
Evaluating downscaling methods for seasonal climate forecasts over East Africa 

SERVIR and Seasonal Climate Forecasts 
•  The NASA/USAID SERVIR project is dedicated to developing and improving the capacity of 

several hub regions to incorporate unique NASA satellite and modeling resources into operational 
environmental monitoring and planning. Recent and currently served hub regions include 
Mesoamerica, East Africa (EA), and the Hindu Kush-Himalayan region.  

•  The SERVIR Applied Science Team (AST) has recently been established with the goal of 
providing enhanced products for use in the hub regions. Currently awarded projects within the 
AST include (but not limited to) agricultural and hydrologic impact modeling, air quality and 
landslide assessments. 

•  Another AST team is focused on the evaluation of climate model simulations and the development 
of downscaled scenarios to be used by AST projects focused on impact modeling. Results 
presented here focus on the initial development of downscaled seasonal forecasts from the NASA 
Global Modeling and Assimilation Office (GMAO) GEOS-5 model contribution to the U.S. National 
Multi-Model Ensemble (NMME) for use in agriculture and hydrologic modeling over East Africa. 
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East Africa Rainfall, November
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Niño 3.4 Sea Surface Temperature, November
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East Indian/West Pacific Rainfall, November

Seasonal rainfall in East Africa (Fig. 1) is strongly tied 
to the annual march of the Intertropical Convergence 
Zone (ITCZ). The result is an annual maximum in 
rainfall in northern (southern) East Africa during JJA  
(DJF) and biannual maxima near equatorial East Africa 
(5S-5N) in MAM (“long rains”) and OND (“short rains”).  
The topographic influences on seasonal rainfall are 
pronounced with the largest seasonal rainfall occurring 
over the interior highlands (see Fig. 3 for elevation). 
Interannual variability of seasonal rainfall is locked 
strongly to the seasonal cycle. 

Equatorial East Africa (EEA) rainfall variability 
can be examined through use of a standardized 
precipitation index (SPI) that quantifies the 
anomalous variability (annual cycle removed) in 
relation to standard deviates of a normal 
distribution. Since 2000, EEA rainfall has shown 
significant interannual variability (Fig. 2) 
including excessive rainfall in late 2006 and the 
back-to-back failure of the short and long rains 
in 2010-2011. 
 
Teleconnection maps for the short and long 
rainy seasons (Fig. 2) indicate significant 
relationships with both sea surface temperature 
(SST) and precipitation variability. These have 
been identified in several studies with short rain 
interannual variability linked strongly to ENSO-
induced alterations of tropical zonal circulation. 

Figure	   2.	   (Top)	   Zonal	   average	   (30E-‐45E)	   SPI	   is	   shown	   for	   EEA	   (5S-‐5N).	  	  	  	  	  	  	  
|SPI|	  values	   less	   than	  about	  0.5	  correspond	   to	   the	  near-‐normal	   tercile.	  	  
EEA	   area-‐averaged	   rainfall	   SPI	   is	   correlated	   to	   observed	   precipitaIon	  
(shaded)	  and	  surface	  temperatures	  (contour)	   for	  the	  short	  (middle)	  and	  
long	  (boJom)	  rainy	  seasons.	  

Figure	  1.	  (LeN)	  Average	  monthly	  rainfall	  (mm)	  is	  shown	  together	  
with	   the	   magnitude	   of	   interannual	   variability	   (contours,	  
black=10mm,	  yellow=30mm,red=50mm).	  (Right)	  The	  meridional	  
march	  of	   seasonal	   rainfall	   and	  Iming	  of	   strongest	   interannual	  
variability	  is	  illustrated.	  Note	  EEA	  bi-‐annual	  rainfall	  maxima.	  

GCM Seasonal Forecast – Raw Model Output 
•  Coarse spatial resolution (~100 km) 
•  Typically archived at monthly resolution 
•  Systematic biases as a function of lead 

Impact Modeling (e.g. Agriculture, Hydrology) 
•  Fine spatial resolution needed (~5 km) 
•  Need daily (or better) temporal resolution 
•  Realistic spatial and temporal variability 

needed 

Bridging the gap – “Downscaling”  
Statistical downscaling makes use of large-scale 
model predictors together with observations to 
generate plausible high-resolution scenarios for 
assessing local-scale variability and/or driving 
end-user models . Spat ia l downscal ing 
techniques vary widely including both linear and 
nonlinear (e.g. neural networks) methods. 
Techniques for generating sub-monthly variability 
include stochastic weather generators (univariate 
and multivariate) and analogue/resampling 
approaches. 

Figure	   3.	   East	   Africa	   topography	   is	  
complex	   including	   low-‐lying	   coastal	  
areas	   and	   elevated	   interior	   highlands	  
mixed	   with	   the	   Great	   RiN	   Valley.	   This	  
leads	   to	   s ignificant	   local-‐scale	  
variability	   in	   rainfall.	   Using	   coarsely-‐
resampled	   precipitaIon	   as	   a	   linear	  
predictor	  of	  the	  fine-‐scale	  precipitaIon	  
from	  which	   it	  was	  developed	  results	   in	  
an	  inevitable	  loss	  of	  informaIon.	  Some	  
areas	   have	   residual	   unexplained	  
variance	   of	   10%	   (black),	   20%	   (blue)	  
30%	   (red),	   and	   even	   40%	   (white)	  
arising	  from	  the	  scale	  mismatch.	  

Raw model simulated fields often contain 
systematic biases that vary as a function of 
lead. These can be corrected through 
methods such as quantile-quantile mapping 
that preserve rank correlation but provide 
improved amplitudes and spatial variability 
with respect to uncorrected model output 
(Fig. 4). There can be large differences in 
the inherent skill of models as a function of 
variable, location and forecast lead time.  
 
Precipitation over East Africa exhibits low 
skill at all but the shortest lead, while Niño 
3.4 regional sea surface temperatures show 
very high anomaly correlation out to many 
months. The ranked probability skill score 
(RPSS) at 0.5 month lead shows much 
improved skill prediction of ocean surface 
temperatures in many regions compared to 
c l imato log ica l terc i le probabi l i t ies . 
Precipitation forecasts show only limited 
skill and is primarily limited to the central 
and western Pacific Ocean. 

Figure	   4.	   Taylor	   diagrams	   illustrate	   determinisIc	   skill	  
measures	   (anomaly	   paJern	   correlaIon,	   centered	   root-‐
mean-‐square,	   and	   paJern	   standard	   deviaIon)	   for	  
verificaIon	   of	   East	   African	   November	   rainfall	   (top),	   West	  
Pacific	  rainfall	  (middle-‐leN),	  and	  Niño	  3.4	  SST	  (middle-‐right)	  
from	  the	  NASA	  GMAO	  raw	  (red)	  and	  bias-‐corrected	   (black)	  
seasonal	   forecasts	   for	   leads	   from	  0.5-‐8.5	  months.	  Note	  the	  
significant	   reducIon	   in	   skill	   with	   lead	   parIcularly	   for	   East	  
African	  rainfall.	  RPSS	  for	  rainfall	  and	  SST	  (boJom)	  illustrates	  
probabilisIc	   skill	   improvements	   (posiIve)	   compared	   to	  
climatological	  tercile	  probabiliIes.	  	  
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Figure	   5.	   The	   GMAO	   seasonal	   forecast	   cross-‐
validated	  correlaIons	  with	  East	  Africa	  SPI	  at	  Lead	  
3.5	  are	   shown	   for	  precipitaIon	   (shading)	  and	   for	  
SST	  (contour).	  These	  paJerns	  can	  be	  compared	  to	  
those	  from	  direct	  observaIons	  shown	  in	  Figure	  1.	  	  
Within	   several	   months	   of	   November,	   the	   NASA	  
GMAO	  model	   demonstrates	   skill	   in	   capturing	   the	  
large-‐scale	   precipitaIon	   and	   sea	   surface	  
temperature	  paJerns	  associated	  with	  interannual	  
SPI	  variability.	  

Figure	   6.	   The	   GMAO	   seasonal	   forecast	   cross-‐
validated	  verificaIon	  of	   SPI	  predicIons	   from	   the	  
MFR	  are	  shown.	  The	  RPSS	   (bars)	  and	  correlaIon	  
(line)	  measures	   are	   shown	   as	   a	   funcIon	   of	   lead	  
Ime	   for	   downscaling	   to	   the	   SPI	   using	   the	   bias-‐
corrected	   forecasted	   East	   Africa	   average	  
precipitaIon	   (RAW),	   the	   MFR	   approach	   using	  
bivariate	   regression	   of	   the	   1st	   principal	  
component	  (PC),	  and	  a	  neural	  network	  regression	  
of	   the	   1st	   PC	   (NN).	   Note	   how	   rapidly	   the	   skill	  
drops	  using	  only	  the	  forecasted	  precipitaIon	  over	  
East	  Africa.	  In	  contrast,	  the	  MFR	  based	  approach	  
maintains	   skill	   for	   several	   months,	   with	   PC	  
outperforming	  the	  NN	  approach.	  	  

Rather than using the forecasted 
precipitation over the East Africa 
region directly, the NMME set of 
hindcasts can be used to develop 
improved predictions of EA rainfall 
variability in the form of the EA SPI. 
Effectively, model output statistics 
are used to bridge model forecasts 
of large-scale variability to those of 
interest to this study.  
 
Matched filter regression (MFR) is 
a technique that can be used to 
identify predictors of large scale 
variability that are significantly 
correlated with a predictand of 
interest. Hindcast simulations are 
used to iden t i f y s ign i f i can t 
correlations between the EA SPI 
and model fields (Fig. 5). Hindcasts 
o f those reg ions exh ib i t ing 
significant correlations are used to 
develop a multivariate vector 
whose entries are scaled by the 
correlat ion strength at each 
location. The set of hindcast 
vectors are subjected to a principal 
component (PC) analysis. The 1st 
PC serves as a predictor for 
deriving a functional relationship 
with EA SPI. The MFR approach 
shows significant improvement over 
the direct model forecasts of EA 
rainfall (Fig 6.). 

•  The NASA/USAID SERVIR Applied Science Team (AST) is currently 
supporting several projects that will make use of downscaled 
seasonal forecast scenarios in agricultural and hydrologic modeling 
outlooks for East Africa.  

•  Interannual rainfall variability in equatorial East Africa is prominent, 
leading to floods and droughts. Variations in both the short and long 
rains are influenced by ocean-atmosphere teleconnections. 

•  Seasonal forecasts from the GMAO model show limited inherent skill 
for direct forecasts of EA rainfall and must be spatially and temporally 
downscaled for use in impact modeling. 

•  Matched filter regression, combined with bootstrap resampling of a 
high-resolution historical record, may be a useful approach to the 
development of refined scenarios for use within the SERVIR AST.  


