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Abstract 

Ensemble learning with the Bagging Decision 

Tree (BDT) model was used to assess the impact of 

weather on airport capacities at selected high-demand 

airports in the United States. The ensemble bagging 

decision tree models were developed and validated 

using the Federal Aviation Administration (FAA) 

Aviation System Performance Metrics (ASPM) data 

and weather forecast at these airports. The study 

examines the performance of BDT, along with 

traditional single Support Vector Machines (SVM), 

for airport runway configuration selection and airport 

arrival rates (AAR) prediction during weather 

impacts. Testing of these models was accomplished 

using observed weather, weather forecast, and airport 

operation information at the chosen airports. The 

experimental results show that ensemble methods are 

more accurate than a single SVM classifier. The 

airport capacity ensemble method presented here can 

be used as a decision support model that supports air 

traffic flow management to meet the weather 

impacted airport capacity in order to reduce costs and 

increase safety. 

I. Introduction 

The steady rise in demand for air transportation 

and the restricted capacities of the National Airspace 

System (NAS) increases the possibility of airspace 

congestion. At the major commercial airports, air 

traffic congestion has been a serious problem for Air 

Traffic Management (ATM) [1]. FAA Traffic Flow 

Management (TFM) manages air traffic flow to 

balance the air traffic arrival demand against airport 

arrival capacity during inclement weather or under 

other circumstances. This often results in reduced 

airport arrival capacity which causes airborne delays 

by holding some aircraft for landing or changing 

routes to stay in clear weather to maintain safety. At 

major airports in the United States, when the 

expected demand for arrival air traffic flow exceeds 

the airport capacity for a significant period of time, 

Ground Delay Program (GDP), as one of the Traffic 

Management Initiatives (TMI), will then be 

implemented to smooth out the arrival flow and bring 

arrival demand in line with airport capacity [2, 3]. 

GDP is the most commonly used air traffic 

management procedure where aircraft are delayed at 

their departure airport in order to balance demand 

and capacity at their arrival airport. During the GDP, 

flights are assigned new departure clearance times, 

and will receive delays that in turn control their 

arrival times at the impacted airport. These are very 

important because the airborne delay is being 

changed to ground delay, which is both less costly 

and less risky. The most common reason for an 

overage of demand versus capacity is the reduction in 

airport acceptance rate due to adverse airport 

weather, such as strong wind, low ceilings and low 

visibility. 

For efficient GDP operation, accurate and 

reliable prediction of arrival demand and airport 

arrival capacity is crucial. TFM uses flight schedule 

monitor (FSM) software to compile scheduled flight 

information and flight plans in order to predict the 

demand for arrivals and departures at the site. During 

GDP, the major cause of the reduction in airport 

capacity is inclement weather. Since weather forecast 

products are often inaccurate and the uncertainty 

increases with forecast lead time, the problem of 

predicting airport arrival capacity, known as Airport 

Arrival Rate (AAR), is difficult to address.  

AAR is a dynamic parameter specifying the 

number of arrival aircraft that can be landed at a 

given airport in a one-hour time frame [4]. The short-

term forecast of capacity used by GDPs is usually 

given for each hour over several hours. For instance, 

AAR might be predicted over a six-hour period. 

ATM considers forecast weather conditions for an 

airport while making decisions about runway 

configurations and subsequent AARs. The main 

problem with prediction is due to highly stochastic 

nature of weather conditions that ultimately 

determine AARs. If the forecast AARs turn out to be 

higher than the AARs that actually materialized, then 



unnecessary ground delay will be applied and 

valuable airport capacity will not be fully utilized. 

Similarly, if the forecast AARs are lower than the 

actual AARs, then demand will exceed capacity and 

there will be airborne holding that could have been 

replaced with ground holding which is more safe and 

costs less.  

Besides weather, other factors, such as runway 

configuration, aircraft fleet mix, air traffic control 

separation requirements, arrival/departure split, as 

well as controller workload, etc. [5], also can affect 

airport runway arrival capacity. There are many 

runway capacity models available today [6]. Some 

models have been successful in improving ATM 

operations in some cases. However, due to their 

inability to accurately forecast airport weather 

impacts, a complementary weather decision support 

tool to translate weather forecast information into its 

impacts on airport capacity is important for TFM 

operation. 

The airport capacity of multiple runway systems 

in a large airport is determined by the number of 

runways available for simultaneous use. Runway 

configuration (grouping of runways) is a critical 

factor in determining airport capacity. Runway 

configuration usage depends on airport weather 

conditions, noise abatement procedures, air traffic 

demand, airport operator constraints, surface 

congestion, and navigational system outages. Among 

these factors, the most significant one is weather, 

wind direction and speed in particular. Even though 

runway configuration selection is a critical element in 

air traffic flow management, current operations in 

runway management are without assistance from 

automation. 

This paper examines the weather impacts on 

airport runway configuration selection and arrival 

capacity and introduces the use of Support Vector 

Machines (SVM) and Ensemble Bagging Decision 

Tree (BDT) machine learning method to select the 

runway configuration and predict the AARs for 

several hours. This approach relies on the historical 

airport operation and weather data to develop and test 

SVM and BDT models. A comparison of the model 

predictions is presented. The results from this 

approach are also discussed in this study. 

The remainder of the paper is organized as 

follows. Section II describes SVM and BDT 

modeling machine learning approaches and discusses 

the methods used to model performance validation. 

Section III shows the experimental data setup. Then 

Section IV presents analysis and computational 

results on the estimation of runway configuration 

selection and prediction of AAR using SVM and 

BDT approaches for several major airports. Finally, 

concluding remarks are provided in Section V. 

II. Modeling Methodology  

Support Vector Machine (SVM) and Bagging 

Decision Tree (BDT) were used in this study to 

estimate airport runway configuration usage and 

predict AAR using airport operation and weather 

information. The modeling approach represents a 

data-driven method for resolving classification tasks. 

Supervised machine learning was used to train BDT 

and SVM models by mapping inputs to desired 

outputs or targets. The models were validated using 

data cross validation methods. 

SVM Classification 

The Support Vector Machine (SVM), a 

supervised machine learning algorithm, was invented 

by Vapnik et al. [7-9] and has been successively 

extended by a number of other researchers. Its robust 

performance with respect to limited, sparse and noisy 

data is making it widely used in many applications 

from protein function, and face recognition, to text 

categorization for classification and regression 

prediction. The SVM model has also been utilized in 

airport capacity classification prediction [10]. 

When used for binary classification, the SVM 

algorithm separates a given set of two-class training 

data by constructing a multidimensional hyper-plane 

that optimally discriminates between the two clusters. 

Although SVMs were originally proposed to solve 

linear classification problems, they can be applied to 

non-linear decision functions by using the so-called 

kernel function trick [11]. Adopting this kernel 

technique, SVM can be utilized to automatically 

realize a non-linear mapping to a high dimensional 

space. The hyper plane in the high dimensional space 

corresponds to a non-linear decision boundary in the 

input space.  A widely used kernel is the Gaussian 

radial basis function (RBF). In this study, the SVM 

classification is implemented using LIBSVM [12].  

Ensemble Bagging Decision Tree 
Ensemble methods use multiple machine 

learning models to obtain a predictive performance 
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better than any of its individual constituent members 

could have produced. Bagging is an ensemble 

method that uses random resampling of a dataset to 

construct models [13]. In classification scenarios, the 

random resampling procedure in bagging induces 

some classification margin, i.e., the gap between the 

classes, over the dataset. Additionally, when bagging 

is performed in different feature subspaces, the 

resulting classification margins are likely to be 

diverse, which is essential for an ensemble to be 

accurate. The methods take into account the diversity 

of classification margins in feature subspaces for 

improving the performance of bagging. First, it 

studies the average error rate of bagging, converts the 

task into an optimization problem for determining 

some weights for feature subspaces. Then, it assigns 

the weights to the subspaces via a randomized 

technique in classifier construction. Experimental 

results demonstrate that the ensemble method is 

robust for classification of noisy data and often 

generates improved predictions than any single 

classifier [14, 15].   

In addition to their many other advantages, 

multiple-classifier systems hold the promise of 

developing learning methods that are robust in the 

presence of imperfections in the data in terms of 

missing features and noise in both the class labels and 

the features. Noisy training data tend to increase the 

variance in the results produced by a given classifier; 

however, by learning a committee of hypotheses and 

combining their decisions, this variance can be 

reduced. In particular, variance-reducing methods 

such as Bagging have been shown to be outstanding 

in the presence of fairly high levels of noise. In this 

study, the BDT classification is implemented using 

MATLAB [16].   

Model Validation Methods 
Machine learning models are data driven and 

therefore resist analytical or theoretical validation. 

The models are constructed from an initial random 

state to a trained state using the training data sets and 

must be tested or validated using a different data set. 

Several validation approaches are available. Among 

them, the very popular one frequently used by 

researches is cross-validation. 

In cross-validation, a series of SVM or BDT 

models are constructed, each time by dropping a 

different part of the data from the training set and 

applying the resulting model to predict the target. The 

merged series of predictions for dropped or test data 

are checked for accuracy against the observation. In 

one version of the cross-validation, called group 

cross-validation approach, data are divided into N 

groups. A total of N models are then constructed one 

by one using N-1 data groups for model training, and 

the remaining one group is for testing. Normally, N is 

chosen as 3, 5, and 10. At the end of this procedure, 

N predictions assembled from the dropped cases are 

compared with the observed targets to compute 

validation of model error for the cross-validation 

result. This cross-validation process was repeated N 

times, allowing each subset to serve once as the test 

data set. Ten-fold cross-validation is used in this 

investigation. 

A number of methods are available to evaluate 

performance of binary classifiers. For a classifier 

with any given discrimination threshold, the number 

of cases correctly and incorrectly classified can be 

computed. This gives a confusion matrix with four 

numbers as shown in Table 1. TP is the number of 

true positives, i.e., how many cases are estimated by 

classifier as “Yes” events which actually are “Yes” 

events. Similarly we can define TN as the number of 

true negatives, FP as the number of false positives 

and FN as the number of false negatives.  Using the 

statistics generated in Table 1, some frequently used 

classifier performance evaluation methods are 

described briefly below. More information about 

these methods can be found in Ref [17-19]. 

Table 1 Confusion matrix for dichotomous 

(“Yes”/”No”) events. 

 Classifier Estimate  

Yes No 

Actual 

Observation 

Yes TP FN 

No FP TN 

 

The true positive rate (TPR) is the proportion of 

“Yes” observed events that were correctly estimated. 

TPR= TP / (TP + FN). It has a range of 0 to 1. If 

FN= 0, then the score goes to 1, which is the best 

value possible. The Overall Accuracy Rate (OAR) is 

defined as OAR= (TP+TN) / (TP + FN + FP + TN). 

It has a range of 0 to 1. “1” is the best classification 

performance score. 

The false positive rate (FPR), which also called 

type I error rate, is the proportion of “No” observed 

events that were not correctly estimated. FPR = FP / 



(FP + TN). Its values also range from 0 to 1. If FP= 

0, then the score goes to 0, the best one can expect. 

The false negative rate (FNR), also called type II 

error rate, is defined as FNR = FN / (FN + TP) = 1-

TPR. 

The Critical Success Index (CSI) is the 

proportion of true positives that were either estimated 

or observed. CSI = TP / (TP + FP + FN). Its values 

range from 0 to 1 with a value of 1 indicating a 

perfect classification performance score. The CSI is 

more complete measure than TPR, FPR, or FNR. It 

depends on both false positives and false negatives, 

namely the CSI is sensitive to both type I and type II 

error rates. 

Receiver Operating Characteristic (ROC) or 

simply ROC curve analysis has gained substantial 

popularity in the machine learning community lately 

[20-22]. A ROC curve is a graphical plot of the true 

positive rate, TPR, vs. false positive rate, FPR, for a 

binary classifier as its discrimination threshold varies. 

AUC (Area Under the ROC Curve) represents a 

ranking-based measure of classification performance. 

Its value can be interpreted as the probability of how 

well a classifier is able to distinguish a randomly 

chosen “Yes” example from a randomly chosen “No” 

example. In contrast to many alternative performance 

measures, AUC is invariant to relative class 

distributions, and class-specific error costs. For this 

reason, AUC is a commonly used performance metric 

for dealing with imbalanced data. 

In general, the ROC curve bends toward the 

upper left corner where TPR are larger than FPR, and 

the AUC is then greater than 0.5. Where the curve 

lies close to the diagonal, the classification system 

does not provide any useful information, and AUC is 

approximately 0.5. The larger the AUC value, the 

easier the classifier can discriminate between a pair 

of positive and negative examples, so as to produce 

the better performance for the classifier. 

To compare the classifier performance of SVM 

and BDT, OAR, CSI, and AUC classifier 

performance measures are used in this research. 

III. Experimental Data Setup 

The weather impacted airport primary runway 

configuration selections were studied using the 

nonlinear binary classification models, SVM and 

BDT. The inputs for the models are airport terminal 

METAR weather data and the classification targets 

are different runway configurations. The models were 

trained and tested using tenfold cross-validation. The 

classification performances were evaluated using 

three metrics: OAR, CSI, and AUC. 

During the analysis of airport AAR predictions, 

a threshold was designated by comparing the GDP 

AAR distribution with all AAR distributions and by 

referencing FAA airport capacity benchmark [23]. 

The threshold, called GDP AAR threshold in this 

paper, is used to group the data into two classes for 

the airport. For the AAR above the threshold, the 

airport capacity is optimum under good weather 

conditions. Otherwise, the capacity is reduced under 

adverse weather conditions.  

The AAR prediction targets, AAR data at 2-

hour, 4-hour, and 6-hour look ahead times were 

grouped into two classes of “Yes” and “No”. AAR is 

denoted as “Yes” if its value is less than or equal to 

the GDP AAR threshold, “No” otherwise. The input 

data for AAR predictions include airport runway 

configuration information, current AAR, METAR 

weather, and T-WITI-FA weather forecast data. 

Applying both input data and 2 to 6 hour look ahead 

AAR classes, the SVM and BDT models were trained 

and tested using tenfold cross-validation. The 

classification performances were evaluated by the 

three classification performance metrics. 

In this analysis, the data sources are the FAA 

National Traffic Management Log (NTML) 

database, the airport surface Terminal Forecast 

Weather Impacted Traffic Index, T-WITI-FA [24, 

25], and the FAA Aviation System Performance 

Metrics (ASPM) database. All data over the years 

2007 through 2009 were derived from these data 

sources. 

GDP AAR Threshold 
The AARs over GDP events were selected and 

calculated from ASPM database using the GDP event 

start time and actual end time obtained from NTML 

database for each selected airport. Based on a 

comparison of airport GDP AAR, all AAR 

distributions for the airport and the airport capacity 

operation benchmark information, a GDP AAR 

threshold can be determined for that airport.  

Airport AAR Data 
 Observed airport hourly AAR data are 

collected from the ASPM database. For AAR 
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predictions, the current AARs are used as inputs and 

the AAR for two hour, four hour, and six hour look-

ahead times are used as targets. The AAR numerical 

values of these targets are converted into a 

categorical attribute of "Yes" or "No" by the airport 

GDP AAR thresholds.  

Current Airport Terminal Weather Data 
Current terminal weather at airport is an important 

contributor to airport operations and planning. Actual 

hourly airport surface weather observations 

(METAR), such as wind, ceiling, visibility, and 

meteorological condition flags, were selected from 

ASPM database. These data were preprocessed to 

convert character records to numerical values and the 

missing data were filtered out. The processed 

METAR data were used as inputs for airport runway 

configuration selections and AAR predictions. 

Forecast Weather Data 
The forecast airport Terminal Weather Impacted 

Traffic Index, T-WITI-FA is provided by 

Alexander Klein from Air Traffic Analysis, Inc. 

It was computed based on airport Terminal Area 

Forecast (TAF) data, Collaborative Convective 

Forecast Product (CCFP) data and other air traffic 

information. The computed hourly data include 2-

hour, 4-hour, and 6-hour forecast WITI data. Each 

forecast consists of seven factors. They are en-route 

convective WITI, local convective WITI, wind WITI, 

snow WITI, IMC WITI, volume/ripple effects WITI, 

and other WITI factor values. These seven factors 

and the sum of them for each forecast time were 

applied as inputs for AAR predictions. More details 

of these factors can be found in ref. 26. 

Airport Runway Configuration Data 
Airport operation data for runway configuration 

are collected from the ASPM database. For runway 

configuration binary classification analysis, we 

converted the runway labels into categorical 

attributes and used them as the targets. For AAR 

predictions, these data were preprocessed to convert 

character runway configuration labels to numerical 

values and are used as inputs for machine learning 

BDT and SVM models.  

IV. Results 

This section presents the analysis results of 

using classification techniques to determine airport 

runway configuration and predict AARs grouped by 

GDP AAR threshold for the following four major US 

airports: Newark Liberty International Airport, San 

Francisco International Airport, Chicago O’Hare 

International Airport, and Atlanta International 

Airport. These four are typical due to their high GDP 

event rate caused by inclement weather with different 

dominant weather cause factors. The runway 

configuration and AARs were studied using the data 

collected over the years 2007 through 2009, which 

contain more than 17000 samples after data 

preprocessing.   

Newark Liberty International Airport (EWR) 
Among major US airports, EWR has one of the 

highest GDP event rate for the years 2007-2009. 

During these three years, EWR airport was affected 

by GDP in about 50% of days. For these GDP events, 

the average GDP duration is about 9 hours and 52% 

of them are caused by strong winds [26]. 

For EWR airport, most arrival aircraft are on 

Runway 4R-22L, while most departure traffics are on 

4L-22R. The Runway 11-29 is used more often either 

by smaller aircraft or in cases where strong 

crosswinds occur on the two main parallel runways.  

There are about 15 operational runway 

configurations in EWR airport operation. Among 

them, only five are primary runway configurations 

that are used at least 3% of the time during a year [4]. 

The five primary runway configuration usages, 

denoted as arrival | departure runway configurations, 

are listed in Table 2. As an example, the wind 

directions for the top 2 frequently used runway 

configurations are shown in Figure 1.  

Runway Configuration 

(Arrival|Departure) 

Annual Operation 

Percentages 

22L|22R 41% 

4R|4L 27% 

11, 22L|22R 15% 

4R, 11|4L 8.5% 

22L|22R, 29 3.0% 

Table 2, EWR Primary Runway Configuration 



 

Figure 1, Wind direction distributions for EWR 

runway configurations with top two usages. 

Table 3 lists the results of separating the most 

frequently used runway configuration “22L|22R” 

from the second frequently used, “4R|4L”, and 

distinguishing “22L|22R” from all other runway 

configurations using SVM and BDT classifiers. The 

input to the models is airport METAR weather data. 

From this table, it is apparent that the BDT 

classification results are much better than SVM. 

Comparing the two columns in Table 3 with BDT 

classifier, the separation between “22L|22R” and 

“4R|4L” has an overall of 85% accuracy rate, while 

the separation between “22L|22R” and “all others” 

has only 76% overall accuracy rate. This may be 

explained as that some runway configurations, such 

as “11,22L|22R” or “22L|22R,29” included in the “all 

others” could be deployed under a similar weather 

condition for the runway configuration “22L|22R”. 

 22L|22R vs. 

4R|4L 

22L|22R vs.  

All Others 

 

SVM 

OAR 80% 67% 

CSI 0.74 0.41 

AUC 85% 72% 

 

BDT 

OAR 85% 76% 

CSI 0.78 0.54 

AUC 92% 83% 

Table 3, EWR Runway configuration Estimation 

By examining EWR AAR distributions for GDP 

and for all events in Figure 2 (a) and (b), the EWR 

GDP AAR threshold was determined as 40 arrival 

aircraft per hour. This 40 arrival aircraft per hour is 

also the EWR marginal rate [23]. Adopting this GDP 

AAR threshold of 40, the EWR AAR data in look-

ahead times were grouped into two classes.  

 

Figure 2, EWR AAR distributions 

The AAR classification prediction results for 2-

hour, 4-hour, and 6-hour look-ahead times are listed 

in Table 4. Once again, the BDT classification 

performance looks better than that from SVM. As an 

example, for 2-hour look-ahead AAR predictions, the 

AUC 95% confidence interval or two-sigma interval 

for BDT and SVM methods were computed as 92.7% 

to 93.2% and 81.8 to 82.6%, respectively. One can 

conclude that the AUC difference of 11% (93%-82%) 

between BDT and SVM is statistically significant as 

compared to their two-sigma intervals. Figure 3 

shows that the ROC curve in solid for BDT classifier 

bends more toward the upper left cover, e.g., more far 

away from the diagonal than the ROC curve in dotted 

line for SVM, which clearly signifies that the overall 

accuracy of BDT is much higher than that for SVM. 

In other words, BDT has an ability to correctly 

classify the underlying subjects into
 
their relevant 

subgroups better than SVM in this case. In terms of 

different look-ahead times, one can see from the table 

that the BDT classifier is doing very well for the 2 to 

4-hour look-ahead AAR predictions while its 

performance measure of AUC for the 6-hour 

prediction is 86%; not as good as that for the 2 to 4-

hour cases, but not bad, either. 

 SVM BDT 

OAR CSI AUC OAR CSI AUC 

2-h 75% 0.60 82% 87% 0.77 93% 

4-h 71% 0.54 78% 81% 0.68 89% 

6-h 69% 0.52 74% 78% 0.63 86% 
Table4, EWR AAR 2, 4, and 6 hour Prediction 



 
Figure 3, ROC curves of SVM (dotted) and BDT 

(solid line) for EWR AAR 2-hour prediction 

 

San Francisco International Airport (SFO) 
SFO has the second highest GDP events rate 

among major US airports. However, these events last 

only about 4.5 hours on average. About 88% of 

GDPs at SFO are caused by low ceilings due to 

marine stratus [26]. 

The current runway configuration at SFO 

consists of the following four: 10L-28R, 10R-28L, 

1R-19L, and 1L-19R. There are more than ten 

operational runway configurations in SFO airport 

daily operation. Among them, the five primary 

runway configurations are listed in Table 5. 

Runway Configuration  Annual Operation 

Percentages 

28L,28R|1L,1R 61% 

28R|1L,1R 15% 

28L,28R |28L,28R 13% 

28L|01L,01R 3.2% 

19L,19R|10L,10R 3.0% 

Table 5, SFO Primary Runway Configuration 

Table 6 lists the two SFO runway configuration 

selection results by SVM and BDT classifiers, 

respectively. The left column shows the results of 

distinguishing the top operational usage “28L, 

28R|1L,1R” from all others. The right column 

displays the classification measures of separating the 

second runway configuration “28R|1L,1R” from the 

third one “28L,28R|28L,28R”. Here it too reveals that 

the BDT classification results are superb comparing 

with the SVM. Both SVM and BDT classifiers 

illustrate that the classification performance for 

separating the two dissimilar runway configurations, 

i.e., the second and the third runway configurations 

counting from top, is much better than that for 

separating one from all other runway configurations.  

 28L,28R|1L,1R 

vs. 

all others 

28R|1L,1R  

vs.  

28L,28R |28L,28R 

 

SVM 

OAR 68% 81% 

CSI 0.64 0.72 

AUC 69% 86% 

 

BDT 

OAR 73% 86% 

CSI 0.66 0.78 

AUC 77% 92% 

Table 6, SFO Runway configuration Estimation 

The AAR distributions for GDP and all events 

for SFO are shown in Figure 4 (a) and (b), 

respectively. A value of 40 was chosen as the SFO 

GDP AAR threshold. The number is also 

corresponding to the SFO marginal arrival rate [23]. 

The AAR classification prediction results for 2-hour, 

4-hour, and 6-hour look-ahead times are listed in 

Table 7. Consistent with the previous findings, it 

proved again that the BDT classification works much 

better than SVM. The BDT classification measures 

with AUC for both 2 and 4-hour look-ahead cases are 

above 90%, which is excellent. 

 
Figure 4, SFO AAR distributions 

 

 SVM BDT 

OAR CSI AUC OAR CSI AUC 

2-h 83% 0.71 91% 88% 0.78 95% 

4-h 75% 0.61 84% 82% 0.70 90% 

6-h 72% 0.55 79% 79% 0.65 87% 
Table7, SFO AAR 2, 4, and 6 hour Prediction 



Chicago O’Hare International Airport (ORD) 
ORD airport has high GDP events rate and these 

events last about 8 hours.  About 29% ORD GDP 

events are caused by wind, 25% of them are by low 

ceilings, 15% by thunder storms, 14% by snow/ice, 

8% by low visibility, and 6% by rain [26]. 

The current runway configuration at ORD 

consists of seven runways. There are more than 40 

operational runway configurations used in ORD 

airport operation. All ten primary runway 

configurations are listed in Table 8. 

Runway Configuration  Annual Operation 

Percentages 

4R,9R,10|4L,9R,10,32L,32R 8.8% 

4R,9R,10|4L,9R,32L 7.5% 

27L,27R,28 |22L,28,32L 7.1% 

22R,27L,28 |22L,32L,32R 7.0% 

4R,9L,9R|4L,9L,32L,32R 6.5% 

22R,27L,27R|22L,32L,32R 6.2% 

4R,9R,10|4L,9R,32L,32R 3.9% 

22R,27L,28 |22L,32L 3.6% 

4R,9R,10|4L,9L,32L 3.4% 

27L,27R,28 |22L,28,32L,32R 3.3% 

Table 8, ORD Primary Runway Configuration 

The runway configuration selections were 

estimated to distinguish the top runway configuration 

(i.e., “4R,9R,10|4L,9R,10,32L,32R”) from the 2
nd

 

and the 3
rd

 runway configurations counting from the 

top, respectively. The outcomes are listed in Table 9. 

The runway configurations of the top one and 2
nd

 

from the top are similar; the top and the third one 

from the top are not. Both SVM and BDT methods 

show that the classification performance metrics for 

separation of the two dissimilar runway 

configurations are significant better than that for 

separating the two similar runway configurations. 

 4R,9R,10| 

4L,9R,10,32L,32R 
vs. 

4R,9L,10| 

4L,9R,32L 

4R,9R,10| 

4L,9R,10,32L,32R 
vs. 

27L,27R,28| 

22L,28,32L 

 

SVM 

OAR 65% 85% 

CSI 0.55 0.76 

AUC 69% 92% 

 

BDT 

OAR 76% 91% 

CSI 0.65 0.85 

AUC 85% 97% 

Table 9, ORD Runway configuration Estimation 

 

Figure 5, ORD AAR distributions 

 

The ORD AAR distributions for GDP and all 

events are shown in Figure 5 (a) and (b), respectively. 

AAR of 95 was selected for the ORD AAR threshold. 

The number is close to the ORD marginal arrival rate 

listed in ref. 23. The AAR classification prediction 

results for 2-hour, 4-hour, and 6-hour look-ahead 

times are listed in Table 10. More same as before, the 

BDT results are superior than SVM. However, the 

ORD AAR classifier prediction performances are 

better in comparison to EWR or SFO airport. The 

overall accuracy rate of BDT is greater than 85%; the 

AUC is above 90%, even for the six hour prediction 

case.  

 

 SVM BDT 

OAR CSI AUC OAR CSI AUC 

2-h 83% 0.53 87% 91% 0.73 95% 

4-h 79% 0.47 83% 89% 0.65 93% 

6-h 77% 0.43 80% 87% 0.61 92% 
Table 10, ORD AAR 2, 4, and 6 hour Prediction 

 

Atlanta International Airport (ATL) 
ATL also has the relatively high GDP events 

rate. These GDP events normally last more than 6 

hours. For these GDP events, 45% are caused by 

thunder storms. 

The current runway configuration at ATL 

consists of five runways and the fifth runway, 10-28, 

opened at May, 2006. There are more than 10 

operational runway configurations, among them only 

three, as shown in Table 11, are considered as 

primary runway configurations. 



 

Runway Configuration  Annual Operation 

Percentages 

26R,27L,28|26L,27R 49% 

8L,9R,10|8R,9L 35% 

26R,27L,28|26L,27R,28 3.5% 

Table 11, ATL Primary Runway Configuration 

The analysis of runway configuration selection 

was performed to separate the runway configuration 

of “26R,27L,28|26L,27R” from “8L,9R,10|8R,9L“ 

and to distinguish “26R,27L,28|26L,27R” from all 

others. These results are listed in Table 12.  

 26R,27L,28|26L,27R 
 vs. 

8L,9R,10|8R,9L 

26R,27L,28|26L,27R 
 vs. 

all others 

 

SVM 

OAR 85% 78% 

CSI 0.68 0.65 

AUC 91% 84% 

 

BDT 

OAR 89% 81% 

CSI 0.76 0.68 

AUC 95% 88% 

Table 12, ATL Runway configuration Estimation 

The ATL AAR distributions for GDP and all 

events are shown in Figure 6 (a) and (b), respectively. 

AAR of 105 was selected as the ATL AAR threshold. 

The AAR classification prediction results for 2-hour, 

4-hour, and 6-hour look-ahead time are listed in 

Table 13. Once again, the findings are the same, i.e., 

the BDT classification performs much better than 

SVM. The BDT accuracy is quite good with AUC, 

which is above 90% in all cases including for 6-hour 

look-ahead time instance. 

 
Figure 6 ATL AAR distributions 

 SVM BDT 

OAR CSI AUC OAR CSI AUC 

2-h 82% 0.58 89% 90% 0.76 95% 

4-h 80% 0.53 84% 86% 0.68 93% 

6-h 78% 0.50 82% 84% 0.64 91% 
Table13, ATL AAR 2, 4, and 6 hour Prediction 

 

As a summary, the following observations can 

be made from results in all Tables for these four 

airports: 

(a) Ensemble BDT consistently outperforms the 

single SVM classifier in all three classifier 

performance measures by statistically significant 

amounts during ten-fold cross validation testing. 

(b) The BDT classifier provides very good 

estimates of the runway configuration based on 

the airport weather to distinguish dissimilar 

runway configurations. In such cases, overall 

accuracy rate is above 85%, CSI is greater than 

0.75, and the most important measure, AUC, is 

above 90%.  However BDT only offers fairly 

good classification results for distinguishing a 

runway configuration from similar or all other 

runway configurations, but the AUCs are still 

above 80%. 

(c) The AAR classification predictions by BDT 

for 2 and 4 hour look-ahead times are excellent 

with an above 80% of overall accuracy and 

above 90% of AUC. For 6-hour AAR prediction, 

the performance of the BDT classifier is not bad, 

AUC is above 85%. 

(d)  The AAR prediction results using BDT 

models for EWR and SFO are not as good as for 

ORD and ATL. One reason could be that the 

dominant weather causes of GDP events for 

these four airports are different. The situations 

of fast changes in the wind direction and speed 

at EWR and rapid fog burn-off time at SFO in 

west coast may add more uncertainty on the 

AAR predictions. 

V. Concluding Remarks 

 

This paper presents studies of the weather 

impacts on airport runway configuration selection 

and airport capacity using machine learning 



approaches. It described how ensemble multiple 

classifier BDT model and traditional SVM can be 

used to estimate runway configuration selection and 

AAR 2 to 6-hour look-ahead predictions. The models 

evaluation was accomplished by ten-fold cross-

validation. The performance of these two classifiers 

was determined by the overall accuracy rate (OAR), 

critical success index (CSI), and area under the ROC 

curve (AUC). The analysis, estimation, and 

prediction were achieved by using airport terminal 

METAR weather data, T-WITI-FA forecast data, 

airport runway configuration, and AAR information 

over the years 2007-2009. 

The experimental results show that the proposed 

ensemble BDT classifier outperforms single SVM. 

Even though there is clearly room for fine-tuning and 

improving each of the algorithms, this conclusion 

should remain unchanged.  

Since this analysis focused on weather impact on 

runway configuration selection and AAR predictions, 

other factors affecting runway configuration 

selections and AARs were ignored. For example, the 

noise abatement procedure information is not used 

for the runway configuration study.  These factors 

would inject more noise and data imperfections into 

the analysis. The fact of BDT having better 

classification performance for our data demonstrates 

that multiple classifier systems are more robust in the 

presence of noise and other imperfections in data as 

compared to a single classifier system.  

The BDT classifier performs well in both 

runway configuration selections and AAR prediction 

studies. This method is recommended as a decision 

support model in runway configuration selection and 

AAR planning of GDP events for TFM and airport 

daily operations. 
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