
Evaluating downscaling methods for seasonal climate forecasts over East Africa 

SERVIR and Seasonal Climate Forecasts 
•  The NASA/USAID SERVIR project is dedicated to developing and improving the capacity of 

several hub regions to incorporate unique NASA satellite and modeling resources into operational 
environmental monitoring and planning. Recent and currently served hub regions include 
Mesoamerica, East Africa (EA), and the Hindu Kush-Himalayan region.  

•  The SERVIR Applied Science Team (AST) has recently been established with the goal of 
providing enhanced products for use in the hub regions. Currently awarded projects within the 
AST include (but not limited to) agricultural and hydrologic impact modeling, air quality and 
landslide assessments. 

•  Another AST team is focused on the evaluation of climate model simulations and the development 
of downscaled scenarios to be used by AST projects focused on impact modeling. Results 
presented here focus on the initial development of downscaled seasonal forecasts from the NASA 
Global Modeling and Assimilation Office (GMAO) GEOS-5 model contribution to the U.S. National 
Multi-Model Ensemble (NMME) for use in agriculture and hydrologic modeling over East Africa. 
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East Africa Rainfall, November
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Niño 3.4 Sea Surface Temperature, November
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East Indian/West Pacific Rainfall, November

Seasonal rainfall in East Africa (Fig. 1) is strongly tied 
to the annual march of the Intertropical Convergence 
Zone (ITCZ). The result is an annual maximum in 
rainfall in northern (southern) East Africa during JJA  
(DJF) and biannual maxima near equatorial East Africa 
(5S-5N) in MAM (“long rains”) and OND (“short rains”).  
The topographic influences on seasonal rainfall are 
pronounced with the largest seasonal rainfall occurring 
over the interior highlands (see Fig. 3 for elevation). 
Interannual variability of seasonal rainfall is locked 
strongly to the seasonal cycle. 

Equatorial East Africa (EEA) rainfall variability 
can be examined through use of a standardized 
precipitation index (SPI) that quantifies the 
anomalous variability (annual cycle removed) in 
relation to standard deviates of a normal 
distribution. Since 2000, EEA rainfall has shown 
significant interannual variability (Fig. 2) 
including excessive rainfall in late 2006 and the 
back-to-back failure of the short and long rains 
in 2010-2011. 
 
Teleconnection maps for the short and long 
rainy seasons (Fig. 2) indicate significant 
relationships with both sea surface temperature 
(SST) and precipitation variability. These have 
been identified in several studies with short rain 
interannual variability linked strongly to ENSO-
induced alterations of tropical zonal circulation. 

Figure	
   2.	
   (Top)	
   Zonal	
   average	
   (30E-­‐45E)	
   SPI	
   is	
   shown	
   for	
   EEA	
   (5S-­‐5N).	
  	
  	
  	
  	
  	
  	
  
|SPI|	
  values	
   less	
   than	
  about	
  0.5	
  correspond	
   to	
   the	
  near-­‐normal	
   tercile.	
  	
  
EEA	
   area-­‐averaged	
   rainfall	
   SPI	
   is	
   correlated	
   to	
   observed	
   precipitaIon	
  
(shaded)	
  and	
  surface	
  temperatures	
  (contour)	
   for	
  the	
  short	
  (middle)	
  and	
  
long	
  (boJom)	
  rainy	
  seasons.	
  

Figure	
  1.	
  (LeN)	
  Average	
  monthly	
  rainfall	
  (mm)	
  is	
  shown	
  together	
  
with	
   the	
   magnitude	
   of	
   interannual	
   variability	
   (contours,	
  
black=10mm,	
  yellow=30mm,red=50mm).	
  (Right)	
  The	
  meridional	
  
march	
  of	
   seasonal	
   rainfall	
   and	
  Iming	
  of	
   strongest	
   interannual	
  
variability	
  is	
  illustrated.	
  Note	
  EEA	
  bi-­‐annual	
  rainfall	
  maxima.	
  

GCM Seasonal Forecast – Raw Model Output 
•  Coarse spatial resolution (~100 km) 
•  Typically archived at monthly resolution 
•  Systematic biases as a function of lead 

Impact Modeling (e.g. Agriculture, Hydrology) 
•  Fine spatial resolution needed (~5 km) 
•  Need daily (or better) temporal resolution 
•  Realistic spatial and temporal variability 

needed 

Bridging the gap – “Downscaling”  
Statistical downscaling makes use of large-scale 
model predictors together with observations to 
generate plausible high-resolution scenarios for 
assessing local-scale variability and/or driving 
end-user models . Spat ia l downscal ing 
techniques vary widely including both linear and 
nonlinear (e.g. neural networks) methods. 
Techniques for generating sub-monthly variability 
include stochastic weather generators (univariate 
and multivariate) and analogue/resampling 
approaches. 

Figure	
   3.	
   East	
   Africa	
   topography	
   is	
  
complex	
   including	
   low-­‐lying	
   coastal	
  
areas	
   and	
   elevated	
   interior	
   highlands	
  
mixed	
   with	
   the	
   Great	
   RiN	
   Valley.	
   This	
  
leads	
   to	
   s ignificant	
   local-­‐scale	
  
variability	
   in	
   rainfall.	
   Using	
   coarsely-­‐
resampled	
   precipitaIon	
   as	
   a	
   linear	
  
predictor	
  of	
  the	
  fine-­‐scale	
  precipitaIon	
  
from	
  which	
   it	
  was	
  developed	
  results	
   in	
  
an	
  inevitable	
  loss	
  of	
  informaIon.	
  Some	
  
areas	
   have	
   residual	
   unexplained	
  
variance	
   of	
   10%	
   (black),	
   20%	
   (blue)	
  
30%	
   (red),	
   and	
   even	
   40%	
   (white)	
  
arising	
  from	
  the	
  scale	
  mismatch.	
  

Raw model simulated fields often contain 
systematic biases that vary as a function of 
lead. These can be corrected through 
methods such as quantile-quantile mapping 
that preserve rank correlation but provide 
improved amplitudes and spatial variability 
with respect to uncorrected model output 
(Fig. 4). There can be large differences in 
the inherent skill of models as a function of 
variable, location and forecast lead time.  
 
Precipitation over East Africa exhibits low 
skill at all but the shortest lead, while Niño 
3.4 regional sea surface temperatures show 
very high anomaly correlation out to many 
months. The ranked probability skill score 
(RPSS) at 0.5 month lead shows much 
improved skill prediction of ocean surface 
temperatures in many regions compared to 
c l imato log ica l terc i le probabi l i t ies . 
Precipitation forecasts show only limited 
skill and is primarily limited to the central 
and western Pacific Ocean. 

Figure	
   4.	
   Taylor	
   diagrams	
   illustrate	
   determinisIc	
   skill	
  
measures	
   (anomaly	
   paJern	
   correlaIon,	
   centered	
   root-­‐
mean-­‐square,	
   and	
   paJern	
   standard	
   deviaIon)	
   for	
  
verificaIon	
   of	
   East	
   African	
   November	
   rainfall	
   (top),	
   West	
  
Pacific	
  rainfall	
  (middle-­‐leN),	
  and	
  Niño	
  3.4	
  SST	
  (middle-­‐right)	
  
from	
  the	
  NASA	
  GMAO	
  raw	
  (red)	
  and	
  bias-­‐corrected	
   (black)	
  
seasonal	
   forecasts	
   for	
   leads	
   from	
  0.5-­‐8.5	
  months.	
  Note	
  the	
  
significant	
   reducIon	
   in	
   skill	
   with	
   lead	
   parIcularly	
   for	
   East	
  
African	
  rainfall.	
  RPSS	
  for	
  rainfall	
  and	
  SST	
  (boJom)	
  illustrates	
  
probabilisIc	
   skill	
   improvements	
   (posiIve)	
   compared	
   to	
  
climatological	
  tercile	
  probabiliIes.	
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Figure	
   5.	
   The	
   GMAO	
   seasonal	
   forecast	
   cross-­‐
validated	
  correlaIons	
  with	
  East	
  Africa	
  SPI	
  at	
  Lead	
  
3.5	
  are	
   shown	
   for	
  precipitaIon	
   (shading)	
  and	
   for	
  
SST	
  (contour).	
  These	
  paJerns	
  can	
  be	
  compared	
  to	
  
those	
  from	
  direct	
  observaIons	
  shown	
  in	
  Figure	
  1.	
  	
  
Within	
   several	
   months	
   of	
   November,	
   the	
   NASA	
  
GMAO	
  model	
   demonstrates	
   skill	
   in	
   capturing	
   the	
  
large-­‐scale	
   precipitaIon	
   and	
   sea	
   surface	
  
temperature	
  paJerns	
  associated	
  with	
  interannual	
  
SPI	
  variability.	
  

Figure	
   6.	
   The	
   GMAO	
   seasonal	
   forecast	
   cross-­‐
validated	
  verificaIon	
  of	
   SPI	
  predicIons	
   from	
   the	
  
MFR	
  are	
  shown.	
  The	
  RPSS	
   (bars)	
  and	
  correlaIon	
  
(line)	
  measures	
   are	
   shown	
   as	
   a	
   funcIon	
   of	
   lead	
  
Ime	
   for	
   downscaling	
   to	
   the	
   SPI	
   using	
   the	
   bias-­‐
corrected	
   forecasted	
   East	
   Africa	
   average	
  
precipitaIon	
   (RAW),	
   the	
   MFR	
   approach	
   using	
  
bivariate	
   regression	
   of	
   the	
   1st	
   principal	
  
component	
  (PC),	
  and	
  a	
  neural	
  network	
  regression	
  
of	
   the	
   1st	
   PC	
   (NN).	
   Note	
   how	
   rapidly	
   the	
   skill	
  
drops	
  using	
  only	
  the	
  forecasted	
  precipitaIon	
  over	
  
East	
  Africa.	
  In	
  contrast,	
  the	
  MFR	
  based	
  approach	
  
maintains	
   skill	
   for	
   several	
   months,	
   with	
   PC	
  
outperforming	
  the	
  NN	
  approach.	
  	
  

Rather than using the forecasted 
precipitation over the East Africa 
region directly, the NMME set of 
hindcasts can be used to develop 
improved predictions of EA rainfall 
variability in the form of the EA SPI. 
Effectively, model output statistics 
are used to bridge model forecasts 
of large-scale variability to those of 
interest to this study.  
 
Matched filter regression (MFR) is 
a technique that can be used to 
identify predictors of large scale 
variability that are significantly 
correlated with a predictand of 
interest. Hindcast simulations are 
used to iden t i f y s ign i f i can t 
correlations between the EA SPI 
and model fields (Fig. 5). Hindcasts 
o f those reg ions exh ib i t ing 
significant correlations are used to 
develop a multivariate vector 
whose entries are scaled by the 
correlat ion strength at each 
location. The set of hindcast 
vectors are subjected to a principal 
component (PC) analysis. The 1st 
PC serves as a predictor for 
deriving a functional relationship 
with EA SPI. The MFR approach 
shows significant improvement over 
the direct model forecasts of EA 
rainfall (Fig 6.). 

•  The NASA/USAID SERVIR Applied Science Team (AST) is currently 
supporting several projects that will make use of downscaled 
seasonal forecast scenarios in agricultural and hydrologic modeling 
outlooks for East Africa.  

•  Interannual rainfall variability in equatorial East Africa is prominent, 
leading to floods and droughts. Variations in both the short and long 
rains are influenced by ocean-atmosphere teleconnections. 

•  Seasonal forecasts from the GMAO model show limited inherent skill 
for direct forecasts of EA rainfall and must be spatially and temporally 
downscaled for use in impact modeling. 

•  Matched filter regression, combined with bootstrap resampling of a 
high-resolution historical record, may be a useful approach to the 
development of refined scenarios for use within the SERVIR AST.  


