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Introduction: One of the important discoveries 
from the Stardust mission [1] is the observation of 
crystalline silicate particles that resemble Ca, Al-rich 
inclusions (CAIs) and chondrules in carbonaceous 
chondrites [2-3], which suggests radial transport of 
high temperature solids from the inner to the outer 
solar nebula regions and capture by accreting cometary 
objects [e.g. 4]. 

The Al-Mg isotope analyses of CAI-like and type 
II chondrule-like particles revealed no excess of 26Mg 
derived from in-situ decay of 26Al (1/2 = 0.705Myr; 
[5]), suggesting late formation of these particles [6-8]. 
However, the number of Wild 2 particles analyzed for 
Al-Mg isotopes is still limited (n = 3). In order to bet-
ter understand the timing of the formation of Wild 2 
particles and possible radial transport in the 
protoplanetary disk, we performed SIMS (Secondary 
Ion Mass Spectrometer) Al-Mg isotope analyses of 
plagioclase in a FeO-poor ferromagnesian Wild 2 par-
ticle, which is the most abundant type among crystal-
line Wild 2 particles [e.g. 9]. 

Analytical Methods: A terminal particle 
(C2092,7,81,1,0) extracted from Stardust track 81 was 
cast in an 8mm epoxy disk (potted butt) and had a pol-
ished flat surface for oxygen isotope analyses [10], 
though the plagioclase was covered with a thin layer of 
epoxy (< 1µm). Thickness of the particle was estimat-
ed as ~ 2µm using X-ray computed tomography at the 
American Museum of Natural History. The plagioclase 
surface was exposed by grinding down the epoxy. 

For precise aiming of SIMS analysis spots in plagi-
oclase in the tiny particle, we removed 1µm2 area of 
the surface carbon coating by focused ion beam (FIB; 
Fig. 1) and identified the location by 27Al+ ion imaging 
with a 10µm×10µm square prior to a SIMS spot analy-
sis [cf. 10]. The Al-Mg isotope analyses were made 
using a ~ 2µm O− primary beam (~ 3pA) under condi-
tions similar to those in [11], but secondary Mg+ and 
27Al+ ions were detected with an axial electron multi-
plier by magnetic peak switching. Intensities of 24Mg+ 
were ~ 1-2×103cps. Synthetic anorthite composition 
glass with 0.6wt% MgO was used as a running stand-
ard. 

Sample: The Wild 2 particle ”Pyxie” (= F1/T81 in 
[10]) mainly consists of low-Ca pyroxene (En92Wo3) 

and plagioclase (An65Ab35; 0.4wt% MgO; Fig. 1) [10]. 
A pyroxene lath occuring in plagioclase is slightly 
enriched in Ca and Al compared to the larger low-Ca 
pyroxene (detected by SEM-EDS), consistent with the 
observation of Ca-rich pyroxene along with a 
polycrystalline aggregate of low-Ca pyroxene and 
plagioclase in a TEM section of the same particle [12]. 
Oxygen isotope ratios of low-Ca pyroxene in Pyxie 
were reproducible within analytical uncertainties, and 
the average 17O (= 17O – 0.52 × 18O) value is –1.1 
± 0.8‰ (2SE; n = 5; [10]). 

 
Fig. 1: Backscattered electron image of C2092,7,81,1,0 
“Pyxie”. The dashed line is a boundary line between low-Ca 
pyroxene (Lpx) and plagioclase (Pl). Arrows show spots 
sputtered for Al-Mg isotope analyses. Small five spots are 
SIMS pits for oxygen isotope analyses [10]. 
 

Results: We made three spot analyses on plagio-
clase in Pyxie (Fig. 1). The 27Al/24Mg ratios range 
from 64 to 67 (Fig. 2), which are similar to those of 
plagioclase in chondrules in type 3.0 chondrites (typi-
cally < 100; [e.g. 11]). Plagioclase in Pyxie shows no 
resolvable excess of 26Mg. The 26Mg* values are from 
–1‰ to +2‰ with uncertainty of ±4‰ (2SE). A re-
gression of the data yields an isochron with a slope of 
0.002 ± 0.034 (95% confidence) with the assumption 
that the regression line goes through the origin (Fig. 2). 
The initial (26Al/27Al)0 ratio of plagioclase in Pyxie is 
estimated as (0.03 ± 0.47)×10–5, and the inferred upper 
limit is 0.5×10–5. 



Discussion: Although secondary alteration cannot 
be totally ruled out considering the low An# (65) and 
MgO content (0.4wt%) in Pyxie plagioclase [cf. 13] 
and a suggestion that the petrologic grade of Wild 2 is 
up to 3.10-3.15 [14], disturbance in the 26Al-26Mg iso-
tope system in Pyxie is unlikely, because 1) Pyxie pla-
gioclase does not have any evidence for 
nephelinization which is accompanied by loss of 26Mg 
excess [cf. 13], as the K content was below detection 
limits using EPMA and SEM-EDS, 2) recognition of 
low temperature products cubanite [15] and Mg-
carbonate [16] in Wild 2 particles constrains the upper 
limit of the temperature (< 210°C; [15]), where diffu-
sion of Mg in plagioclase of An65 is very limited (<< 
1nm; [17]) even for 4.5Gyr, and 3) Mg diffusion in 
plagioclase of An65 during capture in aerogel (T ≤ 
2000K, t < 1µs; [1]) is less than 1nm [17]. No resolva-
ble excess of 26Mg indicates that Pyxie plagioclase 
crystallized in the (near) absence of 26Al, similarly to 
other Wild 2 particles [6-8]. Assuming homogeneous 
distribution of 26Al in the early solar system, the crys-
tallization period of Pyxie is estimated as > 2.4Ma af-
ter CAIs ((26Al/27Al)0 = 5.25×10–5; [cf. 18]) from the 
upper limit of 0.5×10–5 for (26Al/27Al)0. 

Nakashima et al. [10] inferred a link between fer-
romagnesian Wild 2 particles including Pyxie and 
chondrules in CR chondrites from their similar system-
atic trends of Mg# and 17O values that can be ex-
plained by addition of 16O-poor water ice (17O > 0‰) 
as an oxidizing agent to the anhydrous solid precursors 
[e.g. 19]. Furthermore, lack of evidence for in-situ de-
cay of 26Al of Pyxie (< 0.5×10–5, 17O ~ –1‰) and Iris 
(< 0.3×10–5, 17O ~ –0.3‰; [8]) is consistent with the 
relation of CR chondrules (chondrules with Mg# < 98 
and 17O > –3‰ do not show 26Mg excesses, while 
those with Mg# > 98 and 17O ~ –5‰ show 26Mg ex-
cesses [20]), which is distinct from chondrules in LL, 
CO, and Acfer 094 ((26Al/27Al)0 ratios of 0.2-1.0×10–5, 
regardless of Mg# and 17O [e.g. 11]). It should be 
noted that plagioclase in Pyxie (An65) is not as 
anorthitic as that in CR chondrules (An80-99; [13]). In 
spite of this difference, similarities of 17O, Mg#, and 
lack of 26Mg excess of chondrules in comet Wild 2 and 
CR chondrites with 17O > –3‰ suggest that they 
formed late in local disk environments that had similar 
oxygen isotope ratios and redox states, which could be 
the furthest regions of chondrule formation [10]. 

It is worth mentioning that Wild 2 particles ana-
lyzed so far consistently show no resolvable excess of 
26Mg [6-8, this study], suggesting their late formation, 

regardless of various chemistries (refractory-rich and 
FeO-rich and -poor ferromagnesian) and oxygen iso-
tope ratios (17O from –20‰ to ~ 0‰) [2, 8, 10, 21-22, 
this study], which reflect formation environments. 
Note that, for CAI-like particles, the late formation is 
more likely than formation prior to the 26Al injection 
into the early solar system, given the mineralogy of the 
particles [6]. The Wild 2 particles with no 26Mg excess 
could represent younger generations of high tempera-
ture solids that formed in regionally heterogeneous 
oxygen isotope compositions and redox states in the 
inner solar nebula and were then radially transported to 
the outer solar nebula regions. 
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Fig. 2: Al-Mg isochron diagram of Pyxie. Errors are 95% 
confidence. Dashed lines represent 2 confidence lines for 
the regression line (blue solid line). 


