NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Mars Sample Return Using Commercial Capabilities: Mission Architecture OverviewMars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. This paper presents an overview of a feasibility study for a MSR mission. The objective of the study was to determine whether emerging commercial capabilities can be used to reduce the number of mission systems and launches required to return the samples, with the goal of reducing mission cost. The major element required for the MSR mission are described and include an integration of the emerging commercial capabilities with small spacecraft design techniques; new utilizations of traditional aerospace technologies; and recent technological developments. We report the feasibility of a complete and closed MSR mission design using the following scenario that covers three synodic launch opportunities, beginning with the 2022 opportunity: A Falcon Heavy injects a SpaceX Red Dragon capsule and trunk onto a Trans Mars Injection (TMI) trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV); an Earth Return Vehicle (ERV); and hardware to transfer a sample collected in a previously landed rover mission to the ERV. The Red Dragon descends to land on the surface of Mars using Supersonic Retro Propulsion (SRP). After previously collected samples are transferred to the ERV, the single-stage MAV launches the ERV from the surface of Mars to a Mars phasing orbit. The MAV uses a storable liquid, pump fed bi-propellant propulsion system. After a brief phasing period, the ERV, which also uses a storable bi-propellant system, performs a Trans Earth Injection (TEI) burn. Once near Earth the ERV performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit (LTO0 - an Earth orbit, at lunar distance. A later mission, using a Dragon and launched by a Falcon Heavy, performs a rendezvous with the ERV in the lunar trailing orbit, retrieves the sample container and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft, makes a controlled Earth re-entry preventing any unintended release of pristine Martian materials into the Earth's biosphere. Other capsule type vehicles and associated launchers may be applicable. The analysis methods employed standard and specialized aerospace engineering tools. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships (MERs). The architecture was iterated until overall mission convergence was achieved on at least one path. Subsystems analyzed in this study include support structures, power system, nose fairing, thermal insulation, actuation devices, MAV exhaust venting, and GN&C. Best practice application of loads, mass growth contingencies, and resource margins were used. For Falcon Heavy capabilities and Dragon subsystems we utilized publically available data from SpaceX; published analyses from other sources; as well as our own engineering and aerodynamic estimates. Earth Launch mass is under 11 mt, which is within the estimated capability of a Falcon Heavy, with margin. Total entry masses between 7 and 10 mt were considered with closure occurring between 9 and 10 mt. Propellant mass fractions for each major phase of the EDL - Entry, Terminal Descent, and Hazard Avoidance - have been derived. An assessment of the entry conditions on the thermal protection system (TPS), currently in use for Dragon missions, has been made. And shows no significant stressors. A useful mass of 2.0 mt is provided and includes mass growth allowances for the MAV, the ERV, and mission unique equipment. We also report on alternate propellant options for the MAV and options for the ERV, including propulsion systems; crewed versus robotic retrieval mission; as well as direct Earth entry. International Planetary Protection Policies as well as verifiable means of compliance will have a large impact on any MSR mission design. We identify areas within our architecture where such impacts occur. This work shows that emerging commercial capabilities can be used to effectively integrated into a mission to achieve an important planetary science objective.
Document ID
20140006933
Acquisition Source
Ames Research Center
Document Type
Conference Paper
Authors
Gonzales, Andrew A.
(NASA Ames Research Center Moffett Field, CA United States)
Stoker, Carol R.
(NASA Ames Research Center Moffett Field, CA United States)
Lemke, Lawrence G.
(NASA Ames Research Center Moffett Field, CA United States)
Faber, Nicholas T.
(Stinger Ghaffarian Technologies, Inc. (SGT, Inc.) Greenbelt, MD, United States)
Race, Margaret S.
(Search for Extraterrestrial Intelligence Inst. Mountain View, CA, United States)
Date Acquired
June 9, 2014
Publication Date
October 30, 2013
Subject Category
Lunar And Planetary Science And Exploration
Report/Patent Number
ARC-E-DAA-TN11820
Meeting Information
Meeting: 2014 IEEE Aerospace Conference
Location: Big Sky, MT
Country: United States
Start Date: March 1, 2014
End Date: March 8, 2014
Sponsors: Institute of Electrical and Electronics Engineers
Funding Number(s)
CONTRACT_GRANT: NNA08CG83C
CONTRACT_GRANT: SAA2401923
Distribution Limits
Public
Copyright
Public Use Permitted.
Keywords
Mars Sample Return
Red Dragon
Commercial
No Preview Available