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Overview	


•  Protein crystal quality infers X-ray diffraction quality (intensity or 
signal to noise ratio and resolution limit)	


•  There are a vast number (thousands) of articles published on the 
subject matter	


• Protein crystal quality can be enhanced by any number of means 
(crystallization methodology is standardized):	


1)  Various additives or precipitating agents	

2)  Varying supersaturation (density, temperature, etc.)	

3)  Minimizing physical “handling”	

4)  Chemical/genetic modification of proteins	


•  Physical processes are suggested, but not readily verified	
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Scope	


•  Physical description for protein crystal growth	

1)  Modes of crystal growth	

2)  Kinetic roughening transition	

3)  Growth rate data collection	

4)  Growth rate beyond the roughening transition	

5)  Critical roughening crossover supersaturation	

6)  Implications of a critical supersaturation	


• Speculations on microgravity effects	

1)  Depletion zone formation	

2)  Impurity partitioning	
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Modes of Crystal Growth	
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Growth by 2d nucleation (step generation) and addition to step edge	


Growth by continuous addition anywhere on crystal surface	


Ref: Y. Saito, Statistical Physics of Crystal Growth (World Scientific, Singapore, 1996)	


γ - effective step free energy (erg/molecule-cm)	


Ec - energy barrier for continuous addition (erg/molecule)	
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Kinetic Roughening	


Kinetic Roughening of Glucose Isomerase Crystals	

M. Sleutel, D. Maes, L. Wyns, and R. Willaert	

Cryst. Growth Des., (2008)  8:4409-4414	


!

Kinetic Roughening of Lysozyme Crystals	

S. Gorti, E.L. Forsythe & M.L. Pusey,	

Cryst. Growth & Design (2004) 4:691-699	

S. Gorti, E.L. Forsythe & M.L. Pusey, 	

Cryst. Growth & Design (2005) 5:473-482	

S. Gorti, J. Konnert, E.L. Forsythe & M.L. Pusey,	

 Cryst. Growth & Design (2005) 5:535-545	


Note:  A causal relationship between modes of crystal growth and X-ray diffraction “quality” has yet to be determined.	


Crossover Supersaturation	


Lysozyme: σ = 2.0 ± 0.2	

Glucose Isomerase: σ = 5.0 ± 0.1	
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Measurement of Growth Rates	


Average growth rate 1.1 ± 0.1 x 10-6 cm/s	
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Crystal Growth by Nucleation	
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Deviation: Kinetic Roughening	
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Values of energy barriers for linear and 2d nucleation growth models 
 

Solution Condition Ec (erg/molecule) !   (erg/molecule) " c 

3% NaCl, pH 4.6 5.8 ± 0.2 x 10-13 1.2 ± 0.1 x 10-13 2.0 ± 0.2 

4% NaCl, pH 5.0 7.4 ± 0.2 x 10-13 *** 2.0 ± 0.1 

5% NaCl, pH 5.0 7 ± 1 x 10-13 1.3 ± 0.1 x 10-13 1.9 ± 0.2 

3% NaCl, 6 °C pH 4.0 - 5.4 6.0 ± 0.1 x 10-13 1.0 ± 0.2 x 10-13 1.9 ± 0.1 

5% NaCl, 14 °C pH 4.0 - 5.4 6.0 ± 0.2 x 10-13 1.3 ± 0.1 x 10-13 2.1 ± 0.2 

5%, 22 °C pH 4.0 - 5.4 5.9 ± 0.2 x 10-13 1.4 ± 0.3 x 10-13 1.9 ± 0.2 

8 °C pH 4.4    2% - 7% NaCl 5.8 ± 0.4 x 10-13 1.0 ± 0.1 x 10-13 2.0 ± 0.2 

14 °C pH 4.8  2% - 7% NaCl 6.2 ± 0.4 x 10-13 1.3 ± 0.2 x 10-13 2.2 ± 0.1 

18 °C, pH 4.0 2% - 5% NaCl 6.1 ± 0.5 x 10-13 1.5 ± 0.5 x 10-13 1.9 ± 0.2 
 

Estimates	
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Approximate	

Macro Bond	


Strengths	


A  =  4.3 x 10-12 erg	

A’ =  9.7 x 10-12 erg	

B  =  4.9 x 10-12 erg	

C  =  7.2 x 10-12 erg	


BA C

A’ 

Crystallographic Bond Energies	
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Numerical Estimates	


!Gnuc = "!µN + # 4$N

Varies with ΔG* for c > ceq:	


!G
nuc

* = "# 2 !µ

  N* = !"2 #µ2

Free Energy for Crystal Growth:	


@ Crossover supersaturation σc (T, pH, NaCl): 

  !c = "#
2 kB

2 T2 $ 32

~ 7 x 10-13 erg/molecule	


~ 8 ±5 molecules in adatom	


For single molecule addition	




November 3, 2013	


Crystal Quality 	
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Crystal Growth Summary	


•  A kinetic roughening transition occurs.	

•  Step-Energy barrier γ for 2d growth ~3.2 ± 0.4 kBT	

•  Energy barrier Ec for continuous growth ~15 ± 2 kBT	

•  Analyses assuming a critical crossover concentration	


-  Energy barrier Ec is invariant with temperature up to 12 °C	

- ~1 kBT increase in pH range 4.0 - 5.4	

- ~2 kBT decrease between 2.0-7.0 %NaCl	


•  Measured critical crossover supersaturation σc ~ 2.0 ± 0.2	

•  At crossover, crystallizing nuclei contain ~ 3-13 molecules	

•  Kinetic roughening transition has been shown to exists in two 
protein systems (lysozyme and glucose isomerase)	
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µ-gravity Environment	


•  The only known physical process affecting protein 
crystal growth is the formation of a depletion zone 
due to limited sedimentation and density driven 
convection.	


•  It is speculated that impurity partitioning can occur 
also due to the formation of a depletion zone, 
provided that the “size” of impurities are much larger 
than crystallizing molecules.	
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Depletion Zone Formation	

Solutal flux in x-direction:	


 jin = D—c = DΔc/w , 

where w ~ (Dt)1/2 mean diffusion width.	


Crystal flux:	


jcrys = Vxcx, where Vx = ß(c0 - ceq) 

Assume c∞, c0 > ceq :	
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1+ "cx t /D
Observations times for non-linear growth measurement:	


For D ~ 1 x10-6 cm2/s, Vx ~ 1 x10-6 cm/s, cx ~ 800 mg/ml and c∞ ~ 60 mg/ml  
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Measurement of Depletion Zone Formation	
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Measurements were made using microscope laser light scattering spectroscopy	
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Conclusion	


•  In quiescent environments (microgravity, capillary tubes, 
gels) formation of a depletion zone is to be expected, due 
either to limited sedimentation, density driven convection or a 
combination of both.	


•  The formation of a depletion zone can:	

  Modify solution supersaturation near crystal 	

  Give rise to impurity partitioning	


•  It is conjectured that both supersaturation and impurity 
partitioning affect protein crystal quality and size.	


•  Further detailed investigations on various proteins are needed 
to assess above hypothesis.	



