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Transition research under NASA’s Aeronautical Sciences Project seeks to develop a validated set 

of variable fidelity prediction tools with known strengths and limitations, so as to enable 

“sufficiently” accurate transition prediction and practical transition control for future vehicle 

concepts.  This paper builds upon prior effort targeting the laminar breakdown mechanisms 

associated with stationary crossflow instability over a swept-wing configuration relevant to subsonic 

aircraft with laminar flow technology. Specifically, transition via secondary instability of traveling 
crossflow modes is investigated as an alternate scenario for transition.  Results show that, for the 

parameter range investigated herein, secondary instability of traveling crossflow modes becomes 

insignificant in relation to the secondary instability of the stationary modes when the relative initial 

amplitudes of the traveling crossflow instability are lower than those of the stationary modes by 

approximately two orders of magnitudes or more.  Linear growth predictions based on the secondary 

instability theory are found to agree well with those based on PSE and DNS, with the most significant 

discrepancies being limited to spatial regions of relatively weak secondary growth, i.e., regions where 

the primary disturbance amplitudes are smaller in comparison to its peak amplitude.  Nonlinear 

effects on secondary instability evolution is also investigated and found to be initially stabilizing, 

prior to breakdown. 

Nomenclature 

A =  amplitude of crossflow instability mode or secondary instability mode at given chordwise location 

       defined as ratio of chordwise perturbation velocity to freestream velocity 

Ainit =    initial amplitude, i.e., amplitude at location where initial perturbation is imposed in computation 

AoA = angle of attack 
c =    wing chord length measured in direction perpendicular to leading edge 

f =    frequency of instability oscillations 

M =    freestream Mach number 

m =    Fourier index of frequency mode 

N =    logarithmic amplitude ratio, i.e., N-factor of linear crossflow instability or secondary instability 

n =    Fourier index of spanwise mode 

Rec =    Reynolds number based on streamwise chord length 

t =    time 

U∞ =    freestream velocity 
u =    chordwise perturbation velocity 

x =    chordwise coordinate in direction perpendicular to leading edge 

y =    wall-normal coordinate 
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z =    spanwise coordinate in direction parallel to leading edge 

λz =    spanwise wavelength 
 

LSIT =    linear secondary instability theory 

PSE = parabolized stability equations 

NPSE =    nonlinear parabolized stability equations 

DNS =    direct numerical simulations 

TS =    Tollmien-Schlichting 
LASTRAC =    Langley Stability and Transition Analysis Codes 

 

 

I.  Introduction 

The economic and environmental benefits of laminar flow technology via reduced fuel burn of subsonic and 

supersonic aircraft cannot be realized without minimizing the uncertainty in drag prediction in general and transition 

prediction in particular. Transition research under NASA’s Aeronautical Sciences Project seeks to develop a 

validated set of variable fidelity prediction tools with known strengths and limitations, so as to enable sufficiently 

accurate transition prediction and practical transition control for future vehicle concepts.  The purpose of the present 
research is to investigate transition mechanisms involving the breakdown of traveling crossflow vortices, which 

have received less attention than their stationary counterpart. 

 
In general, a swept wing boundary layer can be susceptible to various types of primary instabilities such as 

attachment line instability,1 stationary and traveling crossflow modes, and Tollmien-Schlichting (TS) waves.  

Regardless of which mode dominates the primary amplification stage, the other modes could play a role during the 

nonlinear stage and hence, influence the onset of transition.  Although, in cases of practical interest, the breakdown 

of stationary crossflow vortices appears to be the more likely route to transition,2-6 other scenarios involving a more 

significant role for the traveling crossflow instability7-10 may become relevant under less common circumstances.  
These may happen either when the initial amplitudes of traveling modes become sufficiently large as a result of 

higher amplitude freestream disturbances or when the surface has been carefully polished to minimize the initial 

amplitudes of stationary crossflow modes. Wassermann and Klocker8 studied the nonlinear saturation of traveling 

crossflow vortices and the associated developments of secondary instability for a flat plate configuration subject to a 

favorable pressure gradient. Among their findings are that the finite amplitude traveling crossflow vortices form 

stronger internal shear layers which are much closer to the wall than their stationary counterpart and that the 

secondary instability is dominated by the Z-mode type, a terminology first introduced in Ref. 2. Choudhari et al.9 

used NPSE and LSIT to analyze the traveling crossflow vortices and their secondary instability on the same 

configuration as in the present paper and found similar behavior for the finite amplitude crossflow vortices, but also 

picked up the Y-mode2 secondary instability, which becomes dominant when the amplitude of the primary crossflow 

vortex is large. Down and White10 studied the effect of freestream turbulence on the development of crossflow 
disturbances in a recent experiment and showed that increasing freestream turbulent levels promote the traveling 

crossflow vortices. Their paper also included a thorough review of the previous work on this topic. 

 

In a practical setting, the investigation of nonlinear breakdown scenarios associated with a mixed evolution of 

stationary and traveling crossflow modes is perhaps more important.  However, as a prelude to the more complex 

scenario, the secondary instability of traveling crossflow modes alone is studied herein to obtain useful insights 

regarding their breakdown.  Results presented in a previous paper9 showed that the traveling crossflow modes 

saturate at much lower amplitudes in comparison to the stationary modes and, yet, the growth of secondary 

instabilities of the traveling crossflow vortices can be at least as strong as the secondary modes of the stationary 

crossflow modes.  The work presented herein extends that effort to address the important issue of what threshold 

initial amplitudes are required for the traveling vortices to sustain a significant amplification of secondary 

instabilities. Additionally, the predictions based on the secondary instability theory are compared with direct 
numerical simulations (DNS) with controlled initial disturbances.  

 

The paper is organized as follows.  Section II provides a brief background on the secondary instability theory for 

traveling crossflow instabilities in a swept wing boundary layer.  For a more complete description of underlying 

methodology, the reader is referred to Ref. 11.  The flow configuration of interest in this paper is outlined in Section 

III, along with the computational codes used in the analysis.  The computational results are discussed in Section IV, 

followed by concluding remarks in Section V.  
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II.   Secondary Instability 
 Secondary instability is an instability mechanism of the primary instability. Examples of primary instabilities in 

swept wing boundary layers include Tollmien-Schlichting waves, Görtler vortices, and crossflow vortices. The 

initial growth of a primary instability of infinitesimal amplitude is usually exponential and, as the amplitude 
increases downstream, nonlinear effects often lead to a quasi-saturation behavior.  In strictly parallel flows such as a 

plane Poiseuille flow, the primary amplitude reaches a finite constant value. In many other cases such as external 

boundary-layer flows, however, the primary wave amplitude continues to evolve slowly as a result of the slow 

streamwise variations in the base flow.  

 

 The quasi-saturated, finite amplitude primary wave can become susceptible to an instability of its own, namely, 

the secondary instability. Many examples of primary waves are time-independent when viewed in a proper inertial 

frame of reference and are periodic in at least one spatial direction.  Görtler and stationary crossflow vortices are 

time-independent in a fixed frame of reference and are periodic in the spanwise direction in a boundary layer that is 

invariant in the spanwise direction. Traveling crossflow vortices in such boundary layers are also periodic in the 

spanwise direction and appear stationary when the observer travels with the spanwise phase velocity of the vortices.  
 

 A local secondary instability analysis becomes possible when the slowly varying base flow is approximated as 

locally constant along the direction of slow mean flow evolution, because the coefficients of the perturbation 

equation are now locally independent of that direction. The stationary and periodic nature of the primary waves 

greatly facilitates the analysis of secondary instabilities. If the flow field with a saturated primary wave is used as 

the base flow on which an infinitesimal perturbation is introduced, then the resulting linearized equations governing 

the evolution of the perturbation take the form of a set of linear partial differential equations with periodic 

coefficients in one of the directions. For Görtler and crossflow vortices, the periodic direction is along the span of an 

airfoil.  

 

 When the primary instability corresponds to crossflow vortices, the base flow is slowly varying along the vortex 

axis but periodic in the spanwise direction with the same period as the spanwise wavelength of the primary 
crossflow vortex. These two directions are, in general, not orthogonal and the problem is best solved in a non-

orthogonal coordinate system.  The form of the secondary instability equations in a non-orthogonal coordinate 

system was derived in the context of stationary crossflow instability by Li and Choudhari.11 The same framework is 

applied in this paper to perform a spatial secondary instability analysis for traveling crossflow modes. An extra 

complication arising in this case is that the base flow itself is unsteady. To circumvent the issue of temporal 

variations in the base flow, the problem is analyzed in an inertial frame of reference traveling with the spanwise 

phase velocity of the crossflow vortex, which makes the base flow independent of time as described by Malik et al.12   

 

 The system of secondary instability equations is subject to boundary conditions of vanishing perturbation 

quantities at the wall and freestream boundaries. The spanwise boundary conditions are not explicitly specified and 

they come in as part of the admissible solutions. The main difference between a stability equation governing the 
secondary instability and that governing the primary instability is that the coefficients of former are functions of two 

spatial variables instead of just one in the case of the latter. Thus, the resulting eigenvalue problem is also referred to 

as a 2D eigenvalue problem.13 Since the base flow for the secondary instability riding on crossflow vortices is 

periodic in the spanwise direction as discussed above, the coefficients of the secondary instability equations are also 

periodic. Therefore, a class of solutions for the 2D eigenvalue problem is given by the well-known Floquet theory.14   

However, in this paper, we are only interested in those solutions that are periodic in the spanwise direction with the 

same period as that of the base flow.  

 

  

 

III.   Flow Configuration and Analysis Codes 
   The flow configuration employed in the present study corresponds to the laminar flow airfoil TAMU-003T-

75(v.90) described by Belisle et al.15 The 9.3 percent thick, 30-degree swept wing is designed to achieve natural 

laminar flow over approximately 60 and 50 percent of the suction and pressure surfaces, respectively, at the design 

condition of M = 0.75, AoA = 0 deg., and Rec ≈ 17 million.  Here, the non-dimensional parameters M and Rec are 
based on the freestream speed, a streamwise chord length of 12 ft, and a freestream temperature of 390 deg. R, 

corresponding to a flight altitude of 40,000 ft.  Design constraints for the wing included (i) a lift coefficient that is 

typical of subsonic transports, and (ii) a wing thickness distribution that is suitable for a mid-size business jet.  Both 
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Tollmien-Schlichting and crossflow instabilities are sufficiently weak at the design angle of attack, so that natural 

laminar flow should be achievable over a significant portion of the airfoil surface on both suction (0 < x/c < 0.6) and 

pressure (0 < x/c < 0.5) sides without any external means of boundary layer control.  In the present research, we 

focus on the off design condition corresponding to an angle of incidence equal to -1 degree. At this condition, an 

even stronger crossflow instability than the design condition is known to exist along the suction side.15 

 
For the present work, the mean boundary-layer flow over the suction surface of the airfoil is computed with a 

boundary layer solver16 by using the infinite span approximation, in conjunction with the inviscid surface pressure 

distribution derived from an Euler solution under free flight conditions.17 Linear and nonlinear development of the 

instability modes is computed using parabolized stability equations (PSE) as implemented in the Langley Stability 

and Transition Analysis Codes (LASTRAC).18 The growth of high frequency secondary instability modes supported 

by the finite amplitude stationary crossflow vortex is analyzed in a manner similar to the classical linear stability 

analysis of swept wing boundary layers.  Details of the computational methodology employed for linear secondary 

instability analysis (LSIT) may be obtained from Ref. 11, and the essential modifications for the traveling mode case 

are mentioned in Ref. 9 and Section II above.  DNS computations are also carried out for both finite amplitude 

traveling crossflow vortices and their secondary instability. Details of the DNS method used in the analysis can be 

found in Ref. 19 and 20. The main difference between the primary and secondary stability analyses is that the basic 

state for the secondary modes (i.e., the mean boundary layer flow modified by the primary crossflow mode) varies in 
both surface normal and spanwise directions and, hence, the instability characteristics of the secondary modes must 

be analyzed using a planar, partial differential equation based eigenvalue problem, rather than as an ordinary 

differential equation based eigenvalue problem for the classical analysis.  The selection of grid and other aspects of 

the numerical solution were based on extensive experience with similar class of flows2, 9, 11, 21-24 and checks were 

made to ensure that the impact of variations with respect to those choices was negligible.   

 

IV.   Results 

 
      The computational results for the nonlinear development of traveling crossflow vortices and the associated linear 

growths of secondary instabilities are presented in Subsections A and B below. 

 

A.  Nonlinear Evolution of a Traveling Crossflow Mode 

A comparison of the nonlinear amplification characteristics for stationary and traveling crossflow modes with a 

fixed spanwise wavelength of λz = 8 mm was presented in Ref. 9.  That analysis is expanded herein by considering a 
broader range of spanwise wavelengths.  To allow selection of the most relevant frequency-wavenumber 

combinations for these nonlinear calculations, linear N-factor computations for the traveling crossflow instability 

were carried out with linear PSE.  This selection process is based on the same premise as the eN method for 

transition prediction, namely that transition is likely to be caused by the instability mode that first achieves a linear 

amplification ratio corresponding to a specified value of N.   This mode may or may not correspond to the mode that 

achieves the highest overall N-factor over the chord of the airfoil.  Based on the abovementioned criterion, traveling 

crossflow instability modes with spanwise wavelengths of 6, 8 and 10 mm and a frequency of 1,500 Hz were found 

to reach N=10 before most other traveling modes and, hence, were selected for nonlinear analysis in this paper.  For 

λz = 12 mm, the mode with a lower frequency of 1,225 Hz reaches N=10 first; however, its N-factor value of 10 is 
only slightly higher than that of the traveling crossflow mode with a 1,500 Hz mode. Therefore, to enable consistent 

comparisons across different wavelengths, the 1,500 Hz mode is analyzed in this paper even for the λz = 12 mm 
wave.   

 

Figure 1a shows the linear N-factor curves for crossflow instability modes with λz = 8 mm for selected 

frequencies ranging from 0 to 2,250 Hz. As expected, the most amplified traveling mode achieves higher N-factors 
than the stationary mode and, more importantly, the traveling mode with f = 1,500 Hz reaches N = 10 within nearly 

half the distance it takes for the stationary crossflow mode (f = 0) to reach the same N-factor value.  This indicates 

the need to study the breakdown of traveling waves to obtain a more complete picture of crossflow-dominated 

transition, especially when the relative initial amplitudes of the traveling crossflow modes are not sufficiently small 

in comparison with those of the stationary modes. 

 

Figure 1b shows N-factor curves for various spanwise wavelengths at 1,500 Hz; and the λz = 6 mm wave reaches 
an N-factor of 10 before the longer waves, even though the overall maximum N-factor is reached by the 12 mm 

mode.  
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Comparisons between nonlinear developments of traveling and stationary vortices were presented by Choudhari 

et al.9 Since this is an important component of this analysis, showing characteristic differences between the two 

types of crossflow vortices, the essential results are reproduced here. Figure 2a shows comparisons of the nonlinear 

development of stationary and traveling crossflow vortices of the same spanwise wavelength (λz = 8 mm) and the 
same initial amplitude (Ainit = 1×10-5

).  This particular spanwise wave length was chosen because the linear and 

nonlinear PSE computations by Li et al.23 had indicated the crossflow vortex with λz = 8 mm to be one of the most 
likely stationary modes to cause transition. The essential results of Ref. 9 are that the traveling crossflow vortices 

saturate at lower fundamental amplitudes than the stationary vortices, approximately just one half of the saturation 
amplitude of the latter, while the peak mean flow correction amplitudes for both stationary and traveling modes 

reach comparable levels. This comparison between the nonlinear evolution of isolated traveling and stationary 

crossflow disturbances is very similar to that reported by Malik et al.24 for a different airfoil configuration and to 

that by Wassermann and Kloker8 for a flat plate subject to a favorable pressure gradient. Therefore, these findings 

appear to be more general and not restricted to just one specific case. 

 

Modal amplitudes of traveling crossflow vortices of 1,500 Hz analyzed in Ref. 9 are shown in Figure 2b for 

initial amplitudes of 2.5×10-6, 5.0×10-6, 7.5×10-6 and 10-5. Amplitudes of the mean flow correction and the first 

harmonic are also shown for the case of the smallest initial amplitude. The general features of oscillatory behavior 

and decay after saturation as seen earlier in Figure 2a for Ainit = 1×10-5 are present for all initial amplitudes, with 

waves corresponding to higher initial amplitudes exhibiting an earlier quasi-saturation. Figure 2b also indicates that 

traveling crossflow modes with higher initial amplitudes saturate at progressively larger peak amplitudes.   
 

Now the nonlinear analysis is expanded to a range of other wavelengths. Figure 3a shows the nonlinear evolution 

of traveling crossflow vortices with f = 1,500 Hz and λz = 6, 8, 10 and 12 mm, respectively. The number of spanwise 
Fourier modes retained is 50 in the NPSE computations, which is more than necessary to resolve the spanwise 

variations of the crossflow vortex. The initial amplitudes, defined as the chordwise perturbation velocity as a 

fraction of the freestream velocity, for all spanwise wavelengths are held fixed at 10-5. As expected from the results 

of linear computations discussed earlier, the 6 mm wave rises in amplitude first and is followed by waves of 

consecutively larger wavelengths. The highest overall amplitude is reached by the 8 mm wave, and not the 12 mm 

wave corresponding to the highest value of linear N-factor.  Due to nonlinear effects, the 12 mm wave saturates at a 

lower peak amplitude than the 8 mm wave. However, the hierarchy based on peak fundamental mode amplitudes is 

dependent on the initial amplitude of the wave.  In particular, when the initial amplitude is lowered to 2.5×10-7, the 

λz = 10 mm mode has the highest peak amplitude as shown in Figure 3b.  As the initial amplitude is further lowered, 
the nonlinear effects become rather weak; and hence, the 12 mm wave becomes dominant as predicted by the linear 

theory (Figure 3c).   

 

 
The results in Figure 3 also show that, in all cases with a significant effect of nonlinearity (i.e., for sufficiently 

large initial amplitudes), the amplitude of the fundamental mode evolves in an oscillatory manner.  The initial 

evolution up to the first peak is strictly monotonic; and in general, this first peak also represents the global 

maximum of the fundamental mode amplitude.  However, the subsequent evolution of the fundamental amplitude 

displays oscillatory behavior superimposed on a decaying trend.  The oscillations are believed to have been caused 

by the interaction of the fundamental and mean flow correction modes. Figure 3d shows the evolutions of the 

fundamental and mean flow correction modes for the 1,500 Hz, 10 mm traveling wave with initial amplitude of 10-5.  

Their respective oscillations appear to be approximately 90 degrees out of phase. The fundamental mode, of course, 

initially drives up the mean flow correction.  When it becomes sufficiently large, the mean flow correction mode 

modifies the boundary layer in such a way that the fundamental mode is stabilized and its amplitude starts to drop.  

As the mean flow correction mode reaches its peak, the rate of decay of the fundamental mode is approximately the 
largest. Further drop in the fundamental amplitude, in turn, leads to a decrease in the mean flow correction 

amplitude, which causes the fundamental mode to grow again. And this interactive process repeats itself 

downstream. An NPSE computation with only the fundamental and the mean flow correction terms retained 

reproduces exactly the same oscillatory behavior. Additionally, an NPSE computation with one more Fourier mode 

retained, namely the first harmonic, also produces very similar result with some modifications in modal amplitudes 

only, indicating that the first harmonic is not an active player in the interactive process. This confirms that the 

interaction of two modes and these two modes alone is responsible for the oscillations. 
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To help validate the PSE predictions for nonlinear evolution of the primary, traveling crossflow instabilities, 

DNS computations were also carried out for 1,500 Hz modes in the traveling frame of reference discussed in Section 

II. The DNS solutions are based on a spatial grid of size 981×40×278 in the streamwise, spanwise and wall-normal 
directions, respectively. Following Jiang et al.,25 the i-coordinate of the grid is aligned with the constant phase 

surfaces of the traveling crossflow vortex to reduce the number of points required to resolve the wavy structure of 

the mode in the chordwise direction.   To further save on the computational resources, the chordwise extent of the 

domain is restricted by choosing an inflow location at x/c = 0.15, i.e., somewhat farther downstream from the lower 

branch neutral station domain at x/c ≈ 0.05. The linear eigenfunction of the 1,500 Hz traveling mode is imposed at 

the inflow with an initial amplitude that is equivalent to Ainit = 5×10-7.  
 

The DNS results are compared with the NPSE results in Figure 4, where n denotes the harmonic index.  The 
amplitude evolution of the fundamental mode (m = 1) from DNS compares very well with that from NPSE right 

from the beginning of the DNS domain. However, since the NPSE computation is started far upstream of the in-flow 

location of the DNS domain, the modes for base flow correction and harmonics are well settled at the DNS in-flow 

location (x/c = 0.15). This is not the case with DNS results, since only the fundamental mode is imposed at the 

inflow for the DNS computation.  Consequently, the base flow correction and the harmonics of the fundamental 

mode undergo a transient phase downstream of the inflow location. Mode m = 2 has a very short transient region 

and equilibrates to its downstream asymptotic behavior within a short distance from the inflow location.  The base 

flow correction and the second harmonic modes (m = 0 and 3, respectively) settle down next and, after that, the 

comparison between NPSE and DNS results is good. The higher harmonics remain in the transient stage throughout 

the DNS computational domain; however, their amplitudes remain low enough such that they are primarily enslaved 

to the dominant modes up to m = 3 and, hence, do not exert a noticeable influence on the evolution of the latter 
modes.   

 

B. Secondary Instability of traveling crossflow vortex 

 

       In this subsection, the secondary instability of traveling crossflow vortices is analyzed and comparisons among 

of LSIT, NPSE and DNS results are presented. 

  

B.1.  Linear Amplification Characteristics for Primary Waves of Selected Frequency-Wavelength Combinations 

 

The presence of crossflow vortices creates strong localized shear layers within the boundary layer. Secondary 

instability modes riding on crossflow vortices can be classified into two major types:2 secondary modes associated 

with the strong wall-normal shear of the modified basic state are known as Y modes and those associated with a 
strong spanwise shear are known as Z modes. At times, when mean shears in both directions have comparable 

contributions to the energy production mechanisms associated with the secondary instability, the resulting modes 

have a mixed character and, hence, are termed as Y/Z modes.9 The secondary instability of the non-stationary 

crossflow vortex with λz = 8 mm and f = 1,500 Hz was discussed in Ref. 9.  Here, a larger number of cases with 
different primary wave initial amplitudes and wavelengths are analyzed to help characterize the range of initial 

amplitudes below which the secondary instability of traveling crossflow modes becomes relatively insignificant in 

comparison with the secondary instability of stationary crossflow vortices.  

      The comparison of secondary instability growths on stationary and traveling crossflow vortices of the same 

initial amplitude was given in Ref. 9. The main result is reproduced in Figure 5 for an initial primary amplitude of 

10-5. The traveling crossflow vortex is seen to sustain secondary instability N-factors just as large as those for 

stationary waves even though the saturation primary amplitude of the traveling wave is only about one half that of 

the peak amplitude of stationary mode (see Figure 2a). 

The onset of secondary instability is dependent on the primary wave amplitudes exceeding a threshold level that 
depends on both the local mean flow and the disturbance parameters.  To help characterize the threshold amplitudes 

required for significant amplification of secondary instabilities, a parametric study is carried out for secondary 

instability modes for various initial amplitudes of the primary wave. Figure 6a shows the N-factor curves for 

secondary instability modes that first achieve an N-factor of 10 for each initial amplitude of the traveling crossflow 

vortex ranging from Ainit = 1.5×10-7 to 10-5.   The wavelength (λz = 8 mm) and frequency (f = 1,500 Hz) of the 
primary disturbance are the same in each of these cases. At relatively high initial amplitudes (approximately Ainit ≥ 
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5×10-6), the Y mode dominates. For example, for Ainit = 10-5, the peak N-factor reached by the Y mode is 

approximately 1.6 times the maximum N-factor achieved by the Y/Z mode. As the primary amplitude decreases, the 

maximum N-factors for both modes drop as expected. However, the Y-mode peak N-factor decreases faster with 

decreasing primary wave amplitude than the Y/Z-mode N-factor. At primary amplitude of 2.5×10-6, the Y mode is 

approximately 13 and the Z-mode N-factor has already overtaken the former with a peak value of 18. On further 

reduction of primary wave amplitude to 5×10-7, no Y mode is picked up by the secondary instability analysis code, 
indicating that the Y-mode secondary instability has become substantially weaker.  On the other hand, the Y/Z mode 

still reaches a peak N-factor of approximately 10.   

 

The exact thresholds for the initial primary amplitude required for the onset of secondary instability cannot be 

defined without carrying out a systematic and time consuming set of computations over a broad range of primary 

wave amplitudes and streamwise locations. However, the data shown in Figure 6 reveals that the peak N-factor for 

the Y mode has reduced to less than 3.3 for Ainit ≤ 10-6 and the peak N-factor of the Y/Z mode has fallen below 4.2 

for Ainit ≤ 1.5×10-7. The corresponding peak amplitudes of the primary wave are approximately 12% and 7%, 

respectively. Thus, a conservative estimate is that, below these primary wave peak amplitudes, there is no significant 

secondary instability growth for the 8 mm traveling crossflow mode.  For the Y modes shown in Figure 6, the peak 

frequency ranges from 58 to 67.5 kHz, and those for the Y/Z modes from 15 to 20 kHz.   

 
A comparison is given next of the initial amplitudes of stationary and non-stationary crossflow modes required 

to reach N-factor values that are likely to correlate with transition.  For a stationary crossflow mode of λz = 8 mm, 
the computations by Choudhari et al.9 had shown that the initial primary amplitude required for a secondary 

instability mode on a traveling crossflow vortex to reach a given N-factor is much smaller than that required on a 

stationary crossflow vortex. Of course, because of the stronger receptivity mechanisms for stationary crossflow 

vortices,26 the disparity between initial amplitudes of stationary and non-stationary crossflow modes is expected to 

be substantially greater in most low-amplitude environments.  Thus, the next relevant question becomes how much 

smaller the traveling mode amplitudes need to be so that they do not play any significant role during the transition of 

the swept wing boundary layer.  Based on the discussion of the threshold amplitudes in the preceding paragraph, this 

is predicted to happen for the λz = 8 mm traveling mode when its initial amplitude is approximately two orders of 
magnitude lower than the initial amplitude of the stationary crossflow mode.  Of course, this conclusion only holds 

within the limited context of the present study; however, it provides useful guidance regarding the dominant 

mechanism for transition onset. 

 

The secondary instability properties for primary waves of wavelengths other than λz = 8 mm are considered next. 

Recall from Figure 3 for Ainit ≤ 2.5×10-7 that the peak amplitude of 6 mm wave becomes small enough so that it is 
highly unlikely to sustain any significant secondary instability. On the other hand, the longer waves (10 and 12 mm) 
achieve large enough amplitudes to indicate the potential for significant secondary instabilities at farther 

downstream locations than the secondary instability modes of the λz = 8 mm wave.  Therefore, secondary instability 

computations are carried out for the 10 and 12 mm waves for Ainit = 2.5×10-7. The modes that achieve the highest N-
factors in each case are plotted in Figure 6b.  For both wavelengths, strong Y/Z-mode secondary instability growth 

is found. In the case of the 12 mm wave, there is also a strong Y mode (Figure 6b).  However, these Y modes attain 

an N-factor of 10 or greater significantly downstream of the mid-chord location, so that they would not be expected 

to play a role in transition even if the stationary crossflow modes were not a factor. Further reduction of their initial 

amplitudes pushes the large peak amplitudes downstream and hence delay, but not eliminate, the onset of secondary 

instability, as shown in Figure 6c for a primary amplitude of Ainit = 10-7.  However, what can be said about the 

thresholds for secondary instability is that, for primary amplitudes below 2.5×10-7 and 10-7, no N-factor greater than 
3 is reached by any secondary instability mode before x/c = 0.35 and 0.4, respectively.  

 

Figures 7a through 7d show the Y/Z-mode eigenfunctions on primary waves with 1,500 Hz in frequencies and 6, 

8, 10 and 12 mm in spanwise wavelengths at chordwise locations where their respective fundamental amplitudes are 

largest. The primary waves for the 8, 10 and 12 mm cases all have the same initial amplitude of 2.5×10-7. However, 
this amplitude is too small to sustain any secondary instability for the 6 mm primary wave, therefore, an initial 

amplitude of 1×10-5 is used instead for that case. These typical eigenfunction shapes are very similar to those found 
on stationary primary waves.2 
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Figure 8a through 8d show the mean chordwise velocity contours of 1,500 Hz crossflow instability waves in the 

traveling frame for spanwise wavelengths of 6, 8, 10 and 12 mm at the peak amplitude streamwise locations, 

respectively, all with an initial amplitude of 10-5. The shortest wave (6 mm) shows only a hint of the turnover feature 

that is almost ubiquitously present in stationary crossflow vortices, but the structure is not nearly as strong as in the 

latter case.  As the spanwise wavelengths becomes longer, this feature diminishes and is hardly discernible for the 

longest 12 mm wave. This may be attributed to the relatively low saturation amplitude of the traveling crossflow 
vortex as discussed earlier. 

 

 

 

B.2. Comparison of LSIT Predictions with NPSE and DNS 

 

Secondary instability computations using NPSE and DNS are also carried out for comparison with the secondary 

instability theory for the primary mode with λz = 8 mm, f = 1,500 Hz, and Ainit = 5×10-7. Computations are 
performed for a fixed-frequency secondary instability mode with a frequency of 13.5 kHz, which is close to the most 

amplified Y/Z mode in this case.  As discussed before, at the relatively low value of Ainit for the primary crossflow 

vortex, the Y mode of secondary instability is nearly stable, but the Y/Z mode is still strong. Furthermore, in the 

experiments on stationary crossflow vortices,27 the Y mode has been less commonly observed than the secondary 

instability modes associated with spanwise basic state shear.  Therefore, a Y/Z mode is chosen for the DNS analysis.  
The linear eigenfunction of the 13.5 kHz secondary instability mode is imposed at a streamwise location of x/c = 

0.265, i.e., slightly downstream of its neutral point.  The minimum wavelength of this mode in the i-direction of the 

grid in the computational domain is approximately 12.7 mm.  

 

The NPSE18 computations use 50 spanwise Fourier modes and 281 wall-normal points. Based on previous 

experiences,11,23 these are sufficient to resolve all relevant scales up to the transition location. The DNS 

computations use a grid of size 2,184×60×418 points in streamwise, spanwise and wall-normal directions, 
respectively.  An additional set of DNS computations was performed using a grid that was 1.5 times coarser in both 

spanwise and wall-normal directions.  The amplitude evolution based on the coarser grid agreed well with the fine 

grid solution presented here, except for weak streamwise oscillations in the region downstream of the main lobe in 

instability growth rate as a function of x/c. The streamwise resolution of the DNS grid corresponds to a minimum of 

40 points per fundamental wavelength.  

 
Figure 9a shows the amplitude evolutions of the 13.5 kHz Y/Z-mode secondary instability as computed by three 

different methods, namely, LSIT, NPSE and DNS. The comparison of NPSE and DNS results, while not perfect, is 

good.  The LSIT method, however, is found to over-predict the instability growth downstream by a significant 

amount compared to the NPSE and DNS results. The differences that accumulate with distance may be attributed to 

the different degrees of approximations inherent to each of these methods. The LSIT method assumes a quasi-

parallel base flow (i.e., slowly varying laminar boundary layer as well as traveling crossflow amplitude), which 

becomes less accurate when the base flow changes relatively rapidly, e.g., in regions of stronger growth or decay of 

the primary wave. The NPSE method takes into account the non-parallelism of the base flow, but assumes that 

streamwise second derivatives of perturbation amplitudes are negligible due to their slow variation in the streamwise 

direction. Furthermore, for numerical stability, the streamwise first derivative of pressure amplitude is neglected   

(note that the neglected first derivative is that of the slow-varying pressure amplitude, and not that of the overall 

pressure perturbation).18  
 

An equivalent but perhaps more revealing comparison between the LSIT, NPSE and DNS predictions can be 

made by comparing the corresponding growth rates based on the peak chordwise velocity amplitude of the 

secondary instability mode (Figure 9b). In the main region of secondary mode amplification (x/c < 0.37), all three 

predictions are close to each to other. To our knowledge, this result represents the first DNS based validation of 

secondary instability theory for traveling crossflow modes.   The differences between the NPSE and DNS results 

within the above region are somewhat smaller than those relative to the LSIT predictions, except in the 

neighborhood of the peak growth rate location of the secondary mode.  Therefore, the cause for the over-prediction 

of secondary instability growth by the LSIT method in this particular case may be related to the quasi-parallel 

assumption inherent to LSIT.  However, this trend is certainly different from the analogous findings for the 

secondary instability of stationary crossflow modes.9 Furthermore, the effects of a non-parallel basic state also tend 
to be destabilizing in the linear stability analysis of primary waves. Again, in this particular case, at least, an 
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opposite trend appears to hold for the secondary instability evolution.  Figure 9b also shows significant differences 

among the three different predictions for chordwise locations beyond the main region of secondary amplification 

(x/c > 0.37).  The DNS prediction actually falls in between the LSIT and NPSE predictions.   

 

B.3. Weakly Nonlinear Effects on Secondary Mode Amplification  

 
The growth and breakdown of secondary instability eventually lead to turbulence. In this process, as the 

amplitude of the secondary instability becomes progressively larger, its growth rate starts to deviate from that 

predicted by the linear theory due to the onset of nonlinear effects. Figure 10a shows the effect of initial secondary 

wave amplitude on the streamwise amplification of the fundamental secondary instability mode of Y/Z type and f = 

13,500 Hz corresponding to a finite amplitude primary crossflow disturbance with λz = 8 mm and f = 1,500 Hz. The 

initial amplitude of the primary wave is fixed at 5×10-7 while the initial  secondary wave amplitude is varied from 
10-5 to 10-3.   In each case, the secondary wave amplitude is normalized by its initial value, so that the ordinate in 

Figure 10a corresponds to the growth factor relative to the inflow location. For the smallest secondary initial 

amplitude (Ainit = 10-5), the fundamental amplitude remains sufficiently small throughout the computational domain 

such that the instability growth may be considered to be linear. As the initial amplitude is increased, the amplitude 

growth eventually deviates from the linear theory. This occurs near x/c ≈ 0.44 and 0.34 for Ainit = 10-4 and 10-3, 
respectively; and in both cases, the fundamental mode amplitude is approximately 4% at the respective locations. 

The corresponding evolution of the mean wall shear in all three cases is shown in Figure 10b. For larger initial 

amplitudes, the wall shear is higher. For largest initial amplitude, 10-3, the wall shear begins a relatively rapid rise at 

x/c = 0.36, which may be indicative of the onset of transition. 

 
The DNS result for secondary instability at larger initial amplitudes is next compared with the NPSE result along 

with the essentially linear DNS result of a much smaller initial amplitude. Figure 11 shows the amplitude curves for 

the fundamental frequency of the 13.5 kHz Y/Z mode. The amplitudes are normalized with their respective initial 

values so that all curves initially collapse onto each other. As amplitudes increase, the DNS curve with the larger 

initial amplitude starts to deviate from curve representing linear amplification due to nonlinear effects. The result of 

NPSE computation agrees well with the DNS result.  The actual peak amplitude reached during the nonlinear 

evolution is approximately 10%, but no transition is observed before the end of the computational domain. However, 

the comparison confirms that NPSE should produce good results up to at least this amplitude, which should enable 

the NPSE method to be used with confidence in similar cases with much less demand on computational resources 

than DNS. 

 

V.   Concluding Remarks 
This paper extended the previously reported computational studies of swept wing transition due to stationary 

crossflow instability by considering when traveling crossflow modes might dominate the transition process.  As 

discussed in Ref. 9, the traveling crossflow vortices over swept wing boundary layers support secondary instabilities 

in much the same way as the stationary crossflow modes for comparable initial amplitudes of the traveling and 

stationary crossflow vortices. The traveling crossflow vortices saturate at much lower amplitudes than their 

stationary counterparts, approximately half the saturation amplitude for a stationary crossflow vortex. However, the 

growth of secondary instabilities sustained by the finite amplitude traveling crossflow vortices is at least as strong as 

the secondary modes of the stationary crossflow vortices.  

 

The primary traveling crossflow vortex has a higher initial growth rate than the stationary mode, but saturates at 

significantly lower amplitudes. Additionally, the cross-plane velocity contours for the traveling mode case seem to 
lack the strong overturning structure of their stationary counterpart when viewed within an appropriately moving 

coordinate system. Two dominant modes of secondary instability are found for the swept wing configuration 

investigated herein. The Y mode is dominant at large primary wave amplitudes, but its growth rates diminish faster 

than that of the Y/Z mode when the primary amplitude decreases. At smaller primary amplitudes of a λz = 8 mm 
traveling mode, the Y mode of secondary instability disappears all together, leaving a single, strongly amplifying 

Y/Z mode. The critical initial amplitudes enabling the 8 mm primary wave to sustain significant secondary 

amplification (i.e., secondary N-factors in excess of 4) have also been estimated for the swept wing configuration of 

interest. At lower initial amplitudes of the (primary) traveling crossflow modes, the dominant growth of secondary 

instability shifts to primary modes of larger spanwise wavelengths (λz = 10 mm and 12 mm, respectively).  
However, large N-factor values typical of those associated with the onset of transition in low disturbance 

environments are only achieved at far downstream locations, such that transition would appear more likely to occur 
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as a result of stationary crossflow modes when the initial amplitudes of the traveling crossflow modes have reduced 

to these levels.   Transition scenarios associated with the joint development of stationary and traveling crossflow 

modes will be investigated in future work. 

 

DNS computations are carried out for a Y/Z-mode secondary instability of 13.5 kHz riding a 1,500 Hz traveling 

crossflow vortex of 8 mm in spanwise wavelength. Comparisons with NPSE and LSIT results show that linear 
secondary instability over predict the growth of secondary instability in this particular case and the reason is likely 

to be non-parallel effects of the base flow. 
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a) Crossflow instability modes with λλλλz = 8 mm and 
frequency ranging from 0 to 2.25 kHz. The N-factor 

first reaches a value of 10 for the 1,500 Hz mode 

indicated by green curve. N-factor curve for the 

stationary crossflow mode is shown in red 
 

b) Linear N-factors for various spanwise 

wavelengths at a frequency of 1.5 kHz. 

Figure 1. Linear N-factors for crossflow instability. 
 

 

  
a) Stationary and traveling crossflow (f = 1.5 kHz) 

modes with λλλλ = 8 mm and the same initial amplitude 

(Ainit = 1×10
-5

):  Comparison of modal amplitudes for 
the fundamental and mean flow correction modes.   

b)   Fundamental amplitude for 8 mm traveling 
crossflow vortices with different initial amplitudes. 

The amplitudes of mean flow correction and the first 

harmonic are also shown for the case with the 

smallest initial amplitude (Ainit = 2.5×10
-6

). 
 

Figure 2. Nonlinear evolution of crossflow vortex modal amplitudes (Ref. 9). 
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a)    Fundamental amplitudes. f = 1.5 kHz,  

          Ainit= 10
-5

.   

b)   Fundamental amplitudes. f = 1.5 kHz,  

          Ainit= 2.5××××10
-7

.   

  
c) Fundamental amplitudes. f = 1.5 kHz,  

          Ainit= 1××××10
7
.   

d) Fundamental and mean flow correction modes 

with approximately 90 degrees phase difference. 

Vertical dash-dot lines indicate corresponding 

locations of peak meanflow correction and rapid 

rate of change of fundamental mode. Ainit= 10
-5

,  λλλλz  
= 10 mm, f = 1.5 kHz. 
 

Figure 3. Evolution of modal amplitudes 
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Figure 4.    Evolution of modal amplitudes for traveling crossflow vortices with initial amplitude of 5×10

-7
.  

Comparison between results of nonlinear PSE and direct numerical simulations. Solid red lines and dashed 

green lines present results of NPSE and DNS computations, respectively. 
 

 

 
 

 

 

 
Figure 5.  Comparison of N-factor curves for most dangerous secondary instability modes of stationary and 

traveling crossflow vortices.  The metric for growth potential corresponds to earliest attainment of N = 10, 

or of the highest N-factor if N = 10 is never achieved.  Both stationary and traveling crossflow vortices 

havethe same spanwise wavelength of 8 mm, and the traveling mode has a frequency of 1,500 Hz (Ref. 9). 
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a)  Effect of different primary wave initial amplitudes, λλλλz  = 8 mm 

 

  
           b)  λλλλz  = 10 and 12 mm, Ainit= 2.5××××10

-7
.             c)  λλλλz  = 10 and 12 mm, Ainit= 10

-7
. 

 

Figure 6. Peak N-factors of secondary instability of traveling crossflow vortices. 
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a) x/c = 0.18, λλλλz = 6 mm 
 

b) x/c = 0.21, λλλλz = 8 mm 

  
c) x/c = 0.38, λλλλz = 10 mm d) x/c = 0.43, λλλλz =12 mm 

 

Figure 7. Y/Z mode eigenfunctions (chordwise perturbation velocity) for secondary instability modes on 

primary waves with f = 1500 Hz and varying spanwise wavelength. Flood contours represent chordwise 

velocity perturbation associated with the secondray instability; white lines represent the base flow chordwise 

velocity. 
 

 

 

  
a) x/c = 0.18. λλλλz = 6 mm 

 
b) x/c = 0.21, λλλλz = 8 mm 

 

  
c) x/c = 0.25, λλλλz = 10 mm 

 
c) x/c = 0.29, λλλλz = 12 mm 

 

Figure 8.  Chordwise velocity (u/U∞∞∞∞ ) contours associated with finite amplitude traveling crossflow 

modes of various spanwsie wavelengths at chordwise location corresponding to the maximum wave 

amplitude in that case  (Ainit = 10
-5 

in each case). 
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a)  Fundamental amplitude of secondary wave b) Growth rate of secondary wave 

 

Figure  9. Comparison of  LSIT, NPSE, and DNS predictions for secondary wave evolution (primary wave: λλλλz = 

8 mm, f = 1500 Hz; secondary wave:  f = 13.5 kHz, Ainit = 5××××10
-7

). 
 
 

 

 

 

 

  
                                     a)  Amplitudes. b) Mean wall shear. 

 

Figure 10.  Nonlinear evolution for selected initial amplitudes of the secondary wave. 
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Figure 11.    Chordwise evolution of fundamental secondary mode for different initial amplitudes: 

Comparison between NPSE and DNS. 
 

 

 

 

 

 
 

 

 

 

 


