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Several topology optimization problems are conducted within the ribs and spars of a 
wing box.  It is desired to locate the best position of lightening holes, truss/cross-bracing, etc.  
A variety of aeroelastic metrics are isolated for each of these problems: elastic wing 
compliance under trim loads and taxi loads, stress distribution, and crushing loads.  Aileron 
effectiveness under a constant roll rate is considered, as are dynamic metrics: natural 
vibration frequency and flutter.  This approach helps uncover the relationship between 
topology and aeroelasticity in subsonic transport wings, and can therefore aid in 
understanding the complex aircraft design process which must eventually consider all these 
metrics and load cases simultaneously. 

I. Introduction 
his work is concerned with improving the structural performance of a high aspect ratio subsonic transport wing 
via the use of topology optimization.  An increased aspect ratio stems from a desire to decrease the induced-

drag of the wing (and thus improve key metrics like specific fuel consumption), but also results in a highly-flexible 
wing, potentially susceptible to onerous issues (static and dynamic) associated with the flight loading.  Aeroelastic 
optimization of the internal wing structure can be used to obtain the best compromise between adequate structural 
reinforcement and added weight, which may lead to unconventional structural concepts.  An unconventional result is 
particularly likely if topology optimization is utilized, wherein an optimizer makes fundamental decisions about the 
layout and connectivity of the structure in an effort to improve some design metric in a feasible manner. 

Several different types of topological parameterizations for wing structures can be found in the literature.  One 
method populates a wing box with a lattice of connecting members, and allows the optimizer to decide which of 
these members to remove.  If these members are situated in an orthogonal pattern aligned with the wing’s leading 
edge, they may be designated as “ribs” and “spars”, as in the work of Wang et al. [1].  Broader parameterizations 
used by Balabanov and Haftka [2], Locatelli et al. [3], and Kobayashi et al. [4] highlight the usefulness of 
diagonally-oriented and/or curvilinear members, which blend the role of traditional rib and spar structures, and thus 
defy easy characterization.  This type of topology is two-dimensional, in that the parameterization is defined in the 
plane of the wing, and each member is full-depth: it fully extends from the lower skins to the upper skins. 

Alternatively, a three-dimensional parameterization may be considered, by populating the wing box with a large 
number of three-dimensional finite elements, and allowing the optimizer to decide which elements to remove.  The 
resulting optimization problem is typically solved with SIMP-based methods (solid isotropic material with 
penalization), or level set methods.  This parameterization is utilized in the work of Kim et al. [5] (at a single panel 
level, rather than a complete wing), James and Martins [6], and Dunning et al. [7].  The resulting structure typically 
bears no resemblance to traditional rib/spar networks, which may indicate one of two things.  The first is that the 
appropriate physics, load cases, and/or constraint boundaries were not included in the optimization problem, and if 
they had been, the resulting topology would qualitatively approach a lattice of ribs and spars (which have been used 
almost exclusively in aircraft structures for decades [8]).  The second is that the design problem was properly 
defined, and that the non-traditional topology may present an interesting new direction for efficient wing structures. 

 The approach taken in the current work is a compromise between the two parameterizations discussed above.  
A wing box is seeded with a pre-determined (and fixed) number of ribs and spars, each is discretized into a series of 
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planar shell finite elements, and the optimizer decides which elements to remove.  Though this method is restricted 
in that it acknowledges the typical rib/spar construction of aircraft wings, a significant amount of discretion is still 
provided to the optimizer, particularly if a dense network of members is included in the framework.  Weight-saving 
cutouts may be added, spars may be reduced to stringers, ribs reduced to rib-caps or stiffeners, or members may be 
removed entirely.   Precedent for this approach is found in Ref. [9], though that work struggles to find a crisp solid-
void boundary within the ribs.  Several authors find the optimal topology within a single representative rib 
(Eschenauer and Olhoff [10], Krog et al. [11], Maute and Reich [12], and Oktay et al. [13]) a single stiffener 
(Stanford and Beran [14]), or a series of stiffeners (Stanford et al. [15]). 

It is important to note which portions of the wing structure are being optimized in this paper, and which are not.  
Topology optimization is conducted within the ribs, as well as any internal spars.  Topology optimization could also 
be conducted within the leading and trailing edge spars, but a substantial quantity of mechanisms and structures are 
connected to these members (slats, spoilers, flaps, etc. [8]), and the loads they impart are undefined for the current 
conceptual design.  Furthermore, the details of the fuel tanks may preclude holes in these structures.  Topology 
optimization obviously cannot be conducted within the wing skins (though tailoring could be readily accomplished 
through thickness- and/or stiffness-based optimization [16]): these structures are completely unaltered for this work. 

Given that these external structures bear a substantial portion of the bending and torsional flight loads, 
optimizing only the topology of the internal structures will produce a moderate improvement in flight metrics: 10-
20% is typically demonstrated below.  The topology optimization method discussed here is probably best viewed as 
a way to further reduce wing weight, after (or in parallel with) the optimization of the external wing box structures.  
Furthermore, the approach taken here is to obtain a variety of topologies, each of which is defined by a limited 
optimization problem (i.e., a wing topology that only considers the trade-off between weight and structural 
compliance, another for weight and flutter, etc.), rather than the multitude of physics and constraints that should be 
considered during comprehensive aircraft design.  This approach can provide a better understanding of the 
relationship between various aeroelastic metrics and the distribution of material within a wing box, and therefore 
improve the understanding of the optimal topology when each of these metrics are eventually included in a unified 
aircraft design process.  In this paper, a series of optimal topologies are divided into 3 categories: symmetric static 
aeroelasticity (section III), antisymmetric static aeroelasticity (section IV), and dynamic aeroelasticity (section V).  

II. Wing Box Structure Description 
This exercise is conducted within the outer mold line of the Common Research Model (CRM) [17], seen in 

Figure 1.  This is a transonic transport configuration with a wing span of 58.7 m, a mean aerodynamic chord of 7.0 
m, an aspect ratio of 9, a taper ratio of 0.275, a sweep angle of 35°, and a cruise Mach number of 0.85.  For this 
work, an all-aluminum wing box structure is developed which consists of an upper skin, a lower skin, a leading edge 
spar (located at approximately 12% of the local airfoil chord), and a trailing edge spar (located at 71%), none of 
which are designable members.  The topology optimization is conducted within two inner spars and 20 ribs.  The 
designable inner spars are equally spaced between the leading and trailing spars, and the equally-spaced designable 
ribs are oriented perpendicular to the leading edge spar.  All of the skins have a uniform thickness of 7 mm, the 
thickness of each spar is 15 mm, and the thickness of each rib is 3 mm. 

The entire structure is discretized into quadrilateral facet shell finite elements via a combination of linear strain 
triangles (LST) and discrete Kirchhoff triangles (DKT) [18], where two triangles form a single quadrilateral.  The 
resulting finite element model consists of 3.3·105 quadrilateral elements, 3.5·104 of which are also attached to design 
variables.  These elemental density variables, , are allowed to vary continuously between 0 (void) and 1 (solid), 
where the Solid Isotropic Material with Penalization (SIMP) [19] method is utilized.  A linear stiffness matrix, a 
mass matrix, and a gravitational force vector (self-weight) are computed by assembling over each finite element ( ):   

 
  (1) 

 
  (2) 

   
  (3) 
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where  is an elemental stiffness matrix associated with solid elements,  is a small non-zero number, and  is 
a penalization factor (typically greater than 2),  is the elemental mass matrix associated with solid elements, and 

 is an elemental gravitational force vector associated with solid elements.  The interpolation scheme used in 
Eq. 1 is intended to prevent unbounded displacements of void elements under self-weight [20], and to prevent 
localized vibration modes in these areas.   

 

 
 

Figure 1.  Proposed wing box within the Common Research Model [17]. 

III. Symmetric Static Aeroelasticity 
The term “symmetric” as used here indicates that the lift distribution is identical between the left and the right 

wings: steady forward flight.  The elastic deformation of a wing is computed by: 
 

  (4) 
 

where the solution vector  has six degrees of freedom (three displacements and three rotations) per node, and  is 
the load factor (equal to 1 for steady level flight).  Aerodynamic forces  are computed with the assumption of a 
flat-plate lifting surface via the doublet lattice method [21].  The pressure-downwash equation is given by: 
 
  (5) 
 
where  is the influence matrix (the superscript indicates a symmetric aerodynamic condition about the centerline 
of the airplane), and  is a vector of differential pressure coefficients acting on each box.  Three factors contribute 
to the downwash at the center of each box: the slope of the airfoil’s centerline  (due to built-in camber and twist), 
the angle of attack  at the root of the wing (where  is a vector of ones), and additional wing twist from the elastic 
deformation .  The interpolation matrix  is derived from a finite plate spline [22], a method that uses a plate finite 
element model to transfer information from the wing box to the aerodynamic lattice in a work-equivalent manner. 

Aerodynamic forces are subsequently computed as: 
 
  (6) 
 
where  is the dynamic pressure and  is a second interpolation matrix, also derived from a finite plate spline.  The 
total aerodynamic lift over a single wing is constrained to meet a trim condition: 

 
  (7) 
 

 is a vector of the area of each box, and  is the total weight of half of the aircraft.   is the sum of the wing 
weight (which will change during the optimization process) and some predetermined and fixed weight of the 
remainder of the aircraft.  Additional aerodynamics and pitch-based trim requirements from a tail are ignored for 
this work.  The final aeroelastic equations are given as: 
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 (8) 

 
where the angle of attack of the wing is constantly altered to maintain trim [23]. 

The aeroelastic unknowns can be computed by simply solving Eq. 8 as written, by re-writing the aerodynamic 
terms as a function of  (via an aerodynamic stiffness matrix), or by simply iterating between the structural (Eq. 4) 
and aerodynamic equations (Eqs. 5 and 7).  This latter option is used here, as the sparsity of  is preserved, which 
can be factored a single time prior to iterating.  This analysis framework is developed as an in-house MATLAB (a 
product of Mathworks Inc. ) code, which has been extensively verified for accuracy against NASTRAN’s (a product 
of MSC Software*) static aeroelastic solvers. 

A. Aeroelastic Compliance 
The first topology optimization problem seeks to minimize the compliance of the wing deformation: 
 

  
 

 
(9) 

 
where the elemental design variables are grouped into the vector , which is then passed through a linearly-decaying 
cone-shape filter [19] to obtain the variable densities .  Side constraints and a volume fraction constraint are also 
imposed.  The volume fraction constraint specifies the percentage of designable material which must be retained.  
Because the entire structure is made from the same aluminum material, setting  effectively sets the wing mass as 
well.  Though wing optimization problems are typically written to minimize the mass (Ref. [9], for example), here 
wing mass (or volume fraction, explicitly) is set as a constraint, in keeping with the standard SIMP formulation [19]. 

It is noted that only , , and  are functions of the design variables, and gradients of the structural 
compliance with respect to  are easily computed with the adjoint method [24].  Optimal topologies are found with 
the method of moving asymptotes [25]. 

The load factor  is set to 1, the dynamic pressure  is 5897 N/m2, and the Mach number is 0.85.  The fixed 
weight of the aircraft is 500 kN, thus  is equal to 250 kN plus the weight of one wing (wing weight is typically 25-
30% of the total aircraft weight for these cases).  The minimum density  is set to 0.001,  is set to 3, and the 
volume constraint  is set to 0.5 (i.e., the optimizer must retain 50% of the designable ribs and spars in Figure 1).  
The lower and upper layers of elements on each rib and spar are fixed as solid elements (  = 1).  For the spars, this 
constraint acknowledges that, even if the optimizer completely removes a spar in a certain area, some local stiffness 
is desired to prevent skin buckling (a metric which the optimizer is unaware of), and so a stringer-like structure is 
always left behind.  Similar arguments can be made for rib-caps and stiffeners if a rib is completely removed.  
Furthermore, the permanently-solid upper layer of each rib also recognizes the non-structural role of each rib station 
to maintain the outer mold line of the upper and lower skins [8][11]. 

The optimal result of Eq. 9 is shown in Figure 2, where two views of the same structure are provided.  Towards 
the root of the wing, the optimizer removes the inner material from each of the spars (as the bending stresses will be 
highest along the outer fibers), and creates a series of cross-braced trusses within some of the ribs.  Towards the 
wing tip, however, the optimizer fully populates each rib and spar.  This may seem to be an unusual result, as the 
stresses at the wing tip will be relatively small, and so adding material in this area would not typically be the best 
way to exploit the conflict between wing mass and compliance in Eq. 9.  The self-weight loads  are driving 
this topology, in part: adding downward gravitational loads at the wing tip will help offset (via inertial relief) the 
upwards aerodynamic loads , decreasing the total bending moment (and therefore the total compliance).  This 
is confirmed by re-running the topology optimization without  in Eq. 8 (the  term is still included in the 
trim equation), where the final structure is seen in Figure 3.  The result is as expected, with the majority of the 
outboard ribs removed, and cross-bracing adding to the spars towards the tip.  This exploitation of inertial relief has 
been noted before [26], and will be discussed in later sections. 
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Figure 2.  Compliance-optimal topology of the CRM wing box. 

An interesting feature of the topologies in Figure 2 and Figure 3 is that the volume constraint (where 
 is set to 50% for the entirety of this work, and thus every wing structure shown here has the same mass) 

converges from above, rather than below.  In typical compliance-based topology optimization, removing the volume 
constraint will certainly lead to heavier (and therefore stiffer) designs.  If compliance is the only other metric present 
in the optimization problem, many (if not all) of the density design variables will be set to unity, leaving a solid 
block of material.  This is not the case here, as the weight of the structure must always be balanced by the 
aerodynamic loads via the trim Eq. 7.  Adding more material requires a larger angle of attack , increasing the 
aerodynamic loads  (in addition to the self-weight loads ), which actually increases the compliance. 

As such, this problem does not actually require a volume constraint: the optimizer can simply be allowed to 
choose whichever wing mass (i.e. volume) it wants in order to both satisfy trim and minimize compliance.  The 
results from this exercise (which are not shown), converges to a slightly lower volume fraction of 44.2%, and the 
compliance objective function is 2.8% better than the result in Figure 2.  If gravity loads are “turned off”, the 
volume fraction converges to a very low value of 22.3%, and is 3.1% superior to the result in Figure 3.  This latter 
structure in particular is very sparsely populated (due to its low weight).  This method (omitting the volume 
constraint altogether) is probably the best long-term approach to topology optimization of aircraft structures, but 
care should be taken in using it until all of the wing components and load cases are properly modeled, as it can result 
in a very flexible structure. 

The results in Figure 2 and Figure 3 are computed with a load factor of 1, for steady level flight.  Maneuver-
loads at values of 2.5 (pull-up) and -1 (push-over) are typically [8] used to size an aircraft at the boundaries of the 
flight envelope.  The compliance-optimal topologies obtained for these two values are shown in Figure 4, though 
neither looks qualitatively different from the steady-level result of Figure 2.  This is to be expected: again referring 
to typical compliance-based topology optimization, simply changing the magnitude of the applied loads will have no 
effect (for a linear structure) upon which density variables are forced to the upper bound (1) and which to the lower 
(0).  In the case of a wing structure, both the aerodynamic forces and the self-weight loads in Eq. 4 linearly scale 
with , and so the overall impact is similar. 
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Figure 3.  Compliance-optimal topology of the CRM wing box without self-weight loads. 

 
 

Figure 4.  Dependence of compliance-optimal topology upon load factor. 

 The fact that the optimal topology is not completely independent of  is due to aeroelastic coupling and trim 
requirements.  In lieu of Eq. 8, the aeroelastic system could be solved by rewriting Eq. 4: 

 
  (10) 
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where the forcing functions on the right side of Eq. 10 can be derived from the built-in wing camber , the angle of 
attack  (constantly altered to meet trim), and the self-weight loading.   is an aerodynamic stiffness matrix.  
The solution to Eq. 10 will be the same as Eq. 8, but Eq. 10 is not used here because  is a large fully-populated 
matrix, as it involves inverting .  If  was a proportional constant for both forcing functions, then the optimal 
topology would be completely independent of , but it is not: the first term is not impacted by .  The second 
forcing term is larger in magnitude than the first, and so the dependence on load factor is weak, as seen in Figure 4. 

One obvious issue with many of the topologies shown to this point is that the optimizer, in many cases, removes 
most (or all) of the material in many of the ribs.  A potential reason for this is that a main role of each rib structure is 
to maintain the intended airfoil shape of the upper and lower skins (outer mold line) [11].  The optimizer knows 
nothing of this role, being solely concerned with weight and elastic compliance.  This effect will be difficult to 
account for with the flat-plate aerodynamic tool used here.  Only differential pressure distributions  are computed, 
rather than individual upper and lower surface pressures, which will lead to OML distortions.  Two methods are 
explored here to circumvent the problem.  First, crushing Brazier loads may be included in the load set, which is 
discussed below (section III-E).   

Secondly the optimizer can be forced to retain a certain percentage of material in each rib and spar segment.  
This is done by dividing the design domain into patches: one patch per rib, and spar patches span the distance over 
three ribs, as colored in Figure 5.  A volume constraint is applied in each patch: 
 
  (11) 
 
where  are the design variables in the th patch,   is the total number of patches/constraints (85 in this case), and 

 is again set to 50% for each patch.  The resulting topology is seen in Figure 5, and is directly comparable to 
Figure 2 (i.e., self-weight loads are turned on).  The optimizer is able to satisfy the constraint in each patch, but the 
topology in the outboard section of the wing is unsatisfactory, still unduly driven by the desire to exploit inertial 
relief.  In many of the outboard spar patches, the portion closer to the root is sparsely populated with diagonal truss-
like members, but the portion closer to the tip is nearly solid.  The remainder of the results in this paper use a single, 
global, volume constraint, rather than this localized method. 
 

 
 

Figure 5.  Compliance-optimal topology obtained with multiple volume constraints. 
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B. Taxi Bumps 
One method of preventing the optimizer’s desire to add mass outboard for inertial relief is to include a taxi 

bump (i.e., inertial loads only) in the set of load cases [26].  In this scenario, material towards the tip would greatly 
increase the bending moment and stresses at the root, penalizing the undesirable topologies seen in Figure 2.  
Towards this end, the compliance objective function in Eq. 9 may be rewritten as a weighted sum: 

 
  (12) 

 
where  is still the solution to the full aeroelastic trim problem (Eq. 8), and  is simply defined by: 
 
  (13) 
 
Results using this new objective function are given in Figure 6, for a load factor  of 1, and a taxi bump load factor 

 of 2.5.  The left side of Figure 6 is repeated from Figure 2 (  = 1), the right side of Figure 6 is the resulting 
topology when only taxi loads are considered (  = 0), and the center plot is a weighted average of the two load cases 
(  = 0.75).  Figure 7 shows typical wing deformations for the topology in Figure 2, when subjected to trimmed loads 
or a pure taxi bump load at the stated load factors. 
 

 
 

Figure 6.  Compliance-optimal topology for aeroelastic trim loads (left), for taxi bump loads (right), and a 
compromise between the two (center). 

 
 

Figure 7.  Deformed configurations for the wing topology in Figure 2. 

The results of Figure 6 follow the expected trend, with material progressively shifting from outboard to inboard 
as  is decreased from unity (i.e., moving from left to right across the figure).  A pure taxi load case puts a large 
premium on adding as much material as possible at the root: inertial relief is effectively penalized.  The weighted 
average is a topological compromise between the two, as intended, and may be seen as a more effective method of 
filling the design domain with an adequate amount of material, as compared to the multiple volume constraints 
utilized in the previous section (Figure 5).  Quantitative compliance values for these 3 designs are given in Table 1.  
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The change in aeroelastic trim compliance is a far weaker function of  than the taxi load compliance.  This is 
presumably due to the fact that the aeroelastic trim problem (Eq. 8) still contains the effect of self-weight , and 
some topological details are influenced by these loads.  This is the same reason why a  value much larger than 0.5 
is needed to find a suitable compromise between the two topological extremes. 
 

Table 1.  Compliance values for the topologies in Figure 6. 

    
Trim Design 1 2.53·104 N·m 2.57·104 N·m 

Compromise Design 0.75 2.58·104 N·m 1.84·104 N·m 
Taxi Design 0 2.85·104 N·m 1.41·104 N·m 

C. Role of Aeroelasticity 
This section seeks to explicitly quantify the role of aeroelasticity, or fluid-structure coupling, in the compliance-

based topology optimization problem.  If fluid-structure coupling is “turned off”, how would the topology change?  
This is of interest because 1) this assumption is typically made at early stages in the aircraft design process [8], and 
2) the iterations required for the convergence of the coupled aeroelastic problem are very expensive.  The role of 
aeroelasticity can be highlighted by specifying a fixed angle of attack , computing the flight loads  a single 
time, and then applying these same a-priori loads to each structure during the optimization process: 
 
  (14) 

 
Aeroelastic coupling via the  term in Eq. 5 is neglected, as is the trim relationship (Eq. 7) used to set , which 
is simply set to 2° for this exercise.  The role of fluid-structure coupling can be further emphasized by neglecting the 
self-weight  in Eq. 14, which is done here. 

Results are given in Figure 8.  The left side of the figure is simply repeated from Figure 3 (includes aeroelastic 
coupling), but the topology on the right side neglects coupling, driven by Eq. 14.  Inboard, the two topologies are 
nearly identical, but differences are seen outboard.  For the right topology without coupling, the material in both 
designable spars is completely removed by roughly 65% of the semispan.  For the left topology with coupling, 
however, the cross-bracing in the leading spar extends farther towards the tip than the trailing spar.  This rotates the 
primary stiffness axis of the wing forward, strengthening the negative bend-twist coupling (wash-out) [27].  Indeed, 
the design on the left of Figure 8 has a slightly lower (0.26%)  than the design which neglects coupling.  If this 
latter topology is re-analyzed with aeroelastic coupling “turned on”, it has a 4.2% worse objective function (higher 
compliance) than the design with coupling included. 
 

 
 

Figure 8.  Compliance-optimal topologies with (left) and without (right) aeroelastic coupling. 
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It is also of interest to note that the design on the right of Figure 8, which neglects both self-weight loads and 
trim requirements, is the first topology seen here which converges to its volume constraint from below, as is more 
typical of compliance-based topology optimization.  There is no physical penalty for making this wing as heavy/stiff 
as possible, other than the volume constraint. 

D. Aeroelastic Stresses 
Elastic compliance is a convenient metric for topology optimization [19], but structural design in general, and 

aero-structural design in particular, is driven by the elastic stresses that develop throughout the wing box.  
Accounting for stresses during topology optimization is far more challenging, for a variety of reasons.  First, the 
stresses in every finite element need to be monitored.  Second, the identity of the element which contains the highest 
stress levels will typically change during the optimization process, leading to a discontinuity in the design space.  
Third, the stresses in void elements need to be handled correctly.  The methods used here to resolve these issues are 
largely taken from Le et al. [28], and will be briefly summarized. 

First, Eq. 8 is solved to compute the trim deformations  on the aircraft, as above.  The von Mises stresses 
within each finite element  can then be computed in the usual manner [18].  A failure index  for each element 
is then computed as: 

 
  (15) 
 
where  is the density design variable, as above, and  is the yield stress.  A  value greater than one indicates 
that the stresses in the element are too high, and the  relaxation term ensures that void elements (  = 0) will be 
stress-free [28].  For elements that don’t coincide with design variables (the wing skins, for example),  is set to 
unity, as these structures are always solid rather than void. 

Next, the finite elements are grouped into a smaller number of patches.  Each rib is divided into 3 full-depth 
patches, each spar is divided by rib intersections into a patch, and each skin panel is designated a patch.  For the 
rib/spar structure in Figure 1, this leaves 273 patches.  A p-norm stress measure is then used to compress all the 
failure indices for each element in the patch into a single value: 
 
 

 (16) 

 
where  is the p-norm measure (stress aggregate) for the th patch,  is the number of finite elements in the th 
patch,  is the volume of the finite element, and  is the stress norm parameter.  If  is set to unity,  is the sum 
of each  value in the patch (weighted by the element volume).  If  is set to ∞, then  becomes the maximum 
value within the patch.  An intermediate value (8 is used here) will allow  to change in a smooth manner in the 
event that the critical stresses in the patch switch from one location to another during the optimization process. 

An optimization problem is then formulated to minimize all of the patch-based p-norm measures.  This is done 
with a bound method [29]:  
 
  

 

 

(17) 

 
where the bound value  is both a design variable and an objective function to be minimized, and a set of constraints 
(one for each patch) is enforced to keep each p-norm measure beneath this bound.  Solving this optimization 
problem will implicitly minimize the peak stresses within the wing.  Explicit control over the actual stress values 
( ) is relinquished when the p-norm is used (though Ref. [28] discusses a way to reestablish the relationship 
between  and the maximum wing stress), but stress aggregation is required so that the location of the critical stress 
can change within the wing, in a smooth manner amenable to gradient-based optimization. 
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The optimal topology of Eq. 17 is shown in Figure 9: self-weight loads are removed from this case, so the 
directly analogous compliance optimization case is Figure 3.  The two topologies are qualitatively similar, but the 
stress-design of Figure 9 sacrifices spar material at the root in order to add more material at the wing break (the cusp 
in the planform geometry at the trailing edge), where the stresses are highest.  The ribs and spars in this location are 
either full-depth, or else have material removed from the neutral bending axis, where the stresses will be small.  
Whereas the compliance-optimal topologies are only concerned with adding stiffness in a global manner, the stress-
optimal topologies must balance global stiffness improvements with localized stress concentrations.  This balance is 
easier to achieve in areas of the wing where the optimizer has simultaneous control of both the stress and the 
topology (inner ribs and spars), as opposed to areas where the topology is fixed (wing skins and outer spars).  It is 
also noted that the solution to Eq. 17 is far more expensive than the compliance problem Eq. 9.  This is because 
there are  stress constraints (i.e., one per stress patch), which necessitates  right-hand-sides for the linear 
adjoint equation to compute the derivatives .  As noted,  is equal to 273 for this work, and a finer 
resolution of the rib/spar topologies will certainly require more. 

 

 
 

Figure 9.  Stress-optimal topology of the CRM wing box. 

Stress-based failure indices are plotted in Figure 10, for both the baseline topology and the optimal topology of 
Figure 9.  The baseline topology uses a uniform density of  = 0.5 throughout the design domain, in order to satisfy 
the 50% volume fraction constraint.  The optimizer clearly decreases the peak stress levels in the skins, and is also 
able to spread the highly-stressed region down a greater portion of the span.  Topological boundaries in the spars 
(particularly towards the root) closely mirror the stress contours.  Stresses in the ribs are very small, yet the 
optimizer still allocates material here, presumably to impact the overall global stiffness, thereby decreasing stresses 
elsewhere. 

The optimizer, however, is never exposed to the actual stress values (i.e., Figure 10).  It can only implicitly 
change these values by explicitly controlling the p-norm aggregate functions in each patch.  This information is 
shown in Figure 11, again for both the baseline and optimal values.  The p-norm of Eq. 16 effectively integrates the 
stresses throughout the patch, with heavier weighting towards large finite elements (large values of ) and/or 
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highly-stressed elements.  The bound method of Eq. 17 drops the largest aggregate stress measure from 0.203 to 
0.172.  The absolute p-norm values have little physical meaning, only the relative changes (between different 
patches, or between optimization iterations) are of concern. 
 

 
 

Figure 10.  Exploded view of the baseline (left) and optimal (right) von Mises failure indices. 

 
 

Figure 11.  Exploded view of the baseline (left) and optimal (right) p-norm stress measures. 

E. Crushing Loads 
An important set of loads for the internal support structure of a wing box are the crushing or Brazier loads.  

When a thin walled circular tube is subjected to flexure, its cross-section distorts (tends towards an oval shape).  A 
similar effect occurs for a closed wing box, subjecting the internal members to compression [8].  These crushing 
loads manifest themselves through geometric nonlinearities, meaning the linear tools ( ) used throughout 
this paper cannot account for them, and their effect is entirely absent from all of the results presented so far (i.e., it is 
an essential nonlinearity [18]). 

Crushing pressures can be approximated, however, from the running slope of the deformed wing shape (the 
linear finite element solution) and the spanwise stresses in the wing skins [30]: 
 
  (18) 
 
where  is the spanwise stress in the wing skins at a particular location (a function of the deformational solution 
vector  found during aeroelastic trim),  is the local skin thickness,  is the modulus, and  is the local depth of the 
wing box.  These crushing pressures  may then be converted into an applied force , and the crushing 
deformations computed as: 
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  (19) 
 
In summary, two finite element systems are solved at every iteration of the optimization procedure.  The fully-
converged aeroelastic trim deformations  are first computed via Eq. 8, this solution vector is used to construct 

, and then crushing deformations are computed in Eq. 19.  Adjoint-based sensitivities are formulated to 
capture the dependence of  upon . 

In order to isolate the topological effect of crushing loads, the compliance optimization problem Eq. 9 is 
resolved with the objective function .  The results from this exercise are shown in Figure 12.  
Nearly-vertical stiffening members populate the ribs and spars, where the width (i.e., strength) of each member 
reflects the magnitude of the local skin stresses  (Figure 10, for example) that enclose the inner topology.  The 
most material is allocated to the highly-stressed wing break area, and the structure is depopulated towards the 
wingtip, where stresses tend to zero. 

Alternatively (and more realistically), deformations due to aeroelastic trim  and  may be added together, 
and the total compliance minimized.  This exercise, however, provides no discernible differences with the topology 
of Figure 2, as the compliance due to  significantly outweighs that due to .  Given that crushing loads are 
known to be an important load case (especially for ribs [8]), it may be that full-system nonlinearities are needed to 
accurately account for the contribution of crushing loads.  Topology optimization with geometric nonlinearities is 
very expensive though, and will not be considered here. 
 

 
 

Figure 12.  Compliance-optimal topology when only crushing loads are considered. 

IV. Antisymmetric Static Aeroelasticity 
The previous section III dealt with symmetric aeroelastic physics: either steady level flight or maneuver loads 

(pull-up, push-over).  The focus of the current section is lateral rolling maneuvers, where the lift distribution is 
antisymmetric between the left and the right wings.  Specifically, the wing is assumed to be rotating at a constant 
roll rate.  Because of the linear assumption, the symmetric lift distribution can be considered separately from the 
antisymmetric [23]: forces due to angle of attack, camber, and self-weight can all be ignored.  The aileron geometry 
used for this section is seen in Figure 13. 

The doublet lattice method is again used here, and the new pressure-downwash equation is: 
 
  (20) 
 
where  is the antisymmetric influence matrix (i.e., an antisymmetric aerodynamic condition about the centerline 
of the airplane),  is the aileron deflection, and  is the non-dimensional roll rate (  is the dimensional roll 
rate,  is the semi-span, and  is the flight speed).  The vector  is the downwash due to a unit aileron deflection, 
and  is the downwash due to a unit non-dimensional roll rate.  Downwash due to structural deflections is 
represented by , as above. 
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Figure 13.  Outboard aileron placement and geometry. 

A steady roll rate would imply that the sum of the moments about the centerline is zero [23]: 
 
  (21) 
 
where ,  is the same vector of box areas used in Eq. 7, and  is a diagonal matrix with the moment arm 
(i.e., span coordinate) of each box.  The final aeroelastic equations may be written in a form very similar to Eq. 8: 
 
 

 (22) 

 
As above, this equation is not solved directly, but by iterating between the structural and the aerodynamic equations.  
Wing deformations  that result from this system involve more torsion than seen in the previous section.  A typical 
stress distribution is given in Figure 14, for contrast with the symmetric trim results of Figure 10 (though they are 
not used for optimization).  Stresses at the wing root are relatively small, and the locus of peak stresses has shifted 
far outboard compared to the symmetric trim case.  High stresses in the trailing edge of ribs near the aileron are also 
noted, a direct result of the large aerodynamic pressures at the hinge line. 
 

 
 

Figure 14.  Typical wing stress distribution under a constant roll rate. 

A. Aileron Effectiveness 
The effectiveness of an aileron is defined as .  If  is set to unity in Eq. 22, the resulting non-

dimensional roll rate will be equal to .  The optimization problem in this section seeks to maximize the aileron 
effectiveness subject to a volume constraint: Eq. 9 with  substituted for the compliance objective in that equation.  
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Because self-weight and longitudinal trim considerations are ignored here, the optimizer has incentive to make the 
wing as stiff/heavy as possible.  The wing weight is held in check only by the volume constraint (again set to 50%), 
which is expected to converge from below.  Flight conditions for this case are the same as in the previous section: 
the dynamic pressure  is 5897 N/m2, and the Mach number is 0.85.  The adjoint method [24] is again used to 
compute . 

The resulting optimum topology is shown on the left of Figure 15: the bulk of the material is allocated to the 
spars, which are made to be full-depth for most of the wing span.  Rib stiffness is utilized near the peak-stress 
location noted in Figure 14, and the trailing edges of the ribs adjacent to the aileron are filled with material (again 
reflecting the stresses in this area).  Though neither stresses nor compliance are explicitly considered in the 
optimization problem, high-torsional stiffness is valued for improved aileron effectiveness.  This is because the 
wash-out elastic twist of the wing due to a deflected aileron will decrease the local angle of attack of that aileron 
[23].  Indeed, peak effectiveness occurs for either a rigid wing (   is removed from Eq. 20), or the limiting case 
of .  The optimal improvement in  seen here is relatively minor however.  The baseline structure (as above, a 
uniform density of  = 0.5) has an effectiveness of 0.199, while the optimal topology of Figure 15 only increases 
this metric to 0.206. 
 

 
 

Figure 15.  Optimal topologies considering aileron rolling metrics. 

B. Aileron Reversal 
As noted above, excessive torsional wing flexibility (via high dynamic pressures ) can reduce aileron 

effectiveness in a rolling maneuver.  The dynamic pressure at which the aileron effectiveness becomes zero (beyond 
which roll reversal would occur) is a key performance metric.  This can be found by locating the  value in Eq. 22 
that results in a non-dimensional roll rate of zero.  Because  has a nonlinear dependence on the aeroelastic state 
(i.e., ), an iterative Newton method must be utilized [23] to find the aileron reversal point : 

 
 

 (23) 

 
where  is the iteration number.  Upon convergence of Eq. 23,  and .  The derivative of the roll 
rate with respect to dynamic pressure is needed, and can be computed by differentiating Eq. 22: 

 
 

 (24) 

 
The last term in the solution vector of Eq. 24 is the desired derivative. 
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The topology optimization in this section maximizes  under a volume constraint.  The design derivatives 
 are computed as follows.  The total derivative of the roll rate with respect to topology is zero (because a 

dynamic pressure  will always be found in Eq. 23 to drive the roll rate to zero).  The chain rule then gives: 
 

 
 (25) 

 
The desired derivative is then solved as: 

 
 

 (26) 

 
The derivative of the roll rate with respect to  will be available from the final converged iteration of Eq. 23.  The 
derivative of roll rate with respect to the design variables  can be found from the adjoint method, as in the previous 
section. 

The optimal topology (maximum ) is seen on the right side of Figure 15, and (as expected) bears many 
similarities with the optimum aileron effectiveness topology on the left of the figure.  A key difference between the 
two is that the optimum reversal topology has more holes through the mid-plane of the two spars.  Aileron 
effectiveness for all three designs (the two optimal topologies in Figure 15, as well as the baseline structure) is 
plotted as a function of dynamic pressure in Figure 16.  The performance of all 3 converges to the same value at zero 

, which is also the rigid wing effectiveness.  The performance of the two optimal topologies is very similar 
throughout, with the maximum effectiveness design slightly superior at the design , and slightly inferior in the 
vicinity of .  The reversal point is improved significantly over the baseline value (from 28.8 to 33.6 kPa), but this 
event occurs at a much higher  than the design point (e.g., lower altitude). 

 

 
 

Figure 16.  Aileron effectiveness with increasing dynamic pressure. 

V. Dynamic Aeroelasticity 
The final section in this paper considers the relationship between wing topology and dynamic effects.  An 

important consideration is the non-structural mass in the (to this point) un-modeled leading and trailing edge 
portions of the wing: ailerons, flaps, slats, etc.  Their inertial effect can be included as lumped masses connected to 
the leading and trailing edge spars, as seen in Figure 17.  The first six inboard masses in the leading edge are 145 kg, 
and the outboard three are 110 kg.  In the trailing edge, the values are 380 kg and 63 kg.  Their impact is entirely 
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inertial (i.e., does not alter the stiffness or the aerodynamics) via an addition to the mass matrix .  This can be done 
with interpolation elements as drawn in Figure 17, or (more simply, and used here) via the finite plate spline [22] 
algorithms already in place for fluid-structure coupling. 

These lumped masses will substantially decrease the torsional frequency of the wing box, which decreases the 
aeroelastic flutter speed as well, and therefore must be included in the analysis.  This is confirmed in the first two 
lines of Table 2: the torsional frequency of the baseline wing topology without masses is very high, and the structure 
does not flutter.  As above, the MATLAB solvers used here have been satisfactorily verified for accuracy against 
NASTRAN’s dynamic aeroelastic solvers. 
 

 
 

Figure 17.  Lumped masses attached to the leading and trailing edges of the wing box. 

Table 2.  Baseline and optimal topology dynamic aeroelastic performance. 

     
Baseline (w/o Masses) 1.106 Hz 4.091 Hz 14.205 Hz - 

Baseline 0.822 Hz 2.884 Hz 6.084 Hz 23.302 kPa 
Max 1B Design 0.950 Hz 3.047 Hz 6.457 Hz 17.417 kPa 
Max 2B Design 0.889 Hz 3.189 Hz 6.208 Hz 22.153 kPa 
Max 1T Design 0.926 Hz 3.033 Hz 6.663 Hz 15.666 kPa 

Max Flutter Design 0.789 Hz 2.853 Hz 5.939 Hz 25.859 kPa 

A. Natural Frequencies 
This first section considers only the vibration frequencies of the structure, no aeroelastic effects.  These 

frequencies are computed by solving the eigenvalue problem: 
 
  (27) 
 
where  is the natural frequency,  is the cooresponding mode shape, and  is the mode number.  The topology 
optimization studies conducted here isolate and optimize a single frequency.  The mode tracking scheme of van Zyl 
[31] is used to ensure that the identity of the mode being optimized does not change, even in the event of mode 
crossing (i.e., re-numbering).  Eigenvalue design derivatives are easily computed as described in Ref. [24]. 

Optimal topologies while maximizing the first-bending (1B) frequency, the second-bending (2B) frequency, and 
the first-torsional (1T) frequency are given in Figure 18, subject to the same 50% volume fraction constraint as 
before.  Conventional studies do not usually focus on the second bending mode, but for high aspect ratios (9 for the 
CRM wing used here) its frequency is comparable to the first bending frequency and aeroelastically relevant [32].  
Quantitative performance improvements (compared to the baseline: uniform density of  = 0.5) are tabulated in 
Table 2, and mode shapes of the baseline are shown in Figure 19.  Optimization did not provide any noticeable 
deviations from these basic mode shapes.  Frequencies did change of course, typically on the order of 10%, which is 
comparable to the performance metric improvements obtained in the previous two sections. 

The first-bending vibration frequency of a wing can be increased by either adding stiffness at the root or 
removing mass from the tip, and the result of Figure 18 utilizes both strategies.  The design which optimizes the 
second-bending frequency allocates material (in the form of full-depth spars) at the two node lines seen in Figure 19, 
completely depopulates the outer anti-node region (similar to the first-bending design), and fills the inner anti-node 
spar region with cross-bracing.  The design which maximizes the first-torsion frequency (right side of Figure 18) 
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closely mirrors the first-bending design, but some antisymmetry is seen in the spar topology: the upper fibers are 
populated in the leading spar, while the lower fibers are populated in the trailing spar.  This antisymmetry occurs, 
not coincidentally, in the same wing location identified in Figure 14 as having large stresses under torsional loads. 
 

 
 

Figure 18.  Wing topologies which maximize a specified natural frequency. 

 
 

Figure 19.  First bending (1B), second bending (2B) and first torsional (1T) mode shapes of the baseline 
topology. 

B. Flutter 
Though vibration frequencies are important aircraft design metrics (ride-quality [8], for example), aeroelastic 

flutter is arguably the most critical dynamic phenomena, due to its dangerously explosive nature.  Flutter is defined 
as a phasing of elastic, inertial, and unsteady aerodynamic forces which renders the system dynamically unstable 
[23].  Various aspects of the flutter analysis and optimization problem will be discussed here.  Primarily, the 
imaginary eigenvalues of the aeroelastic system are tracked with increasing dynamic pressure ; the point at which a 
eigenvalue’s real part crosses from a negative value (stable) to a positive value (unstable) is the flutter point, or Hopf 
bifurcation point.  This section will use topology optimization to maximize the flutter point of a wing box. 

Rodden, Harder, and Bellinger’s [33] form of the p-k flutter equation is used here.  The dynamic equations of 
motion, placed in first-order form, are: 

 
 

 (28) 
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where  is the flight speed and  is half the mean aerodynamic chord.  The repetitive eigenvalue computations 
needed to locate the flutter point are very expensive, and so Eq. 28 is written in the reduced modal space.  The 
reduced mass ( ) and stiffness matrices ( ) are projected into the modal space by the 
matrix , whose rows are populated with a finite number of modes shapes computed in Eq. 27.  Rayleigh damping 
[18] is defined as: . 

The th eigenvalue  of the system is (in general) imaginary: .  The real part  is the modal 
damping (negative for stability), and the imaginary part is the reduced frequency: .  The 
corresponding eigenvector is .  The aerodynamic terms  and  in Eq. 28 are again computed with a doublet 
lattice method [21], and are highly nonlinear functions of the reduced frequency : 
 
  (29) 

 
 is the same aerodynamic influence matrix as used in Eq. 5, but now evaluated at some reduced frequency 

(whereas previously it was evaluated at steady conditions: ).   (converts aerodynamic pressures into elastic 
forces) and  (converts the structural solution vector  into slope-based downwash) are the same as above, and  is 
a new interpolation matrix which converts  into a deformational normal-velocity (downwash) in each box. 

The aerodynamic terms are dependent on the imaginary part of the eigenvalue, which is not known in advance: 
Eq. 28 is a nonlinear eigenvalue problem.  The non-iterative sweeping method of Ref. [34] is used to find matched 
point eigenvalues (i.e., ).  This is repeated for increasing values of  (where the Mach number is 
specified along with the speed of sound at sea level, which fixes ), with modes tracked using the method in Ref. 
[31].  This process is continued until one eigenvalue destabilizes ( ), providing a good initial guess for the 
flutter point .  The exact flutter point is defined as: 
 
  (30) 
 
This condition can be satisfied by solving the nonlinear system: 
 
  (31) 

 
where the mode number  corresponds to the eigenvalue with the largest real part .  The first equation of  
satisfies the flutter definition (Eq. 30), and, because the reduced frequency  can theoretically be set independently 
of the eigenvalue  (as an input into the doublet lattice method), the second equation ensures a matched point.  
Newton iterations (similar to Eq. 23) can be used to solve Eq. 31: upon convergence, .   

Topological design derivatives  are computed using a chain rule similar to Eqs. 25 and 26.  Eigenvalue 
derivatives  are needed for this process, and may be computed using methods detailed in Ref. [24].  Fixed-
mode derivatives are used here.  For example: 
 
  (32) 

 
The mode shapes are assumed to be independent of the design variables  for the purposes of computing , 
though they are updated at the next design iteration.  This approximation leaves the final design gradients inexact 
[24], though the convergence properties of the optimizer were not visibly degraded. 

Another issue associated with gradient based flutter optimization is mode switching, where the identity of the 
fluttering mode may change during optimization.  This process is reviewed in Ref. [15], and may represent either a 

 or  discontinuity in the design space.  Various strategies [14][35] are available to prevent these discontinuities, 
typically at the expense of restricting the feasible design space.  Ref. [36] notes that, for subsonic wing structures, 
these switching-based discontinuities are not strong enough to prevent convergence of an aerostructural optimizer.  
The opposite conclusion was reached in Ref. [14] for supersonic panel structures: it is unclear whether the differing 
outcome results from the Mach number or the structural geometry.  Regardless, for this work, flutter mode switching 
is ignored in favor of a relatively simple optimization problem: maximize  subject to a volume constraint. 

For this section, the Mach number is again set to 0.85, the flight speed  is 250 m/s, 6 natural modes are used to 
formulate Eq. 28, and no structural damping is utilized ( ).  The flutter-optimal topology is shown in Figure 20, 
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and the resulting performance is quantified in Table 2 with the topologies in the previous section: compared to the 
baseline,  is increased by 10.9%, a comparable gain to the previous results in this paper.  The natural frequencies 
of this structure are all lower than the baseline values, particularly the first bending frequency.  This latter effect is 
presumably driven by the full-depth rib and spar material allocated to the wing tip.  Far more rib material is 
allocated throughout this topology, consistently from root to tip: this is in stark contrast to the other results in this 
paper, including the frequency-driven topologies in the previous section. 

 

 
 

Figure 20.  Flutter-optimal topology of the CRM wing box. 

The convergence history of the topology optimization process is given in Figure 21.  Two discontinuities are 
noted at iterations 12 and 14, but (as also noted in Ref. [36] for subsonic wing structures) this does not prevent the 
optimizer from ultimately converging to an optimum. It may be expected, however, that more intrusive design 
procedures (that can change the aeroelastic metrics more than the 10-15% noted in this work) may experience 
greater convergence problems.  The source of the discontinuity is due, as expected above, to mode switching, where 
the identity of the fluttering mode changes.  This can be seen from Figure 22, which tracks the real and imaginary 
portions of each eigenvalue (equal to ) as a function of dynamic pressure , and marks the flutter point  
with an asterisk.  This is done for the baseline structure (iteration 1 in Figure 21), iteration 13 (after the first 
discontinuity), and for the optimum (after the second discontinuity).  For each of these plots, the natural frequencies 
(the frequencies at ) are ordered as, from bottom to top: first bending (1), second bending (2), edgewise 
bending (3), first torsion (4), and third bending (5).  Because no structural damping  is utilized, damping is zero for 
each mode. 

For the baseline structure, the fluttering mode is the second bending mode (not unusual for high aspect ratio 
wings [32]), but after the first discontinuity in Figure 21, the first bending mode flutters through the remainder of the 
optimization process.  For all of the structures up to this discontinuity, a strong modal coalescence is noted between 
the second bending and the edgewise bending mode, and a second coalescence occurs at the flutter point, between 
the first two bending modes.  The frequencies of the two modes are nearly identical for all dynamic pressures after 
this event, though the damping values differ (one destabilizes via flutter, the other becomes a hump mode and then 
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stabilizes).  It is unlikely that this coalescence is driving the flutter behavior; the gradual approach of the bending 
and torsional frequencies is the probable mechanism [23].  This may be inferred from the top two rows of data in 
Table 2: flutter only occurs when the torsional frequency is comparable to the bending values (via the inclusion of 
the lumped masses in Figure 17). 
 

 
 

Figure 21.  Convergence history of the topology in Figure 20. 

 
 

Figure 22.  Modal damping (top row) and frequency (bottom row) migration at three different iterations of 
Figure 21. 
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For all of the designs in Figure 22, the torsional mode begins to destabilize as well.  For the optimal design, this 
mode actually flutters, but this second flutter point occurs well above the first.  A final interesting point concerning 
these figures is the advent of a series of aerodynamic lag roots [34] at a dynamic pressure slightly before .  One 
oscillatory root and two non-oscillatory roots (only one of which can be seen in the figure) appear.  In the baseline 
topology, the oscillatory root collides with the edgewise bending root, annihilating them both.  For the optimal 
design, the second bending mode disappears.  It may be recalled that, when the optimization began (for the baseline 
structure), the second bending mode was the fluttering mode.  When the optimization is complete, this same mode 
no longer exists at higher dynamic pressures. 

VI. Conclusions 
Aeroelastic topology optimization has been conducted within a wing box for the Common Research Model, a 

high aspect ratio subsonic transport wing.  The outer mold line is populated with a fixed lattice of orthogonal ribs 
and spars, and then gradient-based topology optimization is conducted within each of these shell structures.  This 
parameterization allows for the development of lightening holes, the reduction of full-depth members to truss- or 
cross-braced support structures, or the complete removal of the interior of a given member, leaving behind a cap or 
stringer structure. 

Many different rib and spar topologies have been developed in this paper, each highlighting the best way to 
improve a single aeroelastic metric of interest under a prescribed amount of material within the design domain (i.e., 
a constant wing mass).  This approach can uncover the relationship between topology and aeroelastic physics, 
identify which metrics are more or less affected by changes in topology, and therefore provide a deeper 
understanding of the design which is ultimately obtained when all metrics are considered simultaneously (i.e., 
minimize one with constraints on the others) during a unified aircraft design process. 

The results in this paper are divided into three sections. For symmetric static aeroelasticity (section III), 
minimum-compliance designs (under a volume constraint) are found for trimmed flight loads, a taxi bump load, and 
a weighted sum of the two.  Further results detail the topological effect of the pull-up load factor, the self-weight 
loading, the aeroelastic coupling terms, the inclusion of stress metrics, and crushing Brazier loads.  Antisymmetric 
static aeroelasticity (section IV) results assume a pure rolling maneuver at a constant rate.  Topologies are shown 
which maximize either the aileron effectiveness, or the aileron-reversal dynamic pressure.  Dynamic effects are 
considered in section V, with topologies which optimize a given natural frequency (first bending, second bending, or 
torsional modes), or optimize the flutter point of the wing, computed with the unsteady p-k method. 

A comprehensive aircraft design will, of course, utilize only one wing topology.  It is unlikely that any of the 
topologies shown here will represent this final design, for a number of reasons.  First, a wing structure must be 
designed under multiple metrics simultaneously, rather than one at a time, as done here.  Secondly, even though 
many different types of aeroelastic metrics have been considered, important factors are still un-modeled (panel 
buckling, drag, fuel burn, etc.).  Third, additional geometric details (and their associated loads) have been omitted in 
this conceptual design exercise: fuel loads, engine loads, landing gear loads, etc.  These structures will undoubtedly 
impact the structural design, and need to be included.  Finally, and as noted above, the internal topology 
optimization used here should be done in conjunction with additional tailoring tools (focused on the wing skins, for 
example).   

Regardless, the work conducted here has demonstrated the feasibility of developing, in an automated manner, 
detailed structural topologies within the ribs and spars of a wing box, driven by complex aeroelastic physics.  Future 
tasks will work to account for the additional design scenarios listed above. 
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