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Abstract—Exascale computing systems are soon to emerge,
which will pose great challenges on the huge gap between
computing and I/O performance. Many large-scale scientific
applications play an important role in our daily life. The huge
amounts of data generated by such applications require highly
parallel and efficient I/O management policies. In this paper, we
adopt a mission-critical scientific application, GEOS-5, as a case
to profile and analyze the communication and I/O issues that
are preventing applications from fully utilizing the underlying
parallel storage systems. Through in-detail architectural and
experimental characterization, we observe that current legacy
I/O schemes incur significant network communication overheads
and are unable to fully parallelize the data access, thus degrading
applications’ I/O performance and scalability. To address these
inefficiencies, we redesign its I/O framework along with a
set of parallel I/O techniques to achieve high scalability and
performance. Evaluation results on the NASA discover cluster
show that our optimization of GEOS-5 with ADIOS has led to
significant performance improvements compared to the original
GEOS-5 implementation.

I. INTRODUCTION

Scientific applications are playing a critical role in im-
proving our daily life. They are designed to solve pressing
scientific challenges, including designing new energy-efficient
sources [2] and modeling the earth system [4]. To boost
the productivity of scientific applications, High-Performance
Computing (HPC) community has built many supercomput-
ers [7] to provide unprecedented computation power over the
past decade. Meanwhile, computer scientists are also ardu-
ously improving parallel file systems [11, 23] and I/O tech-
niques [19, 20] to bridge the gap between fast processors and
slow storage systems. However, despite the rapid evolution of
HPC infrastructures, the development of scientific applications
dramatically lags behind in leveraging the capabilities of the
underlying systems, especially the superior I/O performance.
This paper seeks to examine and characterize the communi-

cation and I/O issues that prevent current scientific applications
from fully exploiting the I/O bandwidth provided by under-
lying parallel file systems. Based on our detailed analysis,
we propose a new framework for scientific applications to
support a rich set of parallel I/O techniques. Among different

applications, we select the Goddard Earth Observing System
model, Version 5, (GEOS-5) from NASA [4] as a repre-
sentative case. GEOS-5 is a large-scale scientific application
designed for grand missions such as climate modeling, weather
broadcasting and air-temperature simulation. Built on top of
Earth System Modeling Framework (ESMF) [13] and MAPL
library [25], GEOS-5 incorporates a system of models to
conduct NASA’s earth science research, such as observing
Earth systems, and climate and weather prediction.
GEOS-5 contains various communication and I/O patterns

observed in many applications for check-pointing and writing
output. Data are organized in the form of either 2 or 3
dimensional variables. In many cases, multiple variables are
arranged in the same group, called a bundle. A single variable
is a composition of a number of 2-D planes, each of which
is evenly partitioned among all the processes in the same ap-
plication. Although the computation can be fully parallelized,
our characterization identifies three inefficient communication
and I/O patterns in the current design. First, for each plane of
data, a process has to be elected as the plane root to gather
all the data from all processes in the plane, thus causing a
single point of contention. Second, only one process, called
the bundle root, is responsible for collecting data from all
the plane roots and writing the entire bundle to the storage
system. This behavior essentially forces all the processes to
wait until the bundle root finishes I/O, resulting in not only an
I/O bottleneck but also a severe global synchronization barrier.
Third, GEOS-5, like many legacy scientific applications, is
unable to leverage state-of-the-art parallel I/O techniques due
to rigid framework constraints, and continue using serial I/O
interfaces, such as serial NetCDF (Network Common Data
Form) [5].
To address the above inefficiencies, we redesign the com-

munication and I/O framework in this GEOS-5 application, so
that the new framework can allow application to exploit the
performance advantages provided by a rich set of parallel I/O
techniques. However, our experimental evaluation shows that
simply using parallel I/O tools such as PnetCDF [16], cannot
effectively enable application to scale to a large number of



processes due to metadata synchronization overhead. On the
other hand, using another parallel I/O library, called ADIOS
(The Adaptable IO System) [19], can improve the I/O perfor-
mance with the trade-off that it may sacrifice the consistency
induced by delayed inter-process written synchronization and
complicate the post processing of output files.
To summarize, we have made following three research

contributions in this work:

• We conduct a comprehensive analysis of a climate sci-
entific application, GEOS-5, and identify several per-
formance issues with GEOS-5 communication and I/O
patterns.

• We design a new parallel framework in GEOS-5 for it to
leverage a variety of parallel I/O techniques.

• We have employed PnetCDF and ADIOS for alternative
I/O solutions for GEOS-5 and evaluated their perfor-
mance. Our evaluation demonstrates that our optimization
with ADIOS can significantly improve the I/O perfor-
mance of GEOS-5.

The rest of this paper is organized as follows. Section II
presents an overview of related work. Section III characterizes
the communication and I/O patterns in existing scientific ap-
plication, GEOS-5. Section IV introduces our new framework
for scientific application to support a variety of parallel I/O
techniques. Section V explores the evaluation results in detail.
Section VI reviews our contribution and plans for future
improvement.

II. RELATED WORK

There is a large body of research literature on improving
the I/O performance of scientific applications on large-scale
supercomputing systems. Many I/O techniques have been
designed to exploit the best I/O performance from underlying
file systems. These include NetCDF-4 [30], HDF-5 [26, 20],
PnetCDF [16] and ADIOS [1]. Built on top of these tech-
niques, more efforts have been taken to study optimizations
such as data buffering [17], file striping [34], subfiling [9, 10],
staging [8] and data reorganization for multidimensional data
structure [22, 24, 27, 28, 29]. Some of the techniques have
been adopted into various I/O middleware libraries.
There is also a rich set of literatures on the performance

characterization of HPC systems, spanning a wide variety of
aspects such as inter-process communication [31], interconnect
technologies, parallel file systems, reading patterns[18] and
power management. Many studies are closely related to ours.
[12, 14, 32, 33] reported scaling trends of the performance
for various I/O patterns on Cray XT platforms. [15] described
the challenges to improve the I/O performance and scalability
on IBM Blue Gene/P systems. [21] characterized the I/O
performance of NASA applications on Pleiades. Our work
is different from the aforementioned studies. We focus on a
climate application GEOS-5 that has a communication and I/O
pattern representative of various climate and earth modeling
applications. For this pattern, we introduce an extensible
parallel framework that can employ different parallel I/O

techniques such as PnetCDF and ADIOS and optimize the
I/O performance of climate application.

III. ANALYSIS OF GEOS-5 COMMUNICATION AND I/O
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Fig. 1: Overview of GEOS-5 Communication and I/O

In this section, we first characterize the communication and
I/O patterns in GEOS-5, and then examine their impacts on
the application performance. The profiling results suggest that
it is important to explore an alternative design for the data
aggregation and storage for GEOS-5.

A. Current Data Aggregation and I/O in GEOS-5

GEOS-5 is developed by NASA to simulate climate changes
over various temporal granularities, ranging from hours to
multiple centuries. Like many legacy scientific applications,
GEOS-5 adopts the serial version of NetCDF-4 I/O library [5]
for managing its simulation data.
Data variables that describe climate systems are organized

as bundles, Each bundle represents a physics model such
as moisture and turbulence. It contains a varied mixture of
many variables. Each variable has its data organized as a
multidimensional dataset, e.g., a 3-D variable transposing
internally into latitude, longitude, and elevation. To describe
different aspects of the model, multiple 2-D or 3-D variables
of state physics are defined, such as cloud condensates and
precipitation.
GEOS-5 applies two-dimensional domain decomposition to

all variables among parallel processes. 2-D variables have only
one level of depth, naturally forming a 2D plane. 3-D variables
are organized as multiple 2D planes. The number of 2-D planes
is equal to the depth of a 3-D variable. As shown in Fig. 1,
the bundle contains two 2-D variables - var1 and var3 and one
3-D variable - var2, thus forming a four-layer tube. Each 2-D
plane of this bundle is equally divided among four processes
so that all four processes can perform simulation in parallel.
At the end of a timestamp, these state variables are writ-

ten to the underlying file system as history data for future
analysis (the real production run lasts for tens or hundreds of
timestamps). For maintaining the integrity of the model, all
state variables that belong to the same model are written into
the same file, called a bundle file. As mentioned earlier, each
bundle file is stored using the netcdf format [5] popular for
climatologists.



GEOS-5 currently adopts a hierarchical scheme for collect-
ing data variables and writing them into a bundle file. As
shown in Fig. 1, at the first step, each plane designates a
different process as the plane root to gather the plane data
from all the other processes. Upon the completion of gathering
the planar data, one process called bundle root is elected to
collect the aggregated data from the plane roots. When there
are multiple bundles, several bundle roots will aggregate data
in parallel from the 2-D planes that belong to their own bundle.
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Fig. 2: I/O Scalability of Original GEOS-5
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Fig. 3: Time Dissection of Non-blocking MPI Communication
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Fig. 4: Time Dissection for Collecting and Storing Bundles

B. Issues with the Existing Approach

While the existing implementation organizes and stores
data variables as bundle files in a convenient format for
climatologists, the approach described above faces a number
of critical issues for scalable performance.

First, it lacks scalability. With the increase of the number
of processes and planes, both plane roots and bundle roots can
quickly become points of contention, resulting in communi-
cation bottleneck. As demonstrated in Fig. 2, the application
stops scaling when the number of processes increases from 256
to 512 and 960. Although non-blockingMPI (Message Passing
Interface) functions are designed to facilitate the overlapping
of communication and computation, in current GEOS-5, larger
number of processes leads to longer MPI Wait time as shown
in Fig. 3. Thus simply using non-blocking communication
is unable to improve the scalability of the system. Second,
increasing the data size of planes can overwhelm the memory
capacity of root processes and saturate the network bandwidth
of bundle roots, which can be detrimental to the system. Third,
such approach leads to a global synchronization barrier among
all the processes, since no process can proceed until the bundle
root finishes storing all the plane data to the file system.
Unfortunately, this point-to-point data transfer between bundle
root and I/O server can be very time-consuming, leading to
prolonged system running time.

C. Performance Dissection of Communication and I/O

To further quantify the communication and I/O time spent
on storing history data, we dissect the entire process of
collecting and writing 7 bundles in one timestamp. Fig. 4
shows the results of time dissection. Moist and Tend are the
two largest bundles with 1201 and 1152 planes, respectively.
Correspondingly, 55.9% and 54.3% of the time, respectively
for Moist and Tend, are spent in collecting the plane data by
plane roots. On the other hand, although bundle Bud has the
fewest number of planes (40), 96.7% of its I/O time is spent
on communication between bundle root and plane roots. This
is because the plane roots for Bud also play roles as working
processes for other bundles. This delays the progress of plane
data collection for the bundle Bud. In addition, on average,
the I/O time for writing the bundle into the file system only
consumes about 27% of total time of writing the history data.
Gathering data consumes a significant portion of I/O time

for the history data as shown in Fig. 4. Such implementation
limits the scalability and is incapable of supporting large
datasets. Many parallel I/O techniques are viable to address
this issue; however, the hierarchical I/O scheme depicted in
Fig. 1 is unable to leverage these techniques. Therefore, it is
critical to overhaul the architecture of scientific application so
that it can efficiently run on large-scale cluster with hundreds
of thousands of processing cores.

IV. AN EXTENSIBLE PARALLEL I/O FRAMEWORK

To overcome the limitations of existing design, especially
to improve the performance at large scale, a new framework
that can support parallel I/O is imperative. One alternative
approach to enable parallel I/O is to have all the participating
processes write their own output independently. However,
such approach can generate a large number of small files,
making it extremely difficult, if not impossible, for post-
processing software, such as visualization tool, to analyze the



simulation results. In addition, many parallel file systems, such
as GPFS, provide poor performance on managing small files
due to high metadata overhead. Therefore, in this work, we
take another approach to designing a generalized framework
that can leverage a rich set of state-of-the-art parallel I/O
techniques to eliminate the data gathering bottleneck in the
original system, thereby accelerating the output of simulation
data. Fig. 5 illustrates the new framework. Different from
original design in which root processes need to gather either
plane data or bundle data before writing the output into the
file system, our new framework eliminates such limitation by
enabling all the participating processes to write their own data
into a shared file in the parallel file system.
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Fig. 5: Parallel I/O Based System Architecture

A. A Generalized and Portable Architecture

Different platforms have been optimized for different file
formats. For example, many laboratories have meticulously
tuned PVFS [6] to efficiently support NetCDF format. There-
fore, to provide high portability across different platforms, we
redesign the communication and I/O framework of GEOS-5
as shown in Fig 5 to support three parallel I/O techniques,
including parallel NetCDF, NetCDF-4, and ADIOS. Despite
the striking differences among these techniques, our new
MAPL library and the ESMF framework together can hide
such complexities and provide a set of uniform interfaces
for upper layer MPI processes, who perform equivalently
to conduct basic file operations, such as open, write, and
close, etc. Within this design, each process can communicate
with available I/O servers of file system via I/O middleware
independently to transfer data. As a result, when data size
is large, it can efficiently utilize the aggregated bandwidth
to accelerate data transfers. Most importantly, such design
eliminates the scalability bottleneck caused by plane roots and
bundle roots described in section III. In the following sections,
we provide a detailed description about how different scientific
file formats are supported in the new framework.

B. Leveraging Parallel NetCDF

NetCDF is one of the most widely adopted formats used by
many scientific applications. Its file structure contains a file
header and multidimensional data arrays. File header includes
metadata that describes the dimensions, attributes, and variable

IDs. Data arrays store the concrete variable values, which can
be either fixed-size or varied-size. Built on top of MPI-IO,
parallel NetCDF (PnetCDF) [16] overcomes the inefficiency
within the serial NetCDF [5] and provides parallel semantics
to operate shared files in the file system.
Our new framework strives to leverage the strength of

PnetCDF. Each MPI process performs computation on a chunk
of plane data (as described in section III). At the end of
each timestamp, instead of sending the data to the roots,
each process directly writes the data into the shared NetCDF
file through specifying the offset to the starting point of
the data array. The starting point of the variable array is
determined at the variable defining phase, which is conducted
during the file open phase. During the data writing, we adopt
collective I/O methods provided by PnetCDF in the current
design. This means many I/O requests for non-contiguous
portions of a file are merged together by either I/O servers
or working processes before being processed. Such approach
significantly reduces the number of I/O requests that need to be
processed by the file system, thus improving the performance.
At the file open and close phases, NetCDF metadata, such as
dimension definition, variable attributes and lengths, needs to
be synchronized among all of the participating processes in the
group. To achieve this, one process is elected as the leader of
the group to take charge of broadcasting the changes whenever
metadata is modified. However, our evaluation results show
that maintaining strong metadata consistency can cause high
overhead when doing small bundle operations.

C. Integration of ADIOS

In order to leverage the asynchronous I/O of ADIOS to
improve GEOS-5’s performance, we integrate ADIOS into
GEOS-5 as an ESMF component. ADIOS is able to provide
the flexibility of switching back-end I/O methods at ease, such
as the universal POSIX and MPI-IO methods. Meanwhile,
ADIOS provides the easy-to-use plug-in mechanism to add
new file system or platform-specific I/O methods for optimal
performance, such as MPI-Lustre.
Along with the integration of ADIOS, we use the BP file

format [19] for processes to write data to a shared file. BP is a
self-describing and metadata rich file format that consists of a
number of process groups (each process group maintains data
for one individual process) and a footer containing the file’s
metadata and index information. It can be easily transformed
into other scientific file formats, e.g., HDF5 and NetCDF.
In contrast to the current implementation that stores each

bundle’s data into a separate file at each time step, our ADIOS
implementation dumps all bundle data into a single file at
each time step, which greatly reduces the number of files
created. At each time step, every process writes its portion
of bundle data into a single shared file image. Instead of
immediately writing a sub-plane at a time, the ADIOS method
buffers all the variable data for different bundles in memory
and asynchronously writes out the buffered data when buffer
is full. Compared to the original NetCDF I/O, ADIOS can
save file opening/closing overheads significantly and increase



the possibility of locally aggregating small data portions for
reduced number of random disk accesses. In addition, the non-
contiguous data layout of ADIOS format also contributes to
the performance improvement. As no inter-process commu-
nication for aggregating data is needed in ADIOS I/O, the
communication and synchronization overheads can be saved
thus reducing the overall I/O time significantly.

V. EXPERIMENTAL EVALUATION

In this section, we conduct a systematic evaluation of our
parallel I/O based framework with PnetCDF and ADIOS,
respectively. All experiments are performed five times and
the average is presented in the paper. Our experiments are
carried out on the Discover cluster [3] at the NASA Goddard
Space Flight Center. Discover is one of the major computing
platforms in NASA. It is equipped with 128 compute nodes,
each of which contains two 6-core 2.8GB Intel Xeon CPUs
and 24 GB memory. The compute nodes are connected with
a 5PB GPFS parallel storage system via InfiniBand.

A. Performance with PnetCDF
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Fig. 6: Comparison between Serial NetCDF and PnetCDF
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Fig. 7: Time dissection of CFIO and PnetCDF

We begin our evaluation through assessing the performance
when PnetCDF is used. In this experiment, we measure the
I/O time via using a single bundle Moist whose size is 1GB.
Total number of timestamps is 10 so that the application
outputs bundle results for 10 times. Meanwhile, we increase
the number of processes from 32 to 960. Fig. 6 shows the
evaluation results. However, we observe that compared to the
original design called CFIO, although using PnetCDF can
efficiently reduce the I/O time by up to 36.9% when the
number of processes is less than 128, PnetCDF fails to provide
improvement when the number of processes increases beyond
256, and unexpectedly degrade the performance by as much
as 110% when the number reaches 960.
To investigate the cause, we dissect the I/O time. We

measure the time consumed by file creation, file write and
close wait, respectively. As shown in Fig. 7, within the given
experimental configuration, the original design constantly in-
curs negligible file creation but high close wait overheads,
while PnetCDF incurs much higher file creation and drastically
increases close wait overheads for maintaining the consistency
of metadata and aggregating data variables. In addition, the
file write time of both the original design and PnetCDF I/O
decreases with an increasing number of processes because
of higher aggregated bandwidth. Though PnetCDF achieves
several times higher write bandwidth than CFIO, its perfor-
mance degrades as the total process count increases, because
the total I/O time has been dominated by the overheads of file
creation and close wait at large-scale for small bundles. For
example, when the number of processes reaches 960, the two
overheads cost almost 99% of total I/O time when PnetCDF
is used. Note that PnetCDF incurs much higher file create
and close overheads due to the metadata synchronization and
aggregation of variable data so that the NetCDF format can
be strictly consistent all the time. As a summary, these results
explain why PnetCDF fails to outperform the original serial
CFIO at scale. They also demonstrate that the mitigation of
the overhead caused by file creation and close wait is critical
to the successful adoption of any parallel I/O technique into
scientific applications.

B. Performance with ADIOS
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Fig. 8: Comparison between CFIO and ADIOS

To evaluate the performance of GEOS-5 with ADIOS, we
select two ADIOS methods, MPI and POSIX, for writing
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Fig. 9: Time Dissection of ADIOS-MPI

GEOS-5 bundle files. Fig. 8 and 9 show the results of
evaluation, in which we use 7 bundles and 30 timestamps and
increase the number of processes from 32 to 960. As shown
in Fig. 8, compared to the original design, using ADIOS with
MPI significantly reduces the I/O time, up to 58.2% when
the number of processes is 960. More importantly, ADIOS
with MPI shows efficient scalability for a large number of
processes (from 256 to 960). On the contrary, although ADIOS
with POSIX shows effective improvement over the original
design in terms of I/O time reduction, it stop scaling when
the number of process increases from 512 to 960 due to
consistency semantics rooted in POSIX interfaces.
Fig. 9 shows the time dissection of using ADIOS-MPI.

Similar to the approach used in section V-A, we analyze
the time spent on open, write, and close, respectively. As
shown in the figure, ADIOS incurs almost zero overhead when
conducting file open, and negligible overhead for file close.
This is because the file open call returns immediately with the
use of open-on-write. And when writing out the data, buffered
data is frequently flushed to the underlying file system, thus
causing little waiting time when file is being closed. In
addition, ADIOS with MPI shows scalable file writing with
an increasing number of processes, decreasing from 90%
of I/O time to 56% of I/O time. This is because of the
higher aggregated bandwidth achieved with a large number of
processes. Compared with PnetCDF, using ADIOS efficiently
mitigates the overhead of maintaining the metadata of shared
file, thus achieving better scalability and performance at large-
scale.

VI. CONCLUSIONS

In this work, we target at identifying and addressing in-
fluential factors that can hinder current scientific applications
from achieving efficient I/O. By adopting the GEOS-5 climate
modeling application as our case study, we analyze the typical
communication and I/O patterns in representative scientific
applications. And we discover that many legacy scientific
applications employ similar hierarchical network aggregation
to collect data portions for multi-dimensional variables from
all processes and then dump the aggregated data into persistent
storage. Through comprehensive measurements on the NASA

discover cluster, we quantitatively profile and dissect the
network communication and I/O costs by such I/O schemes.
In order to address the drawbacks of single point of network
contention and under-parallelized I/O patterns, we modify the
current I/O framework of GEOS-5, enabling the applications
to take advantage of state-of-art parallel I/O techniques like
PnetCDF and ADIOS. Experimental results demonstrate that
the integrated parallel I/O techniques supported by our I/O
framework can improve the application I/O time at various
scales. This performance improvement come from the elimina-
tion of huge amounts of network aggregation and significantly
promoted I/O concurrency.
In the future, we plan to study asynchronous I/O schemes

and efficient burst buffering techniques for further I/O perfor-
mance improvements of scientific applications.
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