Selected R&D Topics on Aerospace Communications at NASA Glenn Research Center

Félix A. Miranda, Robert R. Romanofsky and James A. Nessel
NASA Glenn Research Center, Cleveland OH 44135

NASA Glenn Research Center & ElectroScience Lab Technical Interchange Meeting
The Ohio State University ElectroScience Laboratory
February 24, 2014
Abstract

This presentation discusses some of the efforts on communications R&D that have been performed or are currently underway at NASA Glenn Research Center. The primary purpose of this presentation is to outline some R&D topics to serve as talking points for a Technical Interchange Meeting with the Ohio State University. The meeting is scheduled to take place at The ElectroScience Laboratory of the Ohio State University on February 24, 2014.
Antenna and Optical Systems Branch (RHA)

Overview

Competencies
- Antenna Systems
- Microwave Systems
- RF (Ka-, V-, W-band) & Optical Propagation
- RF/Optical Communications
- Cryo-Electronics
- Nano-antennas and Nano-electronics

Products

Ka-Band Atmospheric Calibration
RF and Optical Propagation Research

LEO
GEO

Advanced Phased Arrays

Large Aperture
Inflatable/Deployable Antennas
- Polymer Membranes
- Shape Memory Alloys
- Mesh Antennas

Material → Phase Shifter → Reflectarray

Transmit or Receive Feed

Ba$_x$Sr$_{1-x}$TiO$_3$ Crystal
Thin Film Phase Shifter
616 Element Reflectarray (12 in. diameter)

MISSE-8
(2010 R&D100 Award Winner)

MISSE-8

Antenna Characterization Facilities
- Compact Range
- Near Field Range
- Far Field Range
- Cylindrical Near Field Range
- Near Field Probe Station Scanner*

*(2007 R&D100 Award Winner)

Phased Arrays
- Bit Error Compensation Techniques
- Alternative Sub-Systems Designs
- Optimal Modulation Schemes

Game Changing Technologies

Tunable Receivers
RF/Optical Shared Aperture Antennas

Gold
SiO$_2$
Gold

10 m

nanoFETS

(2010 R&D100 Award Winner)
BaxSr$_{1-x}$TiO$_3$ Crystal

(2010 R&D100 Award Winner)

Tunable Receivers
RF/Optical Shared Aperture Antennas

Large Aperture
Inflatable/Deployable Antennas

(2010 R&D100 Award Winner)

S-QIF

(2010 R&D100 Award Winner)

(2010 R&D100 Award Winner)
Digital Communication and Navigation

- High Speed Signal Processing
- Wireless and Microelectronic devices for communications
- Space Telecommunications Radio System (STRS)
- SDR Waveform development
- STRS-compliant Hardware and Software
- Software-Defined and Cognitive Radio
- EVA Radio and Navigation
- STRS
- Integrated Audio
- SCaN Testbed Experiments
- Digital and Wireless Communication
- Signal Processing Research
- Conformal audio microphone arraying
- EVA Radio and Surface Navigation
- Complex Analysis and Methods
- Computer modeling and simulation tools
- SCaN Testbed Flight Radio Experiments and Demonstrations
- Desert Research and Technology Studies (DRATS)
Electron & Opto-Electronic Device Branch

Expertise
- High Power/HE TWTA/SSPA
- Microwave and Wireless Components and Circuits
- 3-D Electromagnetic Modeling
- Electronic Materials for Semiconductor and Vacuum Electronic Devices
- Radiofrequency Photonics

High Data Rate Communications
Validation of bandwidth efficient modulation techniques at Ka-band using software defined modem technology

Secure/High Data Rate Comm. Using
V-band (71-76 GHz) and W-band (81-86 GHz) Frequencies

System level block diagram of the experimental setup

Atmospheric Window
Networks and Architectures Branch
Major Technology Initiatives

Expertise
- Comm-Network Arch / Analysis
- Aeronautical Comm.
- Comm-Net Mod-Sim
- Network-centric Ops for Space and Aeronautics
- Internet Protocols & Standards Development
- Mobile Network Security
- Interoperability Testbeds & Flight Experiments
- Network Management

Delay Tolerant Networking Protocol
Enable an open method of performing network-based store-and-forward communications.

NextGen CNS Test Bed
Surveillance and communications test bed to evaluate 802.16e aeronautical mobile network profile and channelization of 5.1 GHz spectrum for airport surface applications.

Real-time and Store and Delivery of Unmanned Airborne Vehicle Sensor Data

UAS in the NAS Project
Some Examples of Technology Evolution from Idea to Deployment
Antenna Technology
Ferroelectric Reflectarray Antenna—The Road From Idea to Deployment

Modified 615 Element Scanning Ferroelectric Reflectarray: 2005-2009
Prototype antenna with practical low-power controller assembled and installed in NASA GRC far-field range for testing. Low-cost, high-efficiency alternative to conventional phased arrays.

Practical Phase Shifters: 2003-2004
Novel phased array concept based on quasi-optical feed and low-loss ferroelectric phase shifters refined. 50 wafers of $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{TiO}_3$ on lanthanum aluminate processed to yield over 1000 ferroelectric K-band phase shifters. Radiation tests show devices inherently rad hard in addition to other advantages over GaAs.

Fundamental Research: 2000-2003
Agile microwave circuits are developed [using room temperature Barium Strontium Titanate ($\text{Ba}_{0.5}\text{Sr}_{0.5}\text{TiO}_3$)], including oscillators, filters, antenna elements, etc., that rival or even outperform their semiconductor counterparts at frequencies up to Ka-band.

Seedling Idea: 1995-1999
Basic experiments with strontium titanate at cryogenic temperatures suggest loss tangent of ferroelectric films may be manageable for microwave applications.

Cellular Reflectarray: 2010
Derivative attracts attention for commercial next generation DirecTV, etc. applications.
Beach Ball Antenna – The Road From Idea to Deployment

First Practical System: 2008
Through the help of NASA Glenn, the SCAN project, a reimbursable Space Act Agreement, material refinements through Air Force Research Laboratory (AFRL) and the Space and Missile Defense Command (SMDC), GATR Technologies markets World’s first FCC certified inflatable antenna.

Fundamental Research: 2004-2007
Designed and fabricated a 4x6m off-axis inflatable thin film antenna with a rigidized support torus. Characterized the antenna in the NASA GRC Near Field Range at X-band and Ka-band. Antenna exhibited excellent performance at X-band. Ka-band surface errors are understood.

Seedling Idea: 2004
Circa 2004 need for large aperture deployable antenna identified for JIMO and Mars Areostationary relay platform. Antenna technology adapted from 1998 Phase II SBIR solar concentrator project.

In The Field: 2009-2010
Popular Science’s – Invention of the Year 2007, listed as one of the “Inc. 500: The Hottest Products” of 2009. GATR continues to field units which enable high-bandwidth Internet, phone and data access for deployments and projects in Afghanistan, South Africa, South America, Haiti, Korea, as well as assisting hurricane disaster recovery here on our own soil.
RF Propagation
RF Propagation – The Road From Idea to Deployment

mm-wave Propagation Studies: 2012-Future
GRC undertakes expansion of mm-wave frontier via propagation activities in the Q/V/W bands

Atmospheric Phase Studies: 2004 – Present
Characterization of atmospheric phase noise is studied to identify suitable sites for Uplink Arraying Solution to large aperture 70-m class antenna issues with Deep Space Network. GRC, in collaboration with JPL and GSFC, leads the characterization of atmospheric-induced phase fluctuations for future ground-based arraying architecture.

Propagation studies were undertaken by NASA to determine the effects of atmospheric components (e.g., gaseous absorption, clouds, rain, etc.) on the performance of space communication links operating in the Ka-band. Sites throughout the Continental US and Puerto Rico were characterized.
GRC has proven its role as lead center for NASA in the area of propagation characterization for space communications through expansion of funded efforts.
Software Define Radio
Software Defined Radios – STRS Architecture: The Road From Idea to Deployment

2010 – SCaN Testbed Flight Radios Developed by General Dynamics, Harris Corp., JPL

SCaN Testbed Launch to ISS – July 20, 2012

Technology Experiments: 2013 – 2017

Communications, Navigation and Networking re-Configurable Testbed (CoNNeCT) Project, now known as SCaN Testbed, established to perform system prototype demonstration in relevant environment (TRL-7)

Development of design tools and validation test beds.
Development of design reference implementations and waveform components.
Establish SDR Technology Validation Laboratory at GRC.
NASA/Industry Workshops conducted

Develop common, open standard architecture for space-based software defined radio (SDR) known as Space Telecommunications Radio Architecture (STRS).
Allow reconfigurable communication and navigation functions implemented in software to provide capability to change radio use during mission or after launch.
NASA Multi-Center SDR Architecture Team formed.
Traveling-Wave Tube Amplifiers (TWTA)
High Power & Efficiency Space Traveling-Wave Tube Amplifiers (TWTAs) - A Huge Agency Success Story

Lunar & ISS Missions: 2007-2011
- Delivered K-band 40 W space TWTAs to the Lunar Reconnaissance Orbiter & CoNeCT missions

- Space qualified a Ka-Band TWT, output power 200 W, efficiency 62 %, mass 1.5 kg. Output power 20X higher than Cassini TWT and FoM is 133

- Demonstrated a Ka-Band space TWT, output power 100 W, efficiency 60 %, mass 2.3 kg. Output power 10X higher than the Cassini TWT and FoM is 43

- Delivered a Ka-Band space TWT, output power 10 W, efficiency 41 %, mass 0.750 kg. Figure of Merit (FoM) is power/mass = 13

- Basic design studies on traveling-wave tube (TWT) slow wave interaction circuits, collector circuit, focusing structure, electron gun and cathode
Two Examples Ongoing Efforts
Superconducting Quantum Interference Filter (SQIF) [Receiver]

POC: Robert Romanofsky, (216) 433-3507, robert.r.romanofsky@nasa.gov

Objectives:
- Investigate sensitivity of 2D dc SQUID (SQIF) array
- Design and fabricate 2D X-band SQIF array and characterize sensitivity and noise relative to the state-of-the-art receiver technology
- Verify that as gain scales with increasing numbers of SQUIDs, noise temperature can be made arbitrarily low

Approach:
- Develop in-house capability to assess performance of 4 K Niobium SQIF
- Co-design X-band 2d SQIF with domestic foundry (Hypres); Proceed to Ka-band if warranted
- Quantify potential of SQIF technology to provide disruptive architecture for futuristic deep-space comm
Integrated Radio and Optical Communications (iROC)
Revolutionary Capability in an Evolutionary Manner

TSD Objectives:
- Combine the best features of select deep space RF and optical communications elements into an integrated system
- Realize Ka-band RF and 1550 nanometer optical capability within the MRO payload envelope
- Prototype and demonstrate performance of key components to increase TRL, leading to integrated hybrid communications system demonstration

Findings:
- Offers potential 40x (optical) and 16x (RF) data rates with comparable MRO payload mass
- Reduces deep space mission risk for transition to optical comm technology by integrating highly capable and robust RF system
- Operates without requirement for uplink laser beacon
- Provides extensible system design beyond Mars distances

Key enabling technologies recommended for integration:
- Precision beaconless pointing through sensor fusion
- Combined RF/optical Teletenna
- RF/optical Software Defined Radio (SDR)
- Networked RF/optical link management

Phase:
- Technology Development/Pre-Phase A
- Targeted circa 2020 demonstration
Examples of Some Facilities
Aero-Space Communications Competency

Technical Areas and Labs/Facilities

Advanced Antennas & Propagation
- Antenna & MW Components & Systems
- Antenna Metrology/Characterization & Cryo-electronics
- RF and Optical Propagation
- Nanotechnology (nanoantennas & nanoelectronics)

Communications Components/Devices
- High Power TWTA/SSPAs
- MW and Wireless Components and Circuits
- 3-D Electromagnetic Modeling
- Electronic Materials for Semiconductors
- Electronic Devices & RF Photonics

Digital Communications & Navigation
- Software Defined Radios/EVA Radio Development
- Advanced Navigation Technology
- Surface Wireless Communications
- Integrated Audio Technology
- Model-Based Signal Processing

Network Architectures and Protocols
- Network Protocols and Technology
- Aerospace Comm Architectures & Systems
- Network-Centric Operations & Technology
- Simulation and Modeling
- System of Systems Comm Arch Development

Space Flight Communications
- Communications, Navigation, Networking re-Configurable Testbed (CoNNeCT) on ISS
- Space Communications Compatibility Test Sets
- EVA spacesuit communications
- Orion vehicle communications

Communications Systems Engineering
- Architecture Development and Planning
- System Con Ops, Requirements, V & V Development
- Network/System Level Trades/Analyses, Mod & Simulation

Facilities Images

- Far Field Antenna Range
- Near Field Antenna Range
- Compact Range Antenna Facility
- RF Propagation Lab
- TWTA / Power Combiner Test Bed
- SSPA Test Bed
- Micro-Electronic Fabrication Facility
- SDR/STRS Lab
- CoNNeCT Integ Lab
- Wireless Comm. Radio Lab
- AEVA Spacesuit Lab
- Mobile Networking Lab
- Network and Emulation Lab
- UAS Lab
- AeroMACS
- ITGE for MPCV SM
- Space Network Compatibility Test Set Lab/Test Bed
- Modeling & Simulation Lab
- COMPASS
- Scenic Design
The Microwave System Laboratory (MSL) houses five RF antenna measurement ranges which are available for use by Glenn staff and their industrial and academic associates. The ranges support the work being done at the center in the research and development of communication systems. Although used primarily to observe and characterize the performance of microwave antennas, the ranges can be used for communication system studies and to study other types of electromagnetic phenomena such as scattering. Examples of measurements which have been performed at the facility include:

- Satellite communication antennas for space and ground segment terminals
- Aeronautical terminal antennas
- Phased array antennas, reflectarray antennas
- Large aperture inflatable antennas
- Electromagnetic scattering
- Multibeam antennas
- Mobile antennas
- Bit Error Rate performance of scanning antennas
- Miniaturized antennas
- Electromagnetic scattering of antenna structures & materials

The MSL also houses a newly created Optical Communications Laboratory to support emerging efforts such as the Integrated Radio and Optical Communications (iROC) Project.
RF Propagation Research Laboratory

Laboratory Objectives

- Evaluate GEO and LEO propagation links and validate models that will enable NASA, DoD and commercial communication system designers to optimize spacecraft power requirements and reduce cost.
- Fabricate, characterize, and perform systems performance verification on in-house or commercially available instruments such as radiometers, beacon receivers, and interferometers.
- Developed one-of-kind digital receiver techniques and radiometry sensing techniques for characterizing radio frequency waves at Ka-band and millimeter waves (e.g., Q/V/W bands).

(a) 5.5 Meter Diameter Beam Waveguide Antenna on top of Bldg. 55
(b) K-band and Q-band radiometers collecting Data in roof of bldg 55; (c) & (d) RF Propagation assembly, component test, and station monitoring areas in bldg. 55
Cryogenic Microwave Laboratory (CML)

Description:

The Cryogenic Microwave Electronics Laboratory is used to evaluate innovative microwave materials, devices, and circuit technologies in support of the Communications, Instrumentation and Controls Division’s effort to develop next generation communications systems for Space Exploration. The facility has been used to evaluate space qualified cryogenic receiver components, superconducting phased array antennas, tunable thin-film ferroelectric based oscillators, filters and phase shifters, ferroelectric/semiconductor heterostructures, SiGe low noise amplifiers, InP HEMT low noise amplifiers, and more.

Capabilities:

- S-parameters from 100 MHz to 40 GHz at temperatures from 30 K to 300 K (room temperature to 67 GHz)
- Noise parameters up to 40 GHz at temperatures from 30 K to 300 K
- Magnetoresistance
- Hall and Van der Pauw measurements (plus mobility spectra)
 - Shubnikov deHass
 - Resistance to 10^{11} Ohm
- Antenna Far Field Patterns up to 10 cm apertures cooled to 30 K
- 3D measurements at nanometer scale using phase-shift interferometry
- AFM/STM

(a) 40 GHz Cryogenic On-Wafer Probe Station; (b) 2.5 K, 9 T Hall system
Digital Communication and Navigation Labs/Facilities

STRS/ SDR Laboratory

SCaN Testbed Ground Integration Unit

ISS SCaN Testbed Flight System

EVA Spacesuit Integrated Audio

EVA Radio Development Lab

Desert RATS Field Demos
Clean Room Facility for Fabrication of Microwave Integrated Circuits

Description:
- The Micro-Electronic Fabrication Facility of the Communications Technology Division at NASA Glenn Research Center is a class 100 clean room. The facility is equipped to provide extensive material characterization studies as well as develop the current state-of-the-art thin film devices, passive or active.

Capabilities
- Photolithography Room
- Electron-beam evaporators
- Interferometer station
- Optical microscope with Digital Spot Imaging system
- Scanning electron microscope
Network and Architecture Labs Facilities

Network and Emulation Lab (NEL)
- Evaluate communication protocols over different network topologies
- Heterogeneous builds provides flexibility to experimenters
- Virtual Machines and GPU Parallel Computing
- Segregated Internal and DMZ Networks, Connections to Protocol Lab
- Software & Services: NS3, OPNET, OS Patch Mirror, NTP, svn, git, cvs, etc
- Current Use: Software Development, Network Simulations, Test Bed
 - Channel Emulator, DTN / DTNBone, FAA NAS Simulations, CUDA LDPC

Multi-Node/Multi-Hop, Free-Space Optical DTN Testbed
- Investigate the performance of DTN in a Mars-to-Earth communication scenario.
- Emulate direct-to-earth links to the three Deep Space Network sites using both software and free-space optical transceivers
- Future Use: Development of new optical modulation schemes
- Software: LTP, ION 3.0.1, STK

Protocol Lab
- Develop and test new and upcoming communication protocols
- Support partnerships with other Networking Assets
- DOE Advanced Networking Initiative Lab
 - Ohio University
 - Mobile IPv4 and IPv6 Networking; Network Mobility (NEMO), Sensorweb
 - Saratoga Protocol testing and development
 - VMOC - Virtual Mission Operations Center
Network and Architecture Labs Facilities

Secure Communication Lab
- Physically secured environment
- Suitable for work on projects requiring a clearance
- Test, evaluate, and engineer communication setups for operational systems
- Current efforts with Department of Homeland Security (DHS)
- Wireless and cellular networking
- Emulation of air-to-ground communication systems

- Study mobile extensions to airport surface communication systems
- WiMAX (IEEE 802.16e) evaluation and validation
- Wireless surveillance radar testing
- Aeronautical Mobile Airport Communications System (AeroMACS)
- Research mobile and fixed applications of AeroMACS
- Air-Ground validation testing using specially equipped 737-700 aircraft

UAS Control and Communication Lab
- New communication methods for Unmanned Aircraft Systems (UAS)
- Aircraft and Ground Radio Development
- Simulations of UAV in the National Airspace System (NAS)
- Evaluating proper security protocols for end-to-end communications
- Test equipment build-up area including ruggedized aircraft racks
- Permission to perform tests at different airports nationwide
- Burke, Snyder Field, Cedar Rapids, ...