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Background

December 2, 2013

Spacecraft are growing in complexity and sensitivity to
environmental effects.

The spacecraft engineer must understand and take these effects
into account In building reliable, survivable, and affordable
spacecraft.

Too much protections, however, means unnecessary expense

while too little will potentially lead to early mission loss.

The ability to balance cost and risk necessitates an understanding
of how the environment impacts the spacecraft and is a critical
factor in its design.

This presentation is intended to address both the space
environment and its effects with the intent of introducing the
Influence of the environment on spacecraft performance.




Impact

THE IMPACT OF THE SPACE ENVIRONMENT ON
SPACE SYSTEMS!

Distribution by Anomaly Diagnosis

Number
Diagnosis of Forms
ESD - Internal Charging 74
ESD - Surface Charging 59
ESD - Uncategorize 28
Surface Charging 1
Total ESD & Charging 162
SEU - Cosmic Ray 15
SEU - Solar Particle Event 9
SEU - South Atlantic Anomaly 20
SEU - Uncategorized 41
Total SEU 85

Solar Array - Solar Proton Event 9
Total Radiation Dose 3
Materials Damage 3
South Atlantic Anomaly 1
Total Radiation Damage 1

(=]

Micrometeorid/Debris Impact
Solar Proton Event - Uncategorized
Magnetic Field Variability
Plasma Effects .
Atomic Oxygsn Erosion
Atmospheric Drag

Sunlight

IR background

Ionospheric Scintillation
Energetic Electrons

Other

Total Miscellaneous

"Koons, H.C., J. E. Mazur, R. S. Selesnick, J. B. Blake, J. F. Fennell, J. L.
Roeder, and P. C. Anderson, “The Impact of the Space Environment on Space
Systems”, presented at Charging Conference, Nov 1998.
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Missions Lost/Terminated Due
to Space Environment

Vehicle Date Diagnosis

DSCS II (9431) Feb 73 Surface ESD

GOES 4 Nov 82 Surface ESD

DSP Flight 7 Jan 85 Surface ESD

Feng Yun 1 Jun 88 ESD

MARECS A Mar 91 Surface ESD

MSTI Jan 93 Single Event Effect
Hipparcos* Aug 93 Total Radiation Dose
Ol!lymspus Aug 93 Micrometeoroid Impact
SEDS 2* Mar 94 Micrometeoroid Impact
MSTI 2 Mar 94 Micrometeoroid Impact
IRON 9906 1997 Single Event Effect
INSAT 2D Oct 97 Surface ESD

*Mission had been completed prior to termination
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Impact

Subsystem In-flight Failure Causes

FAILURE CAUSES BY SUBSYSTEM CATEGORY

FAILURES
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DESIGN ENVMT PART QUALITY OPE
ELECTRONIC ELECTROMECH

(Hecht, 1985)

FAILURE CAUSES IN ELECTRONIC SUBSYSTEMS
ELECTRONIC SUBSYSTEMS

UNKNOWN (26.5%) DESIGN (22.0%)

OTHER (7.0%) ENVMT (20.7%)

OPER (2.6%)
QUALITY (6.7%)

PART (14.5%)

|
OTHER UNKNOWN
MECHANICAL

» 600 satellites currently in orbit (1999) are worth $50-$100B with 235 insured for $20B

» 1500 space payloads are expected to be launched 2000 — 2010 with a potential insured

value of $80 billion!

o 481 US satellites currently manifested from 2011 - 2020 at a total cost of $150B
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Space Environments’ Role in the Mission Life Cycle

L . . N ~
m Mission Concept
o ] Space Climate <
Mission Planning >{ Minimize Risk
. N—
Design D —
-
LaU nCh Space Weather
_ ™ Manage Residual Risk |<
Operations
Anomaly Resolution — |Both | ——>
+
Lessons Learned nopace

Design
Environments

Environment
Effects

Operational
Support

Programmatic
Support

Space Environments information is critical during all phases of spacecraft life cycle
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Guideline Process

. Define the environments

. Analyze potential environmental interactions that could occur

Implement mitigation strategies to minimize/eliminate adverse
interactions

. Ground test to evaluate engineering performance in relevant
environment

. Analyze the data from the spacecraft to determine effectiveness of the
process

. Integrate information learned into process improvement
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Environments

— Atmospheres
— Solar UV Flux
— Atomic Oxygen

— Space Vacuum

—Thermal Cycling - Charged Particle Radiation

— Plasma / Charging Environments - Radiation Belts
e Auroral Region

e Solar Wind

— Micro-Meteoroid/Space Debris

— Spacecraft Induced Environment
e Interplanetary
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Contamination

e Particulate and Molecular

— Particulate Contamination "z
Generated by Handling, Launch pg=

— Volatiles may Escape Materials
due to Outgassing in Space,
Venting, Engine Firing...

» Qutgassing Rate is
Temperature Dependent

» Deposition on other spacecraft
surfaces

Deposition Rate Affected by
Solar UV, AO, and Surface
Temperature
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Contamination

« Contamination Control

— Contamination Control Imperative for
Sensitive Optics and Thermal Control
Surfaces

— Ground Support Equipment is
Considered a Potential Contamination
Source

— Standard Material Tests and Modeling for

Contamination Exists
 Databases of Materials are Maintained
— Contamination Control can be Achieved

Ssaaseorsst . s » Material Selection, Thermal Vacuum Bake-
out, Clean Room Control, Spacecraft
Design
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Spacecraft Charging
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Spacecraft Charging

» Spacecraft can Interact with Ambient
and Induced Plasma Environments

— High Voltage Solar Arrays can be
Damaged by Arcing

— Floating Potentials can Charge

Spacecraft Leading to Damage on
Surfaces

» Dielectric Breakdown,
Contamination from Ejecta,
Sputtering due to lon Impact

— Currents Collected by Arrays Flow In
Structure

Dielectric Breakdown in
Anodize Aluminum
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Atomic Oxygen (AO)

e The Main Constituent at 200-500 Km i1s AO

— The AO Density Decreases Exponentially with Altitude
— Spacecraft Velocity > Thermal Velocity means that
AO Impacts Ram Facing Surfaces with ~ 5eV

AO Erodes many Polymeric Materials

» Mass Loss Affects Thermal, Optical and Mechanical
Properties

* AO Oxidizes Metallic Materials

AO Interaction with Exterior Materials can Produce
Glow

AO Interaction can Enhance Contaminant Deposition
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Electromagnetic Radiation (UV, Soft X-Rays)

» Degradation of Material Properties

— Causes Darkening of Materials such as
Silica Glass, Thermal Control Coatings,
Polymer Films, Some Composites and
Ceramics

— Embrittlement of Polymer Films

— Thermal Control Properties may be
Seriously Degraded by UV Exposure of
Contaminants Adsorbed onto Surfaces

o Simultaneous UV and Contaminant
Flux to a Surface can Significantly
Enhance Permanent Contaminant
Deposition

December 2, 2013
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Micrometeoroid/Space Debris

 Naturally Occurring Particles are
Meteoroids, Man-Made Particles are
Orbital Debris

— Average Velocity of 17 Km/s for

Micrometeoroids and 8 Km/s for
Orbital Debris

 Models of Environment Exist and
Probability of Impact can be
Calculated

« Impacts can Penetrate Walls, Cause
Pitting of Optics, Degrade Solar
Arrays, and Thermal Control
Materials
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Environments - Sporadic Meteoroids
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Environments - Meteoroids
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Environments - Meteoroid Streams

Consist of particles ejected from the parent comet during a single
passage around the Sun.

Produce meteor showers and storms here on Earth.

Earth passes

through trail of
comet particles
Duration Rate
| Shower Peak RA | Dec. (days) (/hr)
Over time :
Quadrantids Jan. 3 231 | +50 0.5 90
- slight differences between the Lyrids Apr.21 | 272 | +32 |2 5
comet’s and particles’ velocities Eta Aquarids May 4 336 | 00 10 30
- perturbations caused by planetary _
gravity and solar radiation pressure Northern Delta Aquarids July 29 339 |00 20 10
change the orbit of the stream so Perseids Aug.12 |46 |+58 |5 70
that it no longer follows the exact Orionids L R ETEE P
path of the comet.
Taurids Nov. 1 54 +21 30 5
Leonids Nov.16 | 152 | +22 |4 5
Geminids Dec. 13 113 | +32 6 100
Ursids Dec.22 | 217 | +80 |2 15
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Environments — Orbital Debris
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Environments — Orbital Debris

~19,000 tracked
(=5 cm diameter)

fragmentation

payloads debris

- Chinese ASAT test FENGYUN 1C in 2007
- 2009 satellite collision between Iridium 33 and Cosmos 2251
- 11 March 2000, a Chinese Long March 4 upper stage exploded in orbit

anomalous debris

rocket bodies operational debris

Courtesy NASA JSC, M. Matney, J.C. Liou
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Radiation Environment

* Particle Radiation Displaces atomic
Structure and lonizes Material In Its
Path

Result is Degradation in Material
Properties

Cross-Linking (Hardening) and
Chain-Scission (Weakening) of
Polymers

Degradation of Solar Cell
performance

Single Event Upsets (SEU) In
Avionics

Latch-up in Avionics
Total Dose damage in Avionics
Darkening of material

December 2, 2013
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Environments

Comparison of the Earth and Jovian Radiation Environments
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Environments

Comparison of the Earth and Jovian Radiation Environments
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Environments

Comparison of the Earth and Jovian Radiation Environments
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Space System Anomaly — Meteoroid Impact

Mariner IV
What: NASA planetary exploration spacecraft.
Event: Encountered meteoroid stream

between the orbits of Earth and Mars
in September 1967.

Consequences:
- Cosmic dust detector registered 17 hits within 15 minutes;

- 2-3 orders of magnitude more hits estimated over entire craft.

- Bombardment caused temporary change in attitude but no
loss of power; torqued about the roll-axis.

- One-degree temperature drop indicative of thermal shield
damage.

Outcome: Resumed normal operation within ~1 week.

Chandra X-Ray Observatory

What: NASA observatory.
Event: Struck by a Leonid or sporadic(?)
near the time of Leonid shower peak in November 2003.

Consequences:
- Pointing stability discrepancy indicated strike,

as no evidence of spurious thruster firings or an indication
of an internal cause.

Change in momentum — caused a “wobble”.

Outcome: All systems continued to operate normally
following the event.
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Space System Anomaly

External Surface Changes on ISS
Inadvertent Materials Substitutio + SEE

et

NS et

Battery Box Covers have a “Betacloth” outer layer.
One cover was inadvertently constructed using Chemfab 250 (in
which silicone sizing agent is not removed during fabrication) while
other cover was correctly constructed using Chemfab 500.

photo iss015e21921.jpg ‘A

—
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Space System Anomaly

Basic Materials Design + SEE
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Space System Anomaly

External Surface Changes on ISS

Space Environmental Effects — Frequent and “New” Visiting Vehicles
- S

Soyuz docked to FGB
Outgassing or Thruster
Contamination

December 2, 2013 ISS022E067004 30




Space System Anomaly

External Surface Changes on ISS
Issues with Imaging

Pre-berthing inspection of a Node 1
sealing surface in 2001 identified these
circular features as a concern. These
features were later determined to be
reflections of the camera’s LED lighting
system on the smooth, anodized
aluminum sealing surface. No such
feature actually exists.

December 2, 2013 31



Space System Anomaly

External Surface Changes on ISS

....... '&L

Anodized
\ P K aluminum
D S [abels, which
<) 5 darkened
— £ 2 quickly, have
begun to
recover their
| expected
- appearance with

A/ j»; ~ continued AO
NG exposure!
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Space System Anomaly

ISS Observations

Some worse-than-expected materials degradation effects have been
observed on ISS, but only one has created an operational issue (during
P6 redeploy) and some surfaces (as with the anodized aluminum labels)
appear to be recovering.

Inadvertent materials substitutions have been observed, but none have
created any operational issues.

Hardware handling contamination effects have been observed, and
although none have created operational issues, there is clearly room for
Improvement in this regard.

Even with robust materials selections, space environmental effects will
be observed.

Be cautious when interpreting photography, as lighting conditions and
the environment affect interpretation.

December 2, 2013
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VIIRS Space System Anomaly

Visible/infrared imaging radiometer
suite (VIIRS)

» 10 Silver mirrors

» Dichroics separate the beam into:
* VIis/NIR (10 bands)
» Reflective IR ( 8 bands)
o Thermal IR (4 bands)

» Radiometric calibration required for
science missions

» Once each orbit, sunlight
iIlluminates diffuser material

» On-orbit data suggests most likely
cause is UV-induced degradation of the
telescope mirrors

e Mirrors coated in 2004

» Coating has extensive flight heritage
» Root-cause hypotheses proposed:

* Inherent coating defect

« Contamination prior to launch

« Contamination after launch

orbit 15

det)/F{mid det;

l

““ Nadir door

opens

v

1,00 Tu— - g":"“ =

NADIR door opens

Ik

\

iit

Night only operations
No degradation

e

W
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VIIRS Space System Anomaly
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02 - 1 Post 1012 hrs UV s
E\ UV-Induced Response of Various Protected Silver Mirrors Mirror T
] : 1|
o=+ + o644\
500 1000 1500 2000 2500 500 1000 1500 2000 2500
Wavelength, nm Wavelength, nm

UV and/or electron radiation can induce
absorptions in protected silver mirrors.

» Tests on a variety of mirror types yielded
varying results - susceptibility depends upon
materials/processes used.

* These results were reported to the program in

2005, but was considered a low risk for their
flight-proven coating - did not pursue testing.

December 2, 2013 35



VIIRS Space System Anomaly

TWM-Telescope Witness Mirror was made in the same mirror deposition run as the flight mirrors, saw
Assembly Integration and Test environment

CFM1- Contractor Furnished Mirror- was made in the same mirror deposition run as the flight mirrors,
but stored in pristine conditions

A3-31- The same type of mirror, but made at a different time and stored in pristine conditions.
CERES mirror- A different type of mirror that was attached to a different instrument during Assembly

Integration and Test
e Control Materials

— 2-mil Rear-Surface-Aluminized Kapton
— 2-mil Rear-Surface-Silverized

Teflon (AgFEP)
— Z93-P White Paint

« Contamination Monitors
— Vapor Deposited Aluminum
(VDA)
Front-Surface Mirror
— 7980 Fused Silica
— Polished Silicon Wafer

Reflectance (%)

100

80

Samples were exposed to Xe illumination equivalent
to 1-sun intensity.

S —— In Situ Pretest (vac), right

—— In Situ Post 120-hr UV Exposure, right
In Situ Post UV, After 18 hrs in vacuum
Post UV, Vent to ATM with Nitrogen
Vent, Door open 15 min
After 5 min in air

—— After 25 min in air

|— Overnight in air

A3-31 Mirror of the same design as 0

Flight mirrors but produced in a

different coating run, was unaffected by VIIRS Telescope Witness Mirror
the UV exposure. -

December 2, 2013
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VIIRS Space System Anomaly

TWM Sputter Time (S)

0‘ C e e e
500 3% —— CFML1 (solid)

/ T R VIIRS on-orbit
7 degradation likely
F o] a0 3 due to
el oo ¢ UV-induced

: . e darkening of

1004} 3 “ Le | Tungsten Oxide on
. EN RTA mirrors

0 500 1000 1500 2000 2500
CFM1 Sputter Time (s)

» UV-induced degradation of tungsten oxide contaminated witness mirrors (TWM, CFM1) from the
Flight (RTA) coating run

» Uncontaminated witness mirrors from other coating runs did not respond to UV exposure.

* WO, is a known photochromic and electrochromic material. Loss of oxygen induces a strong near
infrared absorption.
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VIIRS Space System Anomaly

» After discovery of tungsten oxide on the surface of TWM, the vendor’s coating
records were reviewed.

» Vendor explained that the coating process includes cleaning substrates (prior to
deposition) using an oxygen ion source.

— Oxygen ion source possesses Tungsten neutralizer filaments
— Explains tungsten oxide at coating/substrate interface

— The ion source remains off during the coating process

» Rotating Telescope Assembly (RTA) mirrors initially exhibited low reflectance,
thought to be due to a lack of oxygen in the top dielectric layer of coating.

— The delivery of these completed mirrors was already behind schedule...
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VIIRS Space System Anomaly

The Smoking Gun

Proposed using the oxygen ion
source to further oxidize top-
coating

Unqualified process - tested once
on a single witness sample

Not discussed with program’s
subject-matter experts

Process was hastily implemented
(on a Sunday)

No further testing of witness
samples was considered

Tungsten
Neutralizer
filaments

Travelling witness samples are very valuable!

December 2, 2013
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Summary

Define the environment
Be aware of the combined environmental effects: Synergisms

Test materials and systems to ensure engineering performance is well above end of
life requirements at the end of mission

Literature search/appropriate flight heritage can save time and lower cost

Flight heritage in one environment does not qualify for use in another environment
Processes need to be fully qualified - and strictly followed

Schedule pressures should not induce process deviations

Changes need to be discussed with all stakeholders

Beware unintended consequences of creative solutions

Even good ideas need to be tested and verified

Even with robust materials selections, space environmental effects will be observed.

Test as you fly (and fly as you test) - ensure that test specimens are fully representative
of the flight article and test environments are representative of flight.

*** Ground-based testing remains a key facet of mission assurance
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