/{al) value are higher in lower
supersaturated solution.
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Crystal Growth Summary

A kinetic roughening transition occurs.
* Step-Energy barrier y for 2d growth ~3.2 £ 0.4 kT
* Energy barrier E_ for continuous growth ~15 + 2 kT

e Analyses assuming a critical crossover concentration
- Energy barrier E_ 1s invariant with temperature up to 12 °C

-~1 kgT increase in pH range 4.0 - 5.4
-~2 kg T decrease between 2.0-7.0 %NaCl

* Measured critical crossover supersaturation o, ~2.0 £0.2
* At crossover, crystallizing nuclei contain ~ 3-13 molecules

* Kinetic roughening transition has been shown to exists in two
protein systems (lysozyme and glucose 1somerase)
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u-gravity Environment

e The only known physical process affecting protein
crystal growth 1s the formation of a depletion zone
due to limited sedimentation and density driven
convection.

e It is speculated that impurity partitioning can occur
also due to the formation of a depletion zone,
provided that the *“size” of impurities are much larger
than crystallizing molecules.
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Depletion Zone Formation

Expected Concentration Profile Solutal flux in x-direction:

jiy = D—c = DAc/w,

A
c where w ~ (Dt)"2 mean diffusion width.
Crystal flux:
Jorys = Vi Cys Where V, = [3(c; - Cqq)
Assume C,, Cy > Cgy
> c C.
| Distance from Crystal Surface P =
x=0 1+ pBC, Jt /D

Observations times for non-linear growth measurement:

N

t =L [22) _6000s
VX CX

For D ~ 1 x10% cm?s, V, ~ 1 x10%cm/s, ¢, ~ 800 mg/ml and c,, ~ 60 mg/m|
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Measurement of Depletion Zone Formation

Lysozyme 110 Crystal Face
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Measurements were made using microscope laser light scattering spectroscopy
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Conclusion

 In quiescent environments (microgravity, capillary tubes,
gels) formation of a depletion zone is to be expected, due
either to limited sedimentation, density driven convection or a
combination of both.

* The formation of a depletion zone can:

\/

** Modity solution supersaturation near crystal

\/

** Give rise to impurity partitioning

e It 1s conjectured that both supersaturation and impurity
partitioning affect protein crystal quality and size.

e Further detailed investigations on various proteins are needed
to assess above hypothesis.
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