INTRODUCTION
The Moon’s surface is covered by a layer of reactive dust, containing 1-2% of respirable fine dust (<3 μm). The habitable area of any lunar landing vehicle would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to evaluate the toxicity of Apollo moon dust in rodents through inhalation to assess the health risk of dust exposures to humans and to identify the mechanisms and potential pathways involved in lunar dust-induced toxicity.

MATERIAL AND METHODS
1. Animals and dust exposure: Pathogen-free Fischer 344 adult male rats (150-250 g; ~8-10 weeks old at arrival) were purchased from Charles River and were allowed to acclimate for 1 week before they were used in experiments. In each experiment, 132 male Fischer rats were randomly divided into different dose groups (control air, 2.1, 6.8, 21, or 61 mg/m3) and were placed in Battelle rat restraint tubes, which were then connected to the 24 nose-ports of a Jaeger-NYU nose-only chamber. All animals were exposed 6 hours daily, 5 days a week for 4 weeks for a total of 120 hours. After each daily 6-h exposure, the animals were returned to the vivarium, housed in pairs, and observed for clinical signs.

2. Collection and assessment of bronchoalveolar lavage (BAL) cells: At day1, day 7, 4 week, and 13 week post the last exposure, five animal per dose group were sacrificed. The bronchoalveolar lavage fluid (BALF) was collected by lavaging the right lung lobes with a total of 24 ml of phosphate-buffered saline (PBS) in five times. The lavage was centrifuged, and the cell pellets were suspended in 1 ml of HEPES-buffered solution with a total of 24 ml of phosphate-buffered saline (PBS) in five times. The lavaged lung tissue was snap frozen in LN2. The expressions of 84 fibrosis related genes were analyzed using the RT2 PCR array first strand kit. Real-time PCR Analysis on 18 Genes of Interest (Table 1).

RESULTS
1. Expression changes in fibrosis related genes after exposure to 61mg/m3 lunar dust particles: Figure 1 shows the fold changes of gene expressions in the lung tissue of the animals exposed to 61mg/m3 lunar dust in comparison to the controls at 13 weeks post-exposure.

2. Up-regulation of C-C and C-X-C Motif Chemokines

3. Correlation between Chemokine Expression and Biomarkers in Bronchoalveolar Lavage (BAL) Cells: Lunar dust exposure at two highest doses of 21 and 61 mg/m3 induced a significant neutrophil and macrophage infiltration through the mucous membranes of the bronchi.

4. Fibrosis related pathways in response to lunar dust induced damage

CONCLUSION
- Ccl3, Ccl12, Cxcl2, and Cxcl5 in lung tissues exposed to 61mg/m3 dust (p<0.05 compared to the controls at every time-point); B. The dose-dependent responses of the expression of Ccl3, Ccl12, and Cxcl2 in tissues exposed to 0, 2.1, 6.8, 21, and 61mg/m3 doses of lunar dust; C. The dose- and time-dependent responses of the expression of Cxcl5 in tissues exposed to 0, 2.1, 6.8, 21, and 61mg/m3 doses of lunar dust.

ACKNOWLEDGEMENT
This work was supported by the NASA Space Radiation Health Program.