
Parallelization of Unsteady Adaptive Mesh Refinement

for Unstructured Navier-Stokes Solvers

Alan M. Schwing ∗

Applied Aeroscience and CFD Branch

NASA Johnson Space Center, Houston, TX, 77058

Ioannis Nompelis † and Graham V. Candler ‡

Department of Aerospace Engineering and Mechanics

University of Minnesota, Minneapolis, MN, 55455

This paper explores the implementation of MPI parallelization in an unstructured
Navier-Stokes solver. It uses dynamic adaptive mesh refinement of hexahedral cells to
increase grid density in regions with strong gradients. Implicit and explicit time advance-
ment methods are considered. Distributed implementation of the Data-Parallel Line Re-
laxation implicit operator is discussed for grids with hanging nodes. Parallel performance
of simulations for an unsteady, inviscid flow are examined for both adapted and unadapted
meshes in order to provide a baseline for comparison. Relative costs for adaptation and
time stepping provide insight into computational bottlenecks. The flow solver and methods
presented here are validated with data from a double cone experiment in hypersonic flow.
For a given level of accuracy, adapted grids provide predictions that are less expensive
than those obtained on unadapted grids for this staple test problem. Unsteady adaptation
provides considerable savings for all problems considered.

I. Introduction

Computational fluid dynamics (CFD) calculations over geometries relevant to the design of complex
aerodynamic shapes typically involve a large range of length scales. Many flow features are much smaller
than the body length, and it is necessary to resolve these features with localized regions of fine grid spacings
in order to obtain accurate results for aerodynamic or aerothermodynamic predictions. To accommodate
these demands, grid resolution studies help determine the minimum number of grid elements necessary to
resolve small-scale features without compromising solution quality. This can reduce computational cost, but
comes at the expense of the engineer or researcher’s time.

In order to maintain good grid quality, constraints on grid spacing, stretching ratios, and cell aspect ratio
drive many aspects of grid generation. The user is then left with competing requirements:

• Generate a grid that is sufficiently fine to capture necessary small-scale structures in regions where
they are important.

• Where small structures do not exist, use coarse cells in order to limit computational expense.

• Maintain grid quality and acceptable stretching ratios throughout the domain.

This typically results in a number of grid design decisions that may compromise solution fidelity or require
an exorbitant amount of an engineer’s time to create.

∗Engineer, AIAA Student Member.
†Research Associate, AIAA Senior Member.
‡Professor, AIAA Fellow

1 of 24

American Institute of Aeronautics and Astronautics

Adaptive Mesh Refinement (AMR) is an approach that can alleviate some of these constraints. Using
AMR, an inexpensive, coarse grid may be generated over the entire geometry. An appropriately instrumented
flow solver can then selectively refine portions of the grid based on user-defined parameters. The code
presented here uses an unstructured grid and solver. By using an unstructured framework, we allow individual
cells to be modified independently of others. In contrast to block-based refinement, this requires additional
memory overhead, but affords the solver additional flexibility and more precise adaptation.

Numerical simulations of external aerodynamic flows at high Reynolds numbers present many challenges.
Fluid near the body is highly influenced by the no-slip wall and creates a boundary layer with very large
velocity gradients. In order to properly simulate flow fields under these conditions, it is imperative that
these gradients are adequately resolved. Computational grids resolve these large gradients by clustering
many cells in the near-wall region. Typically, the change in flow quantities are dominant in the off-body
direction, yielding cells with very small heights and very large aspect ratios.

For viscous, supersonic and hypersonic problems, these resolution requirements present two main difficul-
ties for efficient simulations. The first is that the large number of grid elements required make each iteration
of the flow solve computationally expensive. This encourages researchers to take large time steps and seek
efficient numerical techniques to converge the numerical simulation. The second main difficulty is that the
small cell spacings at the wall create a very stiff problem and severely limit the maximum stable time step.
To reduce the impacts of these effects, practitioners turn to implicit time advancement schemes.

The physics in the boundary layer region are strongly coupled in the off-body direction and do not show
large amount of unsteadiness. Contiguous ‘lines’ of cells protruding from the body can be identified along
which there are strong gradients in flow quantities. For these reasons, a method using implicit line solves is
very suitable for aerodynamic problems. By using lines it is possible to build this method into a scalable,
parallel computational code. Research at the University of Minnesota has proven the success of this type of
implicit method, Data-Parallel Line Relaxation (DPLR).

Even with implicit methods and AMR, problems that require a large number of grid cells or a long
simulation time demand many computer hours to complete. It is common practice to distribute this work
across many processors in order to accelerate time-to-solution. For this work, we employ MPI in order to
take advantage of large-scale parallel resources. Parallelization enables engineers and researchers to leverage
the ever-increasing size of compute clusters to further reduce run times. Proper handling of AMR in the
context of distributed computation can be complex and we discuss the specifics of our implementation not
only for a fixed partition, but also for dynamic reallocation of the computational domain.

II. Motivational Problems

A model problem that presents many complex interactions seen in hypersonic flow is that of a double-cone
geometry, shown schematically in Fig. 12. There are a number of inviscid and viscous flow structures that
combine to create a challenging test case. The boundary layer and separation zone require proper handling
of the viscous terms and create numerical stiffness that an implicit time advancement scheme must take
into account. At certain freestream conditions and cone half-angles, the flow becomes unsteady and require
proper resolution in time to capture these effects. The case examined in this paper is steady, but the flowfield
does take considerable time to develop, so appropriate handling of transient terms is still important.

Double cones and double wedges are important because they can represent a combination of phenomena
common in external fluid flows. A control surface or structural element on the body of a hypersonic vehicle
generates shock waves. These protuberances also generate regions of recirculation or separated flow. In
order to assess requirements on vehicles, accurate modeling of these influences must be achieved in a design
environment sensitive to excessive runtimes. Using solution adapted mesh refinement allows simulation on
lightweight grids that can be refined as necessary in order to combine accuracy and efficiency.

Another problem dominated by viscous phenomena are bluff body flows. Capsule designs are important
for nearly all planetary reentry vehicles currently under development at NASA and aerospace companies.
These flows frequently involve unsteady turbulent structures that include a wide range of length scales.
Separation location varies with flight condition and is critical to predicting the surface presses on the body
and the location can be influenced by grid refinement. Targeted refinement with implicit AMR can allow
greater fidelity at reduced expense for this problem.

At higher Reynolds numbers, the range of length scales increases. For that reason, very fine spacing is
required in portions of the flow to capture the smallest relevant feature. Using uniform grids to capture all

2 of 24

American Institute of Aeronautics and Astronautics

of the wake structures can result in a volume of refinement that is very large. Unsteadiness of the wake and
turbulent phenomena drive onerous grid requirements. Sufficient resolution must be achieved for small scale
features throughout the cycles of unsteadiness.

III. Previous Work

A. Adaptive Mesh Refinement

Adaptive Mesh Refinement is not a new technique and was pioneered by a number of authors over many
years, beginning with the work of Berger, Oliger, and Colella.1,2 The initial work used dynamic adaptation of
structured grids with finite-difference solvers. Success with unstructured grids, overset grids, and a number
of numerical approaches have been widely documented since.

Both structured and unstructured grids are popular in modern flow solvers. Structured grids provide a
lightweight, implicit connectivity that enables minimal memory overhead and can help create more efficient
computation. Adaptive solvers using structured grids and cartesian grids have shown success for practical
problems at both subsonic and supersonic conditions.3,4, 5 Unstructured approaches are typically more
expensive (in memory and computational cost) but can simplify grid generation and provide greater flexibility
in data structures. Grids with tetrahedral elements, prisms, and pyramids augment the more traditional
hexahedral cells found in structured grids. For finite-volume and finite-element codes, unstructured grids
appear to dovetail nicely into the underlying numerical theory and are well represented in the literature.6,7, 8

For basic subdivision of all element types, bisection methods that results in isotropic refinement are
common. Bisection involves subdivision at the midpoint of all edges of an element. In three dimensions,
isotropic bisection of a single hexahedral cell results in eight children each of roughly one-eighth the size of
the parent cell. Many physical flows have strong gradients in only one prevailing direction (e.g., shock waves,
boundary layers, shear layers, pressure waves) and lend themselves to an anisotropic strategy. Isotropic AMR
can inflate the number of cells created by refinement and includes additional resolution where sufficient grid
density already existed. Though it is more difficult to implement, anisotropic refinement allows for unequal
subdivision in the primary cell directions.9,10 Anisotropic subdivision can yield substantial benefits in terms
of grid size and resulting cost provided that the grid is aligned with the features of interest.11

One of the most important features for a solver using adaptive mesh refinement is the selection of the
refinement criteria. A simple algorithm can employ feature detection and refine based on a flow variable,
derivative, or a derived quantity. Such sensors are simple to implement and use, but require case-specific
criteria. Another popular criteria is an adjoint-method which depends on a global functional or engineering
metric of importance to the researcher. This approach is an active topic of research for steady and unsteady
problems.12,13,14,15

Specific to this work are approaches for handling hypersonic flows in an adaptive framework. The
now-classic problem of the double-cone in hypersonic flow is examined in the following sections. Previous
researchers have shown strong comparisons to test data when using adapted grids with hanging nodes.8,16

An active area of research that involves similar flow structures in hypersonic aerodynamics is ramjet and
scramjet inlets. Recent work at relevant conditions on these geometries with multi-resolution-based AMR
has shown compelling results.17

For codes that employ AMR, parallelization of the adaptation procedure is necessary for efficient scala-
bility. Estimates using Amdahl’s law state that a serial AMR process in an otherwise parallel code can limit
the potential speedup to a mere order of magnitude.18 For modern compute clusters that include thousands
of cores, to take full advantage of resources it is imperative that the adaptation process itself is parallelized
and can function in a scalable, distributed fashion.

B. Implicit Time Advancement Methods

When investigating the viscous Navier-Stokes equations, there are strenuous demands placed on the implicit
solver. As has been shown for unadapted grids, the choice of implicit method strongly influences the conver-
gence properties and robustness of the resulting Navier-Stokes solver.22 Studies of numerical results included
FMPR and DPLR as well as Krylov methods and GMRES solvers. Other researchers working on AMR have
had success with a variety of implicit approaches. Popular for both finite-volume and finite-element solvers
employing AMR are Newton-Krylov implicit methods.7,8, 6 These methods are parallel and provide a robust
capability for implicit time advancement. Using the PETSc library, researchers can leverage existing modular

3 of 24

American Institute of Aeronautics and Astronautics

subroutines for robust application of these methods in existing codes.19

Instead of using the PETSc libraries, we choose to implement the Data-Parallel Line Relxation (DPLR)
implicit method. To our understanding, application of the method to adapted grids with hanging nodes has
not been performed. The DPLR operator tightly couples the linear solve with the data structures already in
the code and takes advantage of the flow physics inherent to the Navier-Stokes equations. It has also been
demonstrated to require a smaller memory overheard as compared to the PETSc libraries by using data
structures already in the flow solver.21

Our previous work with implicit methods and AMR employed Full-Matrix Point-Relaxation (FMPR).20

This unbiased, iterative implicit solve showed promise on simulations involving inviscid, steady-state hy-
personic flow. Results obtained by solving the Euler equations using grids created with AMR performed
comparable to those created with uniform cell distributions. This work continues to employ FMPR in the
domain far from viscous walls and DPLR in the near-wall regions.

IV. Computational Methodology

A. Adaptive Mesh Refinement

The authors are currently working to develop a robust, AMR capability within a finite-volume framework
for use with hypersonic, reacting, and turbulent flows. This work builds on the underlying assumptions and
methods outlined previously.20 Portions of the strategy and improvements to it are briefly summarized here.

The grids in this work are constrained to be six-sided hexahedral cells. For non-trivial geometries, these
hexahedral cells are rarely cubic. While the finite-volume method can work on arbitrary polyhedra, using
hexahedral cells enables more accurate resolution of discontinuities - such at shocks, which frequently ac-
company hypersonic flows - and have been shown to more precisely predict vehicle surface quantities.23,24

Additionally, hexahedral shapes provide face connectivity structures that enable larger computational sten-
cils. These stencils are required for the calculation of high-order numerical fluxes.

We constrain our grids to include only hexahedral cells, but the flexibility inherent to the finite-volume
method provides the underlying grid with many degrees of freedom. The unstructured grid allows for complex
grid topologies on the surface and in the domain volume. Furthermore, the method allows hanging nodes
without compromising solution integrity, even with the stencils required for the high-order flux evaluations.
Our current approach uses isotropic refinement in each of the solution directions such that grid density in a
parent cell is doubled along each edge.

Initially, all of the cells in the domain are described as being ‘level zero’ cells or faces. This indicates
that they have not been refined and are the coarsest level in the domain. When a cell or face is refined, its
children are considered to be one level finer than the parent and the grid level for these elements is increased
by one. For instance, if a level zero cell was refined isotropically for a three-dimensional problem, it would
be the parent of eight ‘level one’ cells. If any of those new children were later refined, they would be replaced
by eight ‘level two’ children, and so on.

Research by many authors has identified a large number of possible refinement criteria. For the purposes
of understanding scalability and performance, the choice of refinement criteria is not a primary concern. Our
current work uses two basic refinement criteria. The first is an undivided difference of flow variables (density,
velocity, pressure, and/or temperature). Undivided differences inform the solver that there is a sufficiently
large change in relevant quantities between adjacent cells to merit subdivision. These differences indicate
that there is a variation or discontinuity that requires additional spatial resolution.

Equation 1 shows the undivided difference used for refinement of a flow variable, φ, based on the tolerance,
φtol. The code traverses all active faces and evaluates the difference between its neighbors. Both neighbors
are flagged for refinement when the right-hand side of the equation exceeds the specified tolerance. Notice
that this work normalizes the difference to the local minimum in the flow variable φ.

φtol <
|φi − φii|
min(φi, φii)

(1)

Another method used in the following results is a sensor based on the gradient of a flow variable. Shown in
Eq. 2, the sensor depends on a pre-determined tolerance for the gradient and involves no normalization. It
is evaluated in each cell and does not required any information from the neighbors (once the gradients are

4 of 24

American Institute of Aeronautics and Astronautics

known). By inspection of a well-resolved simulation, an appropriate value for φtol is determined.

φtol < |∇φi| (2)

Our adaptive refinement incorporates ‘buffer cells’. Regions that are flagged for refinement based on
the criteria in Eq. 1 or 2 are expanded by a number of buffer cells in all directions. These cells create an
inflated region of refinement that allows flow features to propagate over several time steps without drifting
into coarser regions of the grid. By conservatively choosing the size of this buffer region, the researcher can
confidently reduce the frequency at which grid quality is assessed. As will be shown later, excessive buffer
cells can reduce the overhead associated with AMR, but comes at the cost of increased grid size.

Since we intend our methods to be applicable to unsteady simulations, grid coarsening is important to
remove refinement when it is no longer required. Cells are coarsened when all of their children have no
children of their own, have not been flagged for refinement, and are not required to satisfy the requirement
for buffer cells. Before the cell is actually removed, the restricted solution value on the parent cell is compared
to the refinement criteria. If the restricted value would not trigger refinement of the parent cell, then the
child cells are removed. When coarsening cells or faces, the now unnecessary child cells or faces are dropped
from memory. If they are needed later in the computation, they are rebuilt.

For viscous problems at high Reynolds numbers, it is important to include sufficient resolution at the
wall to resolve the very high gradients that exist. We also desire a method for adaptation that provides a
smooth distribution of grid cells away from viscous boundaries and does not cause cell spacing discontinuities
in the domain. We use a hyperbolic tangent stretching function away from viscous surfaces to accomplish
this goal.25

This method requires a ∆x at the viscous wall and a second ∆x in the domain far from the wall. After
adaptation, the code traverses each line of nodes emanating from the surface and records a connectivity
array. By noting the existing spacing on the far side of the line (opposite the viscous wall) and using a
user-specified wall spacing on the other, ∆x values at both ends are known. For consistent behavior across
a range of adaptation cycles, the user provides the desired wall spacing for the finest grid. Lines that are of
a level coarser than the finest level use a wall spacing that is scaled by 2Lfine−Lline where Lfine is the finest
grid level prescribed by the user and Lline is the current level of nodes in the line.

B. Finite-Volume Navier-Stokes Solver

We solve the compressible Navier-Stokes equations with a finite-volume scheme. The compressible Navier-
Stokes equations can be written in conservation law form:

∂U

∂t
+∇ ·

(
~Fc − ~Fv

)
= 0

where U = (ρ, ρu, ρv, ρw,E)T is the array of conserved variables and ~Fc and ~Fv are the convective and viscous
fluxes, respectively. ρ is the density, ρu, ρv, and ρw are the three-dimensional components of momentum,
and E is the total energy per unit volume.

We solve a weak form of the conservation equation and compute cell-averaged values (Ū) using numerical
time integration from an initial condition. One useful feature of the finite volume formulation is that it allows
for arbitrary polyhedra with a fixed volume and arbitrary number of bounding faces. The numerical fluxes
are calculated at each of the faces and application of the divergence theorem over one such computational
cell yields a discrete representation of the governing equations. Our treatment of the equations will divide
the total flux into its viscous and inviscid components:

V
∂Ū

∂t
+
∑
faces

[
~Fc · n̂S

]
−
∑
faces

[
~Fv · n̂S

]
= 0 or

∂Ū

∂t
= − 1

V

∑
faces

[
~Fc · n̂S

]
+
∑
faces

[
~Fv · n̂S

]
with V being the cell volume, S the face area, and n̂ the outward pointing unit normal to the face. This
form of the governing equations lends itself to unstructured grids. As long as sufficient connectivity exists
that link cells to their surrounding faces or vise-versa, it is agnostic to ordering.

For the inviscid fluxes, a useful deconstruction of the face fluxes represents ~Fc as ~F = ~F−+ ~F+ where ~F−
and ~F+ are upwinded components of the inviscisd flux in the direction of the positive and negative running

5 of 24

American Institute of Aeronautics and Astronautics

eigenvalues. With outward pointing normals, as in the equation above, all of the upwinded fluxes ~F+ and ~F−
depend on cell-averaged quantities in the current cell and its neighbors, respectively. The discrete equation
representing a first-order accurate method can be written as:

∂Ū

∂t
= − 1

V

∑
faces

[(
~F− + ~F+

)
· n̂S

]
+

1

V

∑
faces

[
~Fv · n̂S

]
Higher-order methods can be developed by augmenting the numerical stencil used to generate ~F+ and ~F−
or by changing the flux construction entirely.

The viscous fluxes are computed at each face, which requires calculation of the spatial derivatives at the
face centroids. Our approach uses a weighted least squares method to calculate the gradients at each cell
center. Similar to the work described by Nompelis et al., these cell-centered gradients are averaged at the
faces and improved with application of deferred correction.26,27 For grids with hanging-nodes, this approach
is unaltered.

Using a first-order, explicit time integration scheme between time level n and n+ 1, ∂Ū∂t is approximated

as Ūn+1−Ūn

∆t . For such a scheme, the fluxes are all calculated at time level n. This method can be written as:

Ūn+1 = Ūn − ∆t

V

∑
faces

[(
~F− + ~F+

)n
· n̂S

]
+

∆t

V

∑
faces

[
~Fv · n̂S

]
= Ūn + ∆Ū

with ∆Ū being shorthand for the update to the cell-averaged value.

C. Data-Parallel Line Relaxation

Explicit numerical methods are limited in their maximum allowable stable time step by the Courant-
Friedrichs-Lewy (CFL) condition. For viscous grids that have very fine near-wall grid spacing, the stable
time step is very small and makes many problems intractable. Our motivational problems involve hyper-
sonic flows with similar demands on stability. For steady-state computations where temporal error does not
influence the result, it is efficient to iterate using a time step much larger than the maximum stable explicit
value. To do this, we turn to implicit methods.

The explicit time integration presented earlier can be made implicit by evaluating all of the numerical
fluxes at the future time level, n+ 1, instead of the current time level, n. For the inviscid convective fluxes,
Fc, a first-order linearization is performed:

Fn+1
c = Fnc + ∂ ~F

∂Ū

n (
Ūn+1 − Ūn

)
= Fnc + An+

(
Ūn+1
i − Ūni

)
+ An−

(
Ūn+1
ii − Ūnii

)
= Fnc + An+ δŪi + An− δŪii

where An+ and An− are the right- and left-running flux Jacobians at the face. δŪi and δŪii are the implicit
updates to the conserved variables with i being the index of the current cell and ii the index of the face
neighbor.

The viscous fluxes are also approximated at the future time level n + 1. To do this, we introduce an
approximate viscous Jacobian, M , and a rotation matrix, R. It is also necessary to define a matrix N that
transforms from the conserved variables to the primitive variables. This results in:

Fn+1
v = Fnv +δFnv

= Fnv +
(
R−1MR

)
∂
∂η (NnδUn)

Where the derivative, ∂∂η , is in the face-normal direction. The linear system that results from combining
the convective and viscous fluxes with the governing finite volume formulation is:

δŪi +
∆t

Vi

∑
faces

[(
An+δŪi +An−δŪii +

(
R−1MR

)
N
(
δŪi − δŪii

))
· n̂S

]
= ∆Ūi

By storing the Jacobian matrices and performing an iterative solution procedure, the values for δŪi are
obtained such that ∆Ūi is known.

6 of 24

American Institute of Aeronautics and Astronautics

We employ Data-Parallel Line Relaxation (DPLR) when contiguous lines of cells can be grown from
viscous walls. In regions of the domain where such lines do not exist, the Full-Matrix Point-Implicit method
is used. For more details, refer to prior publications on the specifics.28,26 Both methods are amenable to
distributed computation.

For our application with adapted grids and hanging nodes, the basic strategy for DPLR is augmented
simply by only considering cells that are of the same level of refinement as the faces at viscous surfaces.
Figure 1 has a simple illustration showing refinement of near-body cells and its effect on the implicit lines.
An initial grid without any refinement, Fig. 1(a), grows DPLR lines of cells away from the surface to the
opposite boundary of the domain. Notice that the lines of cells (identified in gray) run from one side of the
figure to the other.

Once the near-body grid has been adapted, the DPLR lines only extend so far as there is an unbroken
string of cells at the same grid level as the viscous boundary faces. Figures 1(b) and (c) demonstrate a
successively refined mesh and the resulting DPLR lines for grids with hanging nodes. The lines do not
extend to the refined region in the top-left corner because there is not an unbroken group of refined cells
from the viscous wall.

(a) Initial Grid (b) 1 Level of Refinement (c) 2 Levels of Refinement

Figure 1. Illustration of DPLR lines (gray) away from viscous boundary for an initial grid and after some
refinement.

D. Distributed Computation

The goal of distributed computation is to spread the problem across a large number of computation cores,
or ranks, to more quickly iterate. Doing this incurs fixed costs for communication between the ranks and
it is important to structure the code in such a way to minimize the cost of communication. Futhermore,
differences in the number of cells or faces between cores can cause load balance issues where one rank is
waiting on one or more of its peers to complete before it can continue. This inefficiency is common for
parallel computation and must be limited. Our flow solver uses the standard OpenMPI library in order to
achieve distributed computation.

Fringe faces, those at the periphery of a rank’s partition, require the solution values at the neighboring
process’ cells in order to compute the numerical flux and vice versa. This necessitates a ghost cell for each
rank and frequent communication between the two processes. MPI communication as implemented in our
code predominantly uses non-blocking send and receive calls such that numerical work is performed as the
exchange is taking place. This is enabled by the data dependencies implied in the DPLR algorithm and by
deliberate ordering of solution arrays. In most cases, this serves to hide the communication and allows the
simulation to avoid message passing bottlenecks. As the number of fringe faces grows large with respect to
the number of internal faces, the effect of communication bottlenecks become evident.

When constructing the list of fringe faces, our code builds lists of the required cells from the computational
ranks for which is has shared information. It then collapses these lists in order to ensure that information for
each computational cell is only shared once to each rank that requires it. This minimizes the communication
that must take place during iterations.

7 of 24

American Institute of Aeronautics and Astronautics

For an unbalanced partitioning graph, where the computational ranks have a widely different number of
elements or where the partitions have not been optimized with respect to their number of fringe elements, even
the best attempts at hiding communication costs become insufficient. For this reason, we use ParMETIS to
derive an appropriate loading for each of the ranks in the computation and rebalance the grid as indicated.29

When using unadapted grids, this rebalancing is done once at the beginning of the run. Grids generated
using AMR provide unique challenges in this regard.

AMR can quickly cause previously load-balanced simulations to fall out of balance. This is mainly due
to unsteady or transient phenomena or to a naive initial partitioning. As cells are refined disproportionately
inside the domain of one rank and not others, inefficiencies manifest. To counteract these imbalances, the
evolving grid can be repartitioned based on the current grid densities. ParMETIS allows for adaptation
of the current mesh by means of the AdaptiveRepart routine. Initial partitions and adaptive partitions are
refined with successive calls to RefineKway.

Our strategy for load balancing and redistribution operates on the level zero cells in the mesh. By
operating on the coarsest cells in the mesh, we ensure that a cell and all of its descendants are collocated
on a single processor. This helps minimize some of the costs associated with bookkeeping and also simplifies
logic internal to the code. It does, however, reduce the effective number of vertices in the graph used for
partitioning.

The procedure builds the partition graph of level zero cells and weights each cell by the number of
children that it has (for adapted grids). It also provides edge weightings for each level zero face equal to the
number of children that the face has. Since ParMETIS can provide a partition that takes both edge and cell
weightings into account, this additional information allows for minimal communication between ranks. In
order to take advantage of the inherent parallelism in the DPLR lines it is necessary that cells in a DPLR
line are partitioned together. This is easily accomplished by collapsing each line into a single element and
appropriately weighting the cells and faces.

Grid redistribution can be triggered by a number of criteria: it can be called after each grid adaptation,
based on a metric for grid balance, dependent on measured runtimes, or a relevant time scale. In practice,
repartitioning can be an expensive operation and the selection of an ideal frequency for redistribution may
be a problem-specific choice. The following results use a fixed repartition frequency in order to provide a
controlled environment for study of the algorithm.

E. Derived Datatypes

For the nodes, faces, and cells, our code uses FORTRAN’s derived datatypes in order to avoid a large number
of arrays that must be updated or increased during adaptation. Furthermore, these datatypes are combined
into linked lists. The flexibility inherent to linked lists allows for much simpler management of the dynamic
mesh and elements can be easily dropped or added as necessary.

Our code uses a dual datatype approach. Linked lists of the derived datatypes are ideally suited for
adaptation and for repartitioning where it is important to be able to rapidly add, remove, or reposition
elements. Unfortunately, linked lists are not ideal for efficient computation. Memory adjacency and compiler
optimization are much more amenable to one-dimensional arrays.

Initially, all computational data are stored in linked lists. Once computation begins, much of this data
from the linked lists are stored in 1-D arrays that are allocated for this purpose. The portions of the code
responsible for time stepping, gradient calculation, and I/O depend on these arrays. Before an adaptation
event or repartitioning, the code stores all flow variables in the linked lists and deallocates the 1-D arrays.
Following the adaptation or repartitioning, 1-D arrays are once again allocated and updated with the most
current information from the linked lists.

The most immediate issue with this strategy is that it requires much more memory than an approach
that depends on only linked lists or 1-D arrays alone. It also requires that 1-D arrays be deallocated and
reallocated on either side of a dynamic event. It should be noted that an alternative that depends only
on 1-D arrays would require a similar amount of deallocation and reallocation, but might incur a smaller
memory footprint with appropriate memory management. Using linked lists alone would eliminate the
savings afforded by linear loops, but can be designed to eliminate reallocation events.

Another motivation for this system of dual memory is to provide an avenue for augmentation of existing
solvers. Many flow solvers are designed around arrays of data in order to take advantage of their computa-
tional efficiency. By using linked lists for only the dynamic portion of mesh adaptation and load balancing,
the AMR and repartitioning subroutines become a module that can interface with existing codes. It works

8 of 24

American Institute of Aeronautics and Astronautics

behind the scenes to replace the flow solver’s existing arrays with new ones without requiring a rewrite of
the current software. Understanding the performance of this approach can validate its approach (or similar)
for those who might abstract it in this fashion.

V. Parallel Performance

A. Parallel Performance of Unadapted Grids

To measure the parallel performance of the flow solver, an unadapted grid is considered first. This is
necessary to first confirm that the numerics involved in time stepping have been implemented in an efficient
manner and are understood before adding the additional complexity of AMR. This establishs a baseline for
comparison and performance. All start-up and I/O costs are not considered in the timings below. Only time
spent in the computational loop reserved for iterations has been included.

A fixed-size problem was selected in order to judge parallel performance of the flow solver. Similar to
our previous work, a propagating density pulse is considered. The pulse is allowed to advect for a total of
400 time steps - this provides a fixed unit of work across all cases. Each solution uses a three-dimensional
grid that consists of a cube with uniform grid density. Sixth-order accurate spatial fluxes are used with
third-order Runge-Kutta time integration.30,31

The initial conditions for the density pulse are shown in Eq. 3 with r̄ being the radius of the computational
element from the center of the domain. Simulations were run at a constant CFL of 0.1.

u = 1.0 r̄ =
√
x2 + y2 + z2 p = 1.0

v, w = 0.0 ρ = 1.0 + 1
10e
− (r̄−5.0)2

2 T = p
ρR

(3)

Sixth-order flux evaluations were used for several reasons. Their requirement for gradients of flow variables
provides an opportunity to assess the scalability of the gradient calculation. Viscous simulations, regardless of
the type of flux evaluation, require flow gradients, so including them in these timings increases their relevance
to the full Navier-Stokes equations. The high-order stencil requires information at second-neighbors which
requires a greater exchange of information between processors. Furthermore, these fluxes do not require the
(expensive) calculation of flux Jacobians. Since this calculation creates additional work that is internal to
the processor, it would help mask the non-blocking data exchange. By selecting the most taxing numerical
technique with a reduced amount of local work per time step, this should provide a lower-bound for scalability.

Grids of varying sizes are considered. The expectation is that larger grids will show improved scala-
bility. Cost associated with data exchange at the ghost cells are asynchronous and can be hidden during
computational work that involves only internal elements. As the number of internal elements falls (number
of ranks increases or cell count decreases), there is inadequate local work to sufficiently mask the exchange.
Increasing the number of ranks also increases the available cache size which can act contrary to the above
expectation and increase scalability with a decreased number of cells per core. These competing effects are
illustrated in the following results.

The original grids were given a decomposition across all ranks by using ParMETIS. While not shown
here, the partitions are ideal for the fixed grid and both cell counts and fringe face counts are nearly identical
across all ranks regardless of problem size. Since the grids are not adapted, no further costs associated with
repartitioning are incurred.

For this study, a compute cluster with Intel Westmere X5650tm processors was used. Each computational
node contains 2 6-core processors (12 cores total) running at 2.67GHz with a 12 MB shared L3 cache. They
are equipped with 4GB of memory per core and are linked by QDR Infiniband (40-gigabit).

Figure 2 shows the results from the uniform grid scalability study. The speedup is measured relative to
the runtime for a one-rank case (r1) and is calculated as r1

rN
for a case with N-ranks. The left-hand plot,

Fig. 2(a), illustrates the speed-up over a range of processor and grid sizes. Quantitatively, the point at which
adding additional processors provides diminishing returns is highlighted in Fig. 2(b). Shown is the parallel
efficiency versus the number of cores for the same set of cases. Parallel efficiency is calculated by multiplying
the speedup by the number of ranks, N r1

rN
and is ideally 1.

Two important observations can be made from the figure:

• For small problems (250,000 and 500,000 grid cells), the costs incurred by parallelization prove detri-
mental after a certain number of processors have been added to the problem. This is typical of a
problem that shows strong scaling.

9 of 24

American Institute of Aeronautics and Astronautics

• All problems considered show super-linear behavior for a range of scalings. This is due to an increase of
available cache size and the reduction of the amount of cells on each processor. The larger the problem
is, the more ranks can be added before increasing parallelization becomes detrimental.

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500

P
ar

al
le

l S
pe

ed
up

Number of Ranks

Uniform Grid Runtimes

Ideal
250K Cells
500K Cells
1M Cells
2M Cells
4M Cells
8M Cells

(a) Speedup

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 100 200 300 400 500

P
ar

al
le

l E
ffi

ci
en

cy

Number of Ranks

Uniform Grid Runtimes

Ideal
250K Cells
500K Cells
1M Cells
2M Cells
4M Cells
8M Cells

(b) Parallel Efficiency

Figure 2. Parallel performance for uniform, unadapted grids. Work is consistent across all grids at a given
size.

All of the grids show a reduction in parallel efficiency as they are run on a larger number of cores.
Another way to view the performance metric is shown in Fig. 3. It illustrates the relationship between
parallel efficiency and the number of cells on each rank. The behavior for these cases indicates that for grid
partitions with more than about 2,500 cells per core, speedup should be super-linear. All of the curves trend
towards sub-ideal speedup at a fairly consistent number of cells per rank.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1E+031E+041E+051E+06

P
ar

al
le

l E
ffi

ci
en

cy

Cells Per Rank

Ideal
250K Cells
500K Cells
1M Cells
2M Cells
4M Cells
8M Cells

Figure 3. Parallel performance for uniform, unadapted grids as a function of cells per rank.

Figure 4 show a more detailed breakdown of the scaling. The figure breaks out the time spent for several
major routines in the flow solver and presents them as a function of the number of ranks used. The y-axis is
normalized to the average cost of a time step and since there are no other costs with undated grids, it can
be interpreted as a percentage of total runtime.

To orient the reader for this Fig. 4 and similar plots later in this document, Iterating includes calculation
of the inviscid and viscous fluxes, summation over each computational cell, and the explicit/implicit update.
Gradients includes the time necessary to refactor the linear solve (for adapted grids) and performing the
least-squares reconstruction for the gradients. Exchange is the combined cost of packing and unpacking the
memory buffers for the MPI exchanges and any waiting necessary for the non-blocking receives to return.
Time spent handling the boundary conditions is collected in BCs. Waiting is the total time spent waiting
at the end of each iteration at an all-to-all broadcast of residual and ∆t values before the next iteration.

For almost all cases, as the number of ranks increases, the overhead associated with Exchange and
Waiting increases. The larger the grid size, the more gradual the increase. For the cases that show the worst

10 of 24

American Institute of Aeronautics and Astronautics

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
os

t [
A

ve
ra

ge
 T

im
e

S
te

ps
]

Number of Ranks

NP=62

Iterating
Gradients

BCs
Exchange

Waiting

(a) 250,000 Cells

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
os

t [
A

ve
ra

ge
 T

im
e

S
te

ps
]

Number of Ranks

NP=79

Iterating
Gradients

BCs
Exchange

Waiting

(b) 500,000 Cells

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
os

t [
A

ve
ra

ge
 T

im
e

S
te

ps
]

Number of Ranks

NP=125

Iterating
Gradients

BCs
Exchange

Waiting

(c) 1 Million Cells

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
os

t [
A

ve
ra

ge
 T

im
e

S
te

ps
]

Number of Ranks

NP=158

Iterating
Gradients

BCs
Exchange

Waiting

(d) 8 Million Cells

Figure 4. Percentage of total runtime in major sections of flow solver for unadapted grids as a function of the
number of cores used. Several grid sizes shown.

scalability in Fig. 2, the 250,000 and 500,000 cell cases, these data expose that they become dominated by
the exchange time and synchronization at the end of each time step as processor count grows large.

B. Parallel Performance of Adapted Grids

The parallel performance of solutions based on adaptive grids is of primary importance to this work. To
investigate parallel performance, the convecting density pulse was again considered. This test case provides
an unsteady flow that requires frequent refinement as the pulse moves through the domain. Previous work
has shown that with an appropriate refinement tolerance on ρ adapted grids perfectly represent the solution
as resolved on uniform meshes.

By selecting an unsteady problem, this provides a taxing environment in which to assess performance.
Frequent calls to the AMR and ParMETIS redistribution subroutines highlight inefficiencies and provide
suggestions for streamlining the process. Similar to iterating, both the AMR and redistribution processes
have many instances of shared communication between ranks and provide opportunities to hide the commu-
nication during local computation.

The largest grid presented in the previous results was an 8 million cell mesh of a cubic volume. Each side
of the mesh measured 200 cells. With isotropic refinement, a 100 cell-to-a-side mesh that includes 1 level
of refined cells will contain cells identical in size to those used on the uniform mesh. Similarly, a 50x50x50
cell computation with 2 levels of refinement and a 25x25x25 grid with 3 levels both provide equivalently
fine cells. All of these grids are considered in the subsequent discussion. Figure 5 shows a cut through the
volume at the initial condition highlighting the extent of adaptive refinement.

For this problem, there are three important parameters to consider. The first is the refinement criterion. A
ρ-based criterion with 1E-8 is used (see Eq. 1). This was confirmed to provide identical accuracy as a uniform,
unadapted mesh. The second and third parameters are the frequency for AMR and cell redistribution. For
the 400 time steps currently being considered, several combinations are considered.

Figure 6 shows results from a scalability study performed with adapted grids. Speedup and parallel
efficiency are calculated as described for Fig. 2. These data represent our baseline strategy for refinement:
AMR performed every 10 iterations, ParMETIS redistribution performed every 50 iterations, and 2 buffer
cells. It should be noted that the smallest initial grid contained only 15,625 cells and it was not possible to
obtain a partition graph from ParMETIS using more than 120 cores.

The most dramatic result from Fig. 6 is that the scalability shown in the adapted grids is far less impressive
than was seen previously or the uniform grid results repeated here. Data in the figure indicate that parallel

11 of 24

American Institute of Aeronautics and Astronautics

(a) Three levels of refinement (b) Two levels of refinement (c) One level of refinement

Figure 5. Cut through the 3-D solution volume showing the initial density pulse and adapted grids.

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500

P
ar

al
le

l S
pe

ed
up

Number of Ranks

Ideal
3 Levels of AMR
2 Levels of AMR
1 Levels of AMR

Unadapted - 8M Cells

(a) Speedup

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 100 200 300 400 500

P
ar

al
le

l E
ffi

ci
en

cy

Number of Ranks

Ideal
3 Levels of AMR
2 Levels of AMR
1 Levels of AMR

Unadapted - 8M Cells

(b) Parallel Efficiency

Figure 6. Parallel performance for adapted grids that are as accurate as an unadapted mesh with 8 million
cells.

efficiency is reduced as the number of AMR levels increases. Either the overhead associated with AMR and
cell redistribution drive these data to show reduced performance or that the reduced number of cells in the
grid restricts scalability.

Increasing the number of refinement levels decreases the size of the grid and can result in a less-efficient
distribution across processors. Smaller initial grids have fewer degrees of freedom (level zero cells) provided
to ParMETIS and the depth of refinement can make cells in important regions disproportionately weighted.
In order to investigate this possibility, Fig. 7(a) shows the minimum, maximum, and average number of
elements in the adapted grids after 400 iterations. In almost all cases, the maximum (represented by the top
error bar) and the average (the symbol) are coincident. Many cases show that one rank had a very small cell
count (represented by the lower error bar) and indicate a poor distribution where one core has insufficient
work and must wait for the others.

The results in Fig. 7(a) suggest imperfect partitioning by ParMETIS. As the number of ranks increases
for a fixed problem size, the imbalance tends to grows. With fewer level zero cells to distribute, it is more
challenging to find an ideal work balance. Since the average across all ranks is nearly equivalent to the
maximum, only a small subset of the cores are seeing reduced efficiency and this likely plays only a small
role in the results in Fig. 6.

There are diminishing returns with increasing levels of AMR for this problem. Figure 7(a) shows nearly
identical grid sizes for the cases with 2 and 3 levels of AMR. It is also important to note that each of
the adapted grids are an order of magnitude (or more) smaller than the uniform grid. Regardless of the

12 of 24

American Institute of Aeronautics and Astronautics

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

 0 100 200 300 400 500 600

C
el

ls
 P

er
 R

an
k

Number of Ranks

Unadapted - 8M Cells
3 LVL - 10M Cells/Core
2 LVL - 10M Cells/Core
1 LVL - 10M Cells/Core

(a) Cells per Rank

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1E+031E+041E+051E+06

P
ar

al
le

l E
ffi

ci
en

cy

Cells Per Rank

Ideal
3 Levels of AMR
2 Levels of AMR
1 Levels of AMR

Unadapted - 8M Cells

(b) Parallel Efficiency

Figure 7. Minimun, average, and maximum number of cells across all ranks using adapted grids with varying
numbers of cores. Parallel efficiency as a function of cells per rank.

inefficiencies inherent to the partition, this should provide a large savings when absolute runtime is considered.
Figure 7(b) directly correlates grid size per rank to the parallel efficiency. Again, there is large difference

between the results seen here and the scalability for the uniform grids. The largest of the adapted grids shows
a similar trend to the one see for the unadapted results, but it begins to show non-ideal parallel efficiency
with 10,000 cells per node instead of the 2,500 seen previously. Smaller grids with additional levels of AMR
do not have any super-linear speedup even for equivalent numbers of cells per node.

Figure 8(a) presents parallel performance but only includes the time required for flux evaluation, time
stepping, and communication of flow variables at partition fringes. These are the balance of the activities
present in an unadapted run. In contrast to Fig. 6(a), the scalings are similar to those presented for the
uniform grids of similar size (1,262,360, 447,266, and 352,444 for the cases with 1, 2, and 3 levels of AMR).
This implies that the reduction in scalability is due to activities present in the adaptation and not a significant
reduction in performance by hanging grids and unequal partitions.

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500

P
ar

al
le

l S
pe

ed
up

Number of Ranks

Ideal
3 Levels of AMR
2 Levels of AMR
1 Levels of AMR

Unadapted - 8M Cells

Figure 8. Parallel performance of iterating, gradient calculation, and communication on adapted grids and
unadapted grids.

Similar to the plots shown for the unadapted grids, Fig. 9 presents a breakdown of the relative cost
for major routines in the adapted runs. The results are shown in a similar format to Figure 4, but these
also include the relative cost for all computation and communication used in the AMR and redistribution
subroutines. The costs are normalized to the cost of advancing the solution one time step. All are presented
as a function of the number of cores used.

The costs associated with AMR are grouped as follows: AMR includes the work involved with creating
refined geometry and updating all face and cell metrics. LinkedList includes allocation and deallocation of
the 1-D arrays, translating from the linked lists to the 1-D arrays, and memory management of the 1-D arrays

13 of 24

American Institute of Aeronautics and Astronautics

during adaptation operations. ParMETIS is the cost for building the graph using the required format for
ParMETIS and calling the ParMETIS subroutines. Repartition combines the costs for transferring exchange
elements and recalculation of grid metrics. All of the communication and local work required for determining
which cells to refine or coarsen is included in Sensor. MPI Fringe includes costs required to determine and
exchange information associated with the fringe elements and rebuild the required exchange arrays. Finally,
Waiting is the total time spent waiting for non-blocking receive calls to return during repartitioning and the
renumbering of nodes, faces, and cells.

 0

 0.2

 0.4

 0.6

 0.8

 1

C
os

t [
A

ve
ra

ge
 T

im
e

S
te

ps
]

AMR10 PARM50 Level1

Iterating
Gradients

BCs
Exchange

Waiting

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500

Number of Ranks

LinkedList
AMR

Sensor

ParMETIS
Repartition
MPI Fringe

Waiting

(a) 1 Level of Refinement

 0

 0.2

 0.4

 0.6

 0.8

 1

C
os

t [
A

ve
ra

ge
 T

im
e

S
te

ps
]

AMR10 PARM50 Level2

Iterating
Gradients

BCs
Exchange

Waiting

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500

Number of Ranks

LinkedList
AMR

Sensor

ParMETIS
Repartition
MPI Fringe

Waiting

(b) 2 Levels of Refinement

Figure 9. Runtime in major sections of flow solver for adapted grids relative to the cost of time stepping as a
function of the number of cores.

Results in Fig. 9 show scalability for the time stepping portion of the code that is similar to what was
seen with the uniform grids of equivalent sizes (500,000 when using 2 levels of AMR and 1 million when
using 1 level of AMR). There is more idle time due to imbalance between the partitions, though. The largest
impact of the AMR is seen in the lower portion of each plot. Costs for adaptation are normalized by the
time stepping, so when looking at the 504 core case with 2 levels of AMR, a relative cost of 1.19 indicates
that for every second that the code spent advancing the solution, it spend 1.19 seconds handling AMR
and repartition events. This cost represents a significant drain on performance and is the reason why the
scalability was poor when using AMR across many nodes.

Looking closer, the largest costs associated with adaptation are the mapping to/from linked lists and the
1-D arrays. For our code, the decision to translate between the two was described earlier and this study
highlights the consequence of the decision. The other prominent component to adaptation is the call to
ParMETIS, which is outside the purview of our work. Both of these costs increase (relatively) with the
number of ranks used and represent a fixed cost that does not decrease with the reduced cost of smaller
partitions. Fortunately, the costs of AMR, determining where to refine, and repartitioning itself do not
grow meaningfully with the number of ranks and represent scalable operations. Recalculation of the fringes
increases slightly with ranks, but is not a significant driver, either.

While it is important to understand the scalability of the adaptation and repartitioning, for practical
problems it can be more important to understand the absolute cost to solution. To compare the performance
of the adapted and uniform grids, Fig. 10 shows the total CPU time required to perform 400 time steps for
a number of different cases.

The super linear scalability seen previously for the 8 million cell uniform grid manifests as a reduction in
the CPU time required as additional ranks are used. Ideal scaling would result in a horizontal line on these
plots and poor scaling is indicated by an upward trend in CPU time with an increase in the number of ranks
for a specific problem. All of the adapted results show poor scalability as the number of cores approaches
504. For all cases, the savings by using adapted grids is significant.

Figure 10(a) illustrates the performance of the baseline adaptation strategy with AMR performed every 10
time steps and redistribution occurring every 50 time steps. Two other strategies are considered, Fig. 10(b)
attempts to limit costs associated with repartitioning by incurring imbalance and decreasing the frequency of
redistribution to once every 200 iterations. This has a small effect, and only for the largest initial grid (with
1 level of refinement) is there a noticeable benefit. Figure 10(c) tries another approach and instead greatly

14 of 24

American Institute of Aeronautics and Astronautics

increases the buffer size to 11 cells and performs AMR and redistribution every 100 iterations. Unfortunately,
this increases the cost of the solution considerably and strongly suggests that frequent refinement is a more
efficient approach for unsteady problems.

0.0

0.5

1.0

1.5

2.0

2.5

 0 100 200 300 400 500

R
un

tim
e

[C
PU

 h
ou

rs
]

Number of Ranks

6.0
6.5
7.0
7.5
8.0
8.5

Unadapted - 8M Cells
3 Levels of AMR
2 Levels of AMR
1 Levels of AMR

(a) AMR every 10 iterations
Redistribution every 50 iterations

0.0

0.5

1.0

1.5

2.0

2.5

 0 100 200 300 400 500

R
un

tim
e

[C
PU

 h
ou

rs
]

Number of Ranks

6.0
6.5
7.0
7.5
8.0
8.5

Unadapted - 8M Cells
3 Levels of AMR
2 Levels of AMR
1 Levels of AMR

(b) AMR every 10 iterations
Redistribution every 200 iterations

0.0

0.5

1.0

1.5

2.0

2.5

 0 100 200 300 400 500

R
un

tim
e

[C
PU

 h
ou

rs
]

Number of Ranks

6.0
6.5
7.0
7.5
8.0
8.5

Unadapted - 8M Cells
3 Levels of AMR
2 Levels of AMR
1 Levels of AMR

(c) AMR every 100 iterations
Redistribution every 100 iterations

Figure 10. Comparison of runtime for adapted grids and unadapted grid.

Looking a bit closer to the costs associated with AMR and redistribution for the strategies listed above,
Fig. 11 shows normalized costs as a function of iteration for the cases using one level of AMR and 252 ranks.
The x-axis is iteration number and the AMR and repartitioning events are shown as they occur in time.
The codes are normalized to the average cost of the 10 most recent time steps. For the case with the least
frequent repartitioning, the growing imbalance for the processors causes significant waiting in Fig. 11(b). In
general, across all cases, the costs associated with adaptation for this problem are on the order of 2 time
steps and redistribution is roughly 10 time steps.

Proper selection for the frequency of adaptation and redistribution are problem specific and the baseline
presented here is not a recipe for success across all problem types. However, these results help illustrate the
relative cost of adaptation to time advancement and indicate that for moderately sized problems on a large
number of cores, AMR can yield considerable benefit for unsteady problems. The reduced parallel efficiency
manifested in the adapted results is important to realize and reduce to the extent possible, but does not
result in poor performance when compared to the unadapted alternative.

15 of 24

American Institute of Aeronautics and Astronautics

 0

 0.2

 0.4

 0.6

 0.8

 1

C
os

t [
A

ve
ra

ge
 T

im
e

S
te

ps
]

wesamr1001np252parm50

Iterating
Gradients

BCs
Exchange

Waiting

 0

 5

 10

 15

 0 50 100 150 200 250 300 350 400

Iteration

LinkedList
AMR

Sensor

ParMETIS
Repartition
MPI Fringe

Waiting

(a) AMR every 10 iterations
Redistribution every 50 iterations

 0

 0.2

 0.4

 0.6

 0.8

 1

C
os

t [
A

ve
ra

ge
 T

im
e

S
te

ps
]

wesamr1001np252parm200

Iterating
Gradients

BCs
Exchange

Waiting

 0

 5

 10

 15

 0 50 100 150 200 250 300 350 400

Iteration

LinkedList
AMR

Sensor

ParMETIS
Repartition
MPI Fringe

Waiting

(b) AMR every 10 iterations
Redistribution every 200 iterations

 0

 0.2

 0.4

 0.6

 0.8

 1

C
os

t [
A

ve
ra

ge
 T

im
e

S
te

ps
]

wesamr1001np252parm100100

Iterating
Gradients

BCs
Exchange

Waiting

 0

 5

 10

 15

 0 50 100 150 200 250 300 350 400

Iteration

LinkedList
AMR

Sensor

ParMETIS
Repartition
MPI Fringe

Waiting

(c) AMR every 100 iterations
Redistribution every 100 iterations

Figure 11. Runtime in major sections of flow solver for adapted grids relative to the cost of time stepping for
400 iterations.

VI. Hypersonic Double Cone

In addition to analytical and theoretical problems, we focus in this section on results obtained using
our parallel code to a standard problem for the hypersonic community, the hypersonic double cone. The
experiment was conducted at CUBRC.32 Due to its strong applicability to the field and its history of
numerical comparisons we consider it an important validation case. Researchers working on AMR or solution
adapted grids have had success simulating these flowfields in the past.8,16

The problem of the hypersonic biconic is a good test problem use with AMR. Freestream conditions
strongly influence the behavior of the flow. Ideally, a grid made for the problem would incorporate tailored
boundaries that would conform to the final shock shapes. This can be an expensive process and involves
several initial simulations of the flowfield. With AMR it is possible to use a coarse mesh for initial solutions
and allow the grid to refine only near important features. Grid alignment is important, but with sufficient grid
density, the error due to misalignment can be reduced. Additionally, certain conditions can yield unsteady
results. Application of an unsteady-AMR capability can similarly track the movement of the shock and
separation region and maintain an inexpensive grid for computation.

We look at a common run from the CUBRC test data, Run 35. The flow conditions for the case are
listed in Table 1.
The double cone model had a length of 0.18 meters with half angles of 25◦ and 55◦ . A flow time is defined
as the time taken by the freestream flow to travel the characteristic length. With the nominal freestream
velocity, 2712.7 [m/s], one flow time is 6.635E-5 seconds and will be referenced in the results that follow.

16 of 24

American Institute of Aeronautics and Astronautics

Mach 11.30 [-]

ρ∞ 5.515E-4 [kg/m3]

u∞ 2712.7 [m/s]

T∞ 138.89 [K]

Twall 296.11 [K]

Table 1. Freestream conditions for Run 35.

Figure 12 illustrates the flow features on a double cone and shows an image of density gradient magnitude
from a numerical simulation.

(a) Description of flow features near double cone.33 (b) |∇ρ| in solution using four levels of AMR.

Figure 12. Illustration of flow features and magnitude of density gradient for converged solution.

Our solutions model the freestream as a non-reacting flow in thermodynamic equilibrium. Nompelis
et al. have shown that accounting for vibrational non-equilibrium by modeling the flow inside the nozzle
preceding the test section can greatly improve the prediction of peak heating.33 Comparisons between the
performance of unadapted and adapted grids are the focus of this work. By choosing not to model these
physics, we accept the resulting discrepancy between the solution and the test data, but provide a consistent
set of assumptions across the numerical results. Resolution of the flow features is strongly dependent on the
dissipation in the numerical model used in the flux evaluation. Based on the previous work by Druguet, we
select a modified Steger-Warming flux.34,35

The hypersonic double code is a pseudo-steady problem. Flow separation in the corner where the two
cones meet can take a significant amount of time to develop. Previous work has found that it requires on
the order to 100 flow times to converge.36 Since the flowfield is strongly dependent on resolution of the
viscous boundary layer, using small cell spacings dictates the maximum stable explicit time step. Due to the
disparate length scales introduced by very small cells on the relatively large model, implicit time integration
is required.

For this problem, we rely on a coupled DPLR-FMPR implicit operator. Our line solves extend from
the viscous wall into the domain and are truncated by coarser cells or the opposite boundary as outlined
previously. For the problem of interest, the flow will establish a steady flow state and time accuracy is not
required. A maximum CFL of 4,000 was selected to quickly advance the results and mitigate the extremely
small time step prescribed by the viscous wall spacing. This points to another motivation for using DPLR;
employing FMPR alone creates violent oscillations in the solution at CFL values of this order. With DPLR,
the ability to use higher CFL values decreases time to convergence by more than an order of magnitude.

17 of 24

American Institute of Aeronautics and Astronautics

A. Grid Generation

Grid requirements are well understood for this double cone problem. Previous research has demonstrated
that a grid of 524,288 cells (1024x512) is sufficient to resolve all relevant flow structure and properly predict
the length of the separation region. Figure 13 presents the results from one such study.

(a) Heat transfer over entire doube-cone. (b) Subset near separation shock.

Figure 13. Illustration of grid convergence study on uniformly refined meshes.33

We performed a grid convergence study of our own (not shown) and also found that characteristics of the
flow did not change with additional refinement. The length of the separation region and the size and shape
of the shock structure was not affected by doubling the resolution.

This is a relatively small problem with only half a million cells. For this reason, initial grid sizes are
very small for the adapted cases. When using 4 levels of refinement (the most considered here) the domain
includes only 64 cells along the double cone and 32 cells normal to the surface of the model, or 2,048 cells in
total. This limits the number of processors for which an appropriate parallel distribution can be found and
will be discussed later.

Sensitivity to the viscous wall spacing was also examined. Our results indicated that an initial off-body
spacing of 0.5µm was sufficient to capture the boundary layer and that further refinement was unnecessary.
Both the adapted and unadapted grids use hyperbolic tangent stretching away from the surface. For the
adapted grids, the initial off-body spacing is much coarser and it is halved with each successive level of
refinement. It is only when adapted to the finest level (equivalent to the uniform grid of 1024x512) that the
viscous spacing reaches 0.5µm.

B. Adaptation Strategy

Unlike the density pulse, this flow requires significant time to develop and allowing the solver to adapt to
the finest grid level initially is not ideal. The shock structure grows slowly off of the double cone and the
separated region expands until it reaches its steady-state size. For this reason, the adaptation was restricted
to a maximum level of refinement. While the maximum level was fixed, refinement at that maximum level
could migrate through the domain. This enabled fine cells to propagate to where they were needed and a
pseudo-steady solution at a given resolution could be obtained.

After a specified number of flow times, the maximum level of refinement was increased. The fine cells
could again propagate as the flow developed on the finer grid. This gradual stepping of refinement increased
until 60 flow times had elapsed. After 60 flow times, the finest cells were equivalent to those found in the
unadapted grid. Adaptation continued every flow time until the solution had advanced 150 flow times.

An exhaustive search for the optimum refinement criterion and frequency was not conducted. Previous
work has shown success by refining based on the magnitude of the density gradient, |∇ρ|. Greenshields et
al. established that subdividing cells with |∇ρ| > 0.2 [kg/m4] identified cells in the shock regions and near
the surface.16 We adopt an identical refinement sensor for this work (Eq. 2).

Figure 14 shows the final adapted grids after 150 flow times have elapsed. The meshes are superimposed
over a plot of the gradient density magnitude in order to illustrate the underlying flow structure. Refinement
closely matches the bow shock shape, fills the separated flow region, and importantly leaves much of the

18 of 24

American Institute of Aeronautics and Astronautics

domain coarse. Regions of freestream flow are refined only to the extent necessary to provide an appropriate
buffer for the finest cells.

(a) 1 Level of AMR (b) 2 Levels of AMR

(c) 3 Levels of AMR (d) 4 Levels of AMR

Figure 14. Image of adapted grids superimposed over magnitude of density gradient.

Our approach refines the developing solution without knowledge of the final feature locations. By tracking
features as the evolve, the researcher needs little knowledge about the final flowfield and can apply an identical
refinement criterion to similar problems. By using an absolute value for the refinement criterion, there may
still be some adjustment necessary for dramatically different flows, however.

C. Numerical Results

Figure 15 shows measured pressure and heat flux from the CUBRC experiment (circles) as well as the
numerical results for the unadapted grids and the adapted grids. All solutions have had 150 flow times
to develop. The agreement between the computational results is absolute and the use of adaptation does
not impart error in the results. Comparison between the experimental data and the output from the solver
compare well to with previous published results.32

All solutions were run on 36 cores except for the case with four levels of refinement. It had only 2,048

19 of 24

American Institute of Aeronautics and Astronautics

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

P
re

ss
ur

e
[k

P
a]

x [m]

Experiment
Unadapted

1 Level of AMR
2 Levels of AMR
3 Levels of AMR
4 Levels of AMR

(a) Surface pressure

 0

 20

 40

 60

 80

 100

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

H
ea

t F
lu

x
[W

/c
m

2]

x [m]

Experiment
Unadapted

1 Level of AMR
2 Levels of AMR
3 Levels of AMR
4 Levels of AMR

(b) Wall heat flux

Figure 15. Comparison of wall pressure and heat flux to experimental results.

cells which presented difficulty for ParMETIS when finding an acceptable partition on that many cores. For
the coarsest initial grid, there were 64 initial lines - effectively only 64 elements for ParMETIS to partition.
That solution used only 24 cores. This is one limitation when using adaptive grids as implemented here.
With very coarse initial grids that are partitioned across the level zero cells, the maximum number of ranks
is limited. Our problem is made slightly more difficult since DPLR lines must remain together.

The final adapted meshes using one, two, three, and four levels of refinement include 441K, 405K, 390K,
and 382K cells, respectively. These point to moderate savings when compared to the uniform grid with 524K
cells. Computational savings are significant because the solutions develop for 60 flow times on very coarse
representations of the final mesh. As it shown in Fig 16, the required CPU time for the unadapted grid is
more than double that required for the cases with two, three, or four levels of refinement. Figure 16(b) uses
a logarithmic y-axis in order to highlight the portion of the simulations that use adaptation.

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140

C
P

U
 T

im
e

[h
ou

rs
]

Flow Times

4 Levels of AMR
3 Levels of AMR
2 Levels of AMR
1 Level of AMR

Unadapted

(a) Linear y-axis

 0.001

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100 120 140

C
P

U
 T

im
e

[h
ou

rs
]

Flow Times

4 Levels of AMR
3 Levels of AMR
2 Levels of AMR
1 Level of AMR

Unadapted

(b) Logarithmic y-axis

Figure 16. Comparison of absolute CPU cost for uniform and adapted grids. Both linear and logarithmic
y-axis shown.

For this problem, the relative cost of adaptation is trivial compared to the costs associated with time step-
ping the problem. Figure 17 shows the normalized costs of time advancement and adaptation/redistribution
for problem using four, three, and two levels of refinement. These timings are shown as a function of flow
time to illustrate the effects of refinement as the flow develops. Each bar on the plot is normalized to the
average of the previous 10 time steps with adaptation and redistribution occurring once every flow time.

20 of 24

American Institute of Aeronautics and Astronautics

 0

 0.2

 0.4

 0.6

 0.8

 1

C
os

t [
A

ve
ra

ge
 T

im
e

S
te

ps
]

4 level(s) of AMR

Iterating
Gradients

BCs
Exchange

Waiting

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 20 40 60 80 100 120 140

Flow Times

LinkedList
AMR

Sensor

ParMETIS
Repartition
MPI Fringe

Waiting

(a) Four levels of refinement

 0

 0.2

 0.4

 0.6

 0.8

 1

C
os

t [
A

ve
ra

ge
 T

im
e

S
te

ps
]

3 level(s) of AMR

Iterating
Gradients

BCs
Exchange

Waiting

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 20 40 60 80 100 120 140

Flow Times

LinkedList
AMR

Sensor

ParMETIS
Repartition
MPI Fringe

Waiting

(b) Three levels of refinement

 0

 0.2

 0.4

 0.6

 0.8

 1

C
os

t [
A

ve
ra

ge
 T

im
e

S
te

ps
]

2 level(s) of AMR

Iterating
Gradients

BCs
Exchange

Waiting

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 20 40 60 80 100 120 140

Flow Times

LinkedList
AMR

Sensor

ParMETIS
Repartition
MPI Fringe

Waiting

(c) Two levels of refinement

 0

 0.2

 0.4

 0.6

 0.8

 1

C
os

t [
A

ve
ra

ge
 T

im
e

S
te

ps
]

1 level(s) of AMR

Iterating
Gradients

BCs
Exchange

Waiting

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 20 40 60 80 100 120 140

Flow Times

LinkedList
AMR

Sensor

ParMETIS
Repartition
MPI Fringe

Waiting

(d) One level of refinement

Figure 17. Runtime in major routines for adapted grids relative to the cost of an average time step as a
function of flow time.

The costs for adaptation and repartitioning are very small during the propagation cycles, when the finest
grid spacing in the domain is not changing. When the level of refinement increases there are relatively large
costs for all portions of the adaptive procedures. Local refinement of the grid creates imbalance and there is
dramatic load balancing that much occur. Even so, it remains on the order of 10 times the cost of a single
time step. At a CFL value of 4,000, these simulations require roughly 100 time steps per flow time with
most AMR cycles requiring 3 iterations worth of computation time. The cost of AMR, is on the order of 3%
of the total runtime and provides at least a 50% savings overall.

AMR is well suited for simulation of this psuedu-steady problem. There are well-identified flow structures
and refinement based on flow features (|∇ρ| in our case) correctly capture regions with important flow
features. The sparse use of grid points for initial computation while the flow develops saves a great deal of
computational time.

D. Parallel Performance

Figure 18 shows a scalability study for the double cone problems for two levels of AMR as well as for the
unadapted grid case. For these timings, the flow was simulated for a total of 80 flow times. The unadapted
grid shows strong scaling for the range of cores examined. Adapted grids have a reduced parallel efficiency
and are not as robust in their scaling.

These data present better scalability than the results seen in Fig. 6 for an equivalent number of refinement
levels. Differences between the two figures are expected. The double cone problem uses implicit time stepping
which has different requirements for interprocessor data exchange and local calculation. This problem also
calls the AMR and repartitioning subroutines less frequently and the refinement criteria were very different.

21 of 24

American Institute of Aeronautics and Astronautics

Similar to what was seen previously, additional levels of AMR reduce the speedup seen in the results.
This is important to note, but using additional levels of AMR did reduce the absolute time required to
iterate as seen in Fig. 16. The ideal number of levels of AMR is case-specific and to achieve a certain size
in the finest cells, there are diminishing returns in the reduction of grid cells when increasing the depth of
refinement.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 10 20 30 40 50 60 70 80 90 100

P
ar

al
le

l S
pe

ed
up

Number of Ranks

Ideal
2 Levels of AMR
3 Level of AMR

Unadapted

(a) Speedup

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 10 20 30 40 50 60 70 80 90 100

P
ar

al
le

l E
ffi

ci
en

cy

Number of Ranks

Ideal
2 Levels of AMR
3 Level of AMR

Unadapted

(b) Parallel Efficiency

Figure 18. Parallel performance for double cone simulations. Adapted and unadapted grids shown.

VII. Conclusions

Our results show important metrics for parallel performance with a Navier-Stokes solver using AMR.
Unadapted grids have strong scalability and the underlying finite-volume method considered here effectively
hides parallel communication except in cases with very low per-core node counts. Similar studies with
adapted grids for an unsteady problem show a much reduced scalability. This is due to several factors:

• Grids generated using adaptive refinement generally contain fewer grid cells. Fewer cells incur a lower
cost for local computation and increase the relative cost of communication and other fixed requirements.

• In our implementation, the grid cells are partitioned based on the coarsest grid. This can constrain
the partitioning library and create imperfect load balance between cores manifesting as longer periods
of idle time.

• Costs associated with memory management require a non-trivial amount of time. For the dual memory
approach outlined here, with both linked-lists and arrays used, the cost does not scale and generally
exceeds those associated with the refinement operation.

• Repartitioning incurs a relatively low cost, but determining an efficient partition can be expensive.
This is a cost only associated with multi-core runs and reduces the efficiency by creating additional
overhead as the number of ranks increase.

For the pseudo-steady double cone, the scaling was improved due to a larger cell count and reduced
AMR frequency. However, mesh adaptation yields significant savings in absolute computational cost for all
problems addressed in this paper. Opportunities for further improvement exist in addressing the factors
mentioned previously, but the use of adaptive grids methods has potential to greatly reduce the expense of
CFD solutions for complex aerodynamic flows. Adaptive grids also reduce the significant costs associated
with grid generation as well. Proper grid tailoring and generation of a grid topology that efficiently clusters
cells near small-scale features is expensive. AMR offloads much of this work to the compute cluster and the
flow solver.

We also validated our numerical method against a classical problem in the hypersonic community. Pre-
dicted surface pressure and heat transfer compare well to the experimental data and are in family with
previously published results from other researchers. Solutions obtained on grids that were adapted over the

22 of 24

American Institute of Aeronautics and Astronautics

course of the computation and included hanging nodes were identical to those computed on more traditional,
unadapted grids.

VIII. Acknowledgments

The authors would like to thank Dr. Benjamin Kirk for his advice during this effort. This work was sup-
ported in part by the Department of Defense National Security Science and Engineering Faculty Fellowship.

References

1M. J. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic partial differential equations,” Journal of Compu-
tational Physics, vol. 53, pp. 484–512, Mar. 1984.

2M. J. Berger and P. Colella, “Local Adaptive Mesh Refinement for Shock Hydrodynamics,” Journal of Computational
Physics, vol. 84, pp. 64–84, 1989.

3M. J. Aftosmis, M. J. Berger, and S. M. Murman, “Applications of Space-Filling Curves to Cartesian Methods for CFD,”
No. AIAA 2004-1232, 2004.

4A. M. Wissink, S. Kamkar, T. H. Pulliam, J. Sitaraman, and V. Sankaran, “Cartesian Adaptive Mesh Refinement for
Rotorcraft Wake Resolution,” no. July, pp. 1–18, 2010.

5P. Buning and T. H. Pulliam, “Cartesian Off-Body Grid Adaption for Viscous Time- Accurate Flow Simulation,”
No. AIAA 2011-3693, pp. 1–11, 2011.

6F. Bramkamp, P. Lamby, and S. Müller, “An adaptive multiscale finite volume solver for unsteady and steady state flow
computations,” Journal of Computational Physics, vol. 197, pp. 460–490, July 2004.

7C. P. T. Groth and S. A. Northrup, “Parallel Implicit Adaptive Mesh Refinement Scheme for Body-Fitted Multi-Block
Mesh,” No. AIAA 2005-5333, pp. 1–17, 2005.

8B. S. Kirk, Adaptive Finite Element Simulation of Flow and Transport Applications on Parallel Computers. PhD thesis,
2007.

9F. Ham, F. Lien, and A. Strong, “A Cartesian Grid Method with Transient Anisotropic Adaptation,” Journal of Com-
putational Physics, vol. 179, pp. 469–494, July 2002.

10Z. J. Zhang and C. P. T. Groth, “Parallel High-Order Anisotropic Block-Based Adaptive Mesh Refinement Finite-Volume
Scheme,” No. AIAA 2011-3695, 2011.

11M. J. Williamschen and C. P. T. Groth, “Parallel Anisotropic Block-Based Adaptive Mesh Refinement Algorithm For
Three-Dimensional Flows,” No. 2013-2442, pp. 1–22, 2013.

12D. a. Venditti and D. L. Darmofal, “Anisotropic grid adaptation for functional outputs: application to two-dimensional
viscous flows,” Journal of Computational Physics, vol. 187, pp. 22–46, May 2003.

13M. Nemec, M. J. Aftosmis, and M. Wintzer, “Adjoint-Based Adaptive Mesh Refinement for Complex Geometries,”
No. AIAA 2008-0725, pp. 1–23, 2008.

14J. M. Derlaga, C. J. Roy, and J. Borggaard, “Adjoint and Truncation Error Based Adaptation for 1D Finite Volume
Schemes,” No. 2013-2865, pp. 1–11, 2013.

15K. Ding, K. J. Fidkowski, and P. L. Roe, “Adjoint-Based Error Estimation and Mesh Adaptation for the Active Flux
Method,” No. AIAA 2013-2942, pp. 1–25, 2013.

16C. J. Greenshields, H. G. Weller, L. Gasparini, and J. M. Reese, “Implementation of semi-discrete , non-staggered
central schemes in a colocated , polyhedral , finite volume framework , for high-speed viscous flows,” International Journal for
Numerical Methods in Fluids, 2009.

17S. Frauholz, M. Behr, B. U. Reinartz, and M. Siegfried, “Numerical Simulation of Hypersonic Air Intake Flow in Scramjet
Propulsion Using a Mesh-Adaptive Approach,” No. AIAA 2012-5976, pp. 1–22, 2012.

18J. Waltz, “Parallel Adaptive Refinement for 3D Unstructured Grids,” No. AIAA 2003-1115, 2003.
19S. Balay, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley,

L. C. McInnes, K. Rupp, B. F. Smith, and H. Zhang, “{PETS}c Users Manual,” Tech. Rep. ANL-95/11 - Revision 3.4, Argonne
National Laboratory, 2013.

20A. M. Schwing, I. Nompelis, and G. V. Candler, “Implementation of Adaptive Mesh Refinement in an Implicit Unstruc-
tured Finite-Volume Flow Solver,” No. 2013-2446, 2013.

21I. Nompelis, T. Wan, and G. V. Candler, “Performance Comparisons of Parallel Implicit Solvers for Hypersonic Flow
Computations on Unstructured Meshes,” No. AIAA 2007-4334, 2007.

22I. Nompelis, J. D. Bender, and G. V. Candler, “Implementation and Comparisons of Parallel Implicit Solvers for Hyper-
sonic Flow Computations on Unstructured Meshes,” No. AIAA 2011-3547, 2011.

23G. V. Candler, M. D. Barnhardt, T. W. Drayna, I. Nompelis, D. M. Peterson, and P. K. Subbareddy, “Unstructured
Grid Approaches for Accurate Aeroheating Simulations,” No. AIAA 2007-3959, 2007.

24P. A. Gnoffo, “Multi-Dimensional , Inviscid Flux Reconstruction for Simulation of Hypersonic Heating on Tetrahedral
Grids,” no. January, 2009.

25M. Vinokur, “On one-dimensional stretching functions for finite-difference calculations,” Journal of Computational
Physics, vol. 50, pp. 215–234, May 1983.

26I. Nompelis, T. W. Drayna, and G. V. Candler, “Development of a Hybrid Unstructured Implicit Solver for the Simulation
of Reacting Flows Over Complex Geometries,” No. AIAA 2004-2227, 2004.

23 of 24

American Institute of Aeronautics and Astronautics

27S.-e. Kim, B. Makarov, and D. Caraeni, “A Multi-Dimensional Linear Reconstruction Scheme for Arbitrary Unstructured
Grids,” No. AIAA 2003-3990, 2003.

28M. J. Wright, G. V. Candler, and M. Prampolini, “Data-Parallel Lower-Upper Relaxation Method for the Navier-Stokes
Equations,” AIAA Journal, vol. 34, pp. 1371–1377, July 1996.

29G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs,” SIAM
Journal on Scientific Computing, vol. 20, pp. 359–392, Jan. 1998.

30P. K. Subbareddy and G. V. Candler, “A fully discrete, kinetic energy consistent finite-volume scheme for compressible
flows,” Journal of Computational Physics, vol. 228, pp. 1347–1364, Mar. 2009.

31M. D. Bartkowicz, Numerical Simulations of Hypersonic Boundary Layer Transition. PhD thesis, University of Min-
nesota, 2012.

32J. K. Harvey, M. S. Holden, and T. P. Wadhams, “CodeValidation Study of Laminar Shock/Boundary Layer and
Shock/Shock Interactions in Hyper- sonic Flow. Part B: Comparison with NavierStokes and DSMC Solutions,” No. AIAA
2001-1031B, 2001.

33I. Nompelis, G. V. Candler, and M. S. Holden, “Effect of Vibrational Nonequilibrium on Hypersonic Double-Cone
Experiments,” AIAA Journal, vol. 41, no. 11, pp. 2162–2169, 2003.

34M.-C. Druguet, G. V. Candler, and I. Nompelis, “Effect of Numerics on NavierStokes Computations of Hypersonic
Double-Cone Flows,” AIAA Journal, vol. 43, no. 3, pp. 616–623, 2005.

35G. V. Candler and R. W. MacCormack, “The Computation of Hypersonic Ionized Flows in Chemical and Thermal
Nonequilibrium,” Journal of Thermophysics and Heat Transfer, vol. 5, no. 3, pp. 266–273, 1991.

36D. V. Gaitonde, P. W. Canupp, and M. S. Holden, “Heat Transfer Predictions in a Laminar Hypersonic Viscous/Inviscid
Interaction,” Journal of Thermophysics and Heat Transfer, vol. 16, pp. 481–489, Oct. 2002.

24 of 24

American Institute of Aeronautics and Astronautics

	Introduction
	Motivational Problems
	Previous Work
	Adaptive Mesh Refinement
	Implicit Time Advancement Methods

	Computational Methodology
	Adaptive Mesh Refinement
	Finite-Volume Navier-Stokes Solver
	Data-Parallel Line Relaxation
	Distributed Computation
	Derived Datatypes

	Parallel Performance
	Parallel Performance of Unadapted Grids
	Parallel Performance of Adapted Grids

	Hypersonic Double Cone
	Grid Generation
	Adaptation Strategy
	Numerical Results
	Parallel Performance

	Conclusions
	Acknowledgments

