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Chapter 1: Introduction

Motivation
Research Goals
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e Spacecraft components may be damaged due to airflow produced
by Environmental Control Systems (ECS).
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e Spacecraft must survive both pre-launch and launch environments

* ECS Systems supply air to keep spacecraft cool, dry, clean while on
the ground

* Delicate spacecraft instruments are sensitive to high velocity flow
from ECS system

— Manufactures set Impingement Requirements

* (2) Methods to Verify Requirements
— Test vs. CFD

@’WCF
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Motivation: ECS System )

* Environmental Control System

— Prior to launch, cold air (air conditioning) flows
downward around the spacecraft after it has been
encapsulated in the Payload Fairing.

— The cold air is delivered through an air-conditioning
(AC) pipe, which intersects the fairing and flows past a
diffuser located at the pipe/fairing interface

— After passing over the spacecraft, it is finally
discharged through vents

— The Payload Fairing air conditioning is cut off at lift off.
g’ U C F Kandula, M., Nallasamy, R., Schallhorn, P., and Duncil, L., “An

Application of Overset Grids to Payload/Fairing Three-Dimensional
COLLEGE OF ENGINEERING AND COMPUTER SCIENCE Internal Flow CFD Analysis," A|AA-2002-3253, 2005, KSC-2007-215.



A Motivation: ECS System
g Qverview _ A4S

 Example of ECS CFD Analysis .

AC pipe
Diffuser y DPAF

Guidance section

Swirl flow

g’ U C F Kandula, M., Nallasamy, R., Schallhorn, P., and Duncil, L., “An

T o Application of Overset Grids to Payload/Fairing Three-Dimensional 7
COLLEGE OF ENGINEERING AND COMPUTER SCIENCE Internal Flow CFD Analysis," A|AA-2002-3253, 2005, KSC-2007-215.



A Motivation: ECS System
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 Example of an ECS system airflow test L

\&% U C F Kandula, M., Hammad, K., and Schallhorn, P., “CFD Validation with
A —

LDV Test Data for Payload/Fairing Internal Flow,” AIAA-2005-4910,
UNIVERSITY OF CENTRAL FLORIDA KSC-2005-4910. 8
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e Computational Fluid Dynamics (CFD) is being used without proper
validation
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* “There can be no validation without experimental data with which to
compare the results of the simulation” — Coleman and Stern

* Experimental Data is expensive
— Shrinking Budgets

* Pairing experimental data, uncertainty analysis, and analytical predictions
provides a comprehensive approach to verification and is the current state
of the art. (ASME V&V 20-2009)

* A method is sought to conservatively envelop the exact solution using CFD

only
— Without Experimental Data

&Sucr
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STANDARD FOR MODELS AND SIMULATIONS

Requirement 4.4.7 & 4.4.8

* Shall document any uncertainty quantification processes
used for:

* Shall document any quantified uncertainties, both physical
and numerical, for:
a. The referent data

The input data

The Modeling and Simulation (M&S) results

The propagation of uncertainties

The quantities derived from M&S results

® o 0 T
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1. Demonstrate a CFD Uncertainty Analysis for 3-D, low speed,
incompressible, highly turbulent, internal flow can be calculated for an
entire simulation domain

2. Investigate a higher order interpolation scheme to be used for grid
interpolations and uncertainty quantification

3. Investigate the applicability of using the ASME 5-Step procedure for the
entire computational domain to estimate numerical uncertainties.

4. Calculate the uncertainty in using different turbulent models.

5. Demonstrate this method can contribute to the study of importance of
input parameters in CFD.

6. Compile a table for uncertainty estimates by input parameter.

7. Demonstrate the ability to use OPENFOAM to calculate the velocity field
of an Environmental Control System.

8. Compare the results of OPENFOAM verses an industry standard CFD
software program (ie FLUENT and STARCCM+).

&Sucr
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Chapter 2: Literature Review i

Summary of Literature Review

Summary of the State of the Art
Uncertainty Analysis

Proposed Methodology without
Test Data
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Summary of ASME Standard

ASME V&V-20-2009

Standard for Verification and
Validation in Computational Fluid
Dynamics and Heat Transfer

(*buc:F
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Approach Z} Z,f_

Estimate Interval within which Omodel falls with
a given degree of confidence

Smodel E[E _ uvalrE + uval]

E=5-D

Error Sources (Unum,Uinput,Up),Uncertainty
Equation

— 2 2 2
Upyal = k (\/unum + uinput + Up )

@%UCF
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e 5 Step Procedure for Uncertainty Estimation

— Step 1: Representative Grid Size

1
o ( Total Volume )§
1 \total number of cells in fine grid
1
h ( Total Volume >§
27 \total number of cells in medium grid
1
B ( Total Volume )§
>~ \total number of cells in coarse grid

&Sucr
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— Step 2: Select 3 significantly (r>1.3) different grid

JOHN £ KENNEDY SPACE CENTER n n

A Numerical Uncertainty, Unum )

sizes
h,
1 = h_1
hs
32 = h,

— Use CFD Simulation to analyze key variables, Sk

€51 = S — Siq

€37 = Si3— S0

&Sucr
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— Step 3: Calculate observed order, p

£
r,,P — sign (Eij)

P = [ 0 () +
1n(r21) €21 73 P—Slgn(ssz)

€21

— Step 4: Calculate extrapolated values

(121? * Sg1 — Sk2)

21
Sext” = (P — 1)
e 21 = (Sk1 — Sk2)
(Sk1)

&Sucr
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— Step 5: Calculate Fine Grid Convergence Index &
Numerical Uncertainty, Factor of Safety, Fs=1.25

1.25 % e %1
(r21? — 1)

GCIfinez1 —

— Assumption that the distribution is Gaussian about the fine grid, 90%
Confidence

GClrine
Upum = 2

&Sucr
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* |[nput error is based on a Taylor Series
expansion in parameter space

= [ ()

\1 =1

@%UCF
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Proposed Methodology without Test
Data

@%UCF
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Proposed Methodology **conservative estimate to envelop true value

If there is no experimental data, D=0, 6,=0, and up=0.
E=S—-D=S

0s=S—-T

E:S—D:T+ 55_(T+6D): 55_ 5D: 55

— 2 2 2
Upyqr = k (\/unum + uinput + Up )

— 2 2
Uyqr = k (\/unum + uinput )

Report the simulated result, S as

&S ucF $ Tt
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* Report S +/-u,
 k—value (Use Student-t
Distribution)

* Treat all input variables
as ‘random’ and run
separate CFD case

* Treat as an oscillatory
convergence parameter

1
UOscillatory — ‘E(SU —5.)

&Sucr
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Number of Cases Degrees of Freedom Conﬁ{ienc 0%
2 1 6.314
3 2 2.92
4 3 2.353
5 4 2.132
6 5 2.015
7 6 1.943
8 7 1.895
9 8 1.86
10 9 1.833
11 10 1.812
12 11 1.796
13 12 1.782
14 13 1.771
15 14 1.761
16 15 1.753
17 16 1.746
18 17 1.74
19 18 1.734
20 19 1.729
21 20 1.725
22 21 1.721
23 22 1.717
24 23 1.714
25 24 1.711
26 25 1.708
27 26 1.706
28 27 1.703
29 28 1.701
30 29 1.699
31 30 1.697
41 40 1.684
51 50 1.676
61 60 1.671
81 80 1.664
101 100 1.66
121 120 1.658

infty infty 1.645
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Chapter 3: Applying the State o thé
Art CFD Uncertainty Analysis to a
Backward Facing Step

Grid Refinement Study
CFD Uncertainty Analysis of
Backward Facing Step

[ ] [ ]
Results and Discussion
-
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Backward Facing Step Example

AlAA-2013-0258
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Wy Velocity Magnitude Prediction — Backward
N Facing Step

L

Symmetry

Uniform Velocity Inlet
U=10m/s

&SucrF
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* There are 87 Different Input Parameters for the
ke-realizable model in SimpleFoam

— These include:
* Boundary Conditions
* Wall Functions
* Fluid Properties
e Turbulence Parameters
e Solution Schemes
* Solvers
* Mesh
e ect.

&Sucr
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Uncertainty Variables Considered {
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Type of Variable Variables Xi Value Bias Error
Boundary s . s .
epsilion turbulent mixing length dissipation rate inlet (m2/s3 0.5 0.5
Conditions P &eng P (m2/s3)
k turbulent intensity kinetic energy inlet (m2/s2) 0.05 0.05
pressure outlet (Pa) 101325 2%
velocity inlet (m/s) 10 0.5
Fluid Properties kinematic viscosity nu represents air [0-50-100] deg C 1.79E-06 [13‘68'025 23.06e-
1,192,000
s es . . 1,862,500
Grid Size Method - Uses Oscillatory Uncertainty
3,311,689
. Method - Uses Richardson's Extrapolation (ASME 5 Step Procedure) — Calculated for Velocity at each
Numerical cell
Solver OpenFOAM (SimpleFoam) vs. Fluent
Turbulence ke-realiable, kwSST, and SpalartAllmaras
Models

Expanding the data reduction equation for the listed variables in order from top
to bottom.

e = ( (00 2) (2 o)+ (22 ) (2 o8) (2 o)+ (2o
1/2

av ZBZ av ZB aV ZBZ
* (anum) mum | (asolver> sower |+ (aturb) i

27
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 The uncertainty for each of the following was calculated for each
cell using the following method outlined by Stern, Wilson, Coleman,
and Paterson. S is the simulated result. For this case it is the upper
velocity §,and the lower velocity §,.

— epsilion turbulent mixing length dissipation rate inlet (m?2/s3)
— k turbulent intensity kinetic energy inlet (m?2/s?)

— Pressure outlet (Pa)

— Velocity Inlet (m/s)

— Kinematic viscosity nu=17.06e-06 [13.6e-06 -> 23.06e-06] (m?/
s) represents air [0-50-100] degrees C

— @Grid size
— Turbulence Models
— Solver

&Sucr
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Results (Oscillatory Variables)
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Kinematic viscosity

epsilion turbulent mixing "“=17-°59'°52[13-59'°5 =>
length dissipation rate Pressure outlet (Pa) 23.06e-06] (m/s) represents Turbulence Models

. 273 — air [0-50-100] degrees C o
inlet (m?/s3) 0 - 20 percent 0-27.727 percent >100 %

0—1.155 percent

O WD DD s

k turbulent intensity

kinetic energy inlet (m?2/

s2) Velocity Inlet (m/s) Grid size Solver
0-0.785 percent 0 - 6.558 percent 0 - 698 percent >30%

@’ U C F Percent —is the percentage change in local velocity
-

UNIVERSITY OF CENTRAL FLORIDA 29
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Numerical —= ASME V&V-20-2009 5 Step Procedure

For a grid size of 1,192,000 cells [grid 2 -1,862,500
cells], [grid3 - 3,311,689 cells], the uncertainty in
the velocity prediction was 0 — 5300 percent as
shown in Figure 11 as estimated by Richardson’s
extrapolation method.

%’UCF i
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Velocity Prediction with Uncertainty /-
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* This paper outlines an uncertainty analysis for thek/e
realizable turbulence model for a backward facing
step.

 The velocity magnitude was predicted using CFD.

* The uncertainty parameters listed in the Table were
analyzed using an oscillatory convergence calculation
or a monotonic convergence calculation.

* Plots of the velocity magnitude can be combined with
a corresponding uncertainty plot for an accurate
velocity prediction.

* Numerical Uncertainty using ASME 5 Step Procedure
produced un-realistic results

(91UCF
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* The following input uncertainty's are recommendé

Tyrfe of Variables Xi Value Bias Error Uncertainity
Variable
Boun.d.ary epsilion turbulent mixing length dissipation rate inlet (m2/s3) 0.5 0.5
Conditions 1.2% of local velocity
k turbulent intensity kinetic energy inlet (m2/s2) 0.05 0.05 0.8 % of local velocity
pressure outlet (Pa) 101325 2% 10x the variation
velocity inlet (m/s) 10 0.5 1.3x the variation
Fluid . . . . [13.6e-06 ->
. kinematic viscosity nu represents air [0-50-100] deg C 1.79E-06
Properties 23.06e-06] | 28% of the local velocity
1,192,000
Grid Size Method - Uses Oscillatory Uncertainty 1,862,500 grid specific
3,311,689
Numerical Method - Uses Richardson's Extrapolation (ASME 5 Step
Procedure) — Calculated for Velocity at each Cell
Solver OpenFOAM (SimpleFoam) vs. Fluent
30% of the local velocity
Future work will
Tul\rnboudlzlr;ce ke-realiable, kwSST, and SpalartAllmaras consider more
turbulence models

&Sucr
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Chapter 4: Spacecraft ECS System. /
Overview and Modeling
Publically Available Information
on EELV ECS Systems
Modeling and CFD Analysis of (3)
Generic Non-proprietary

Environmental Control Systems
%UCF and Spacecraft Configurations
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Spacecraft / ECS System

AlAA-2014-0440

@%UCF
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* The Rockets Behind the Missions:
— Delta ll
— Delta IV
— Atlas V
— Pegasus
— Taurus
— Falcon 9

* http://www.nasa.gov/centers/kennedy/
launchingrockets/

@UCF
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Each of these vehicles have a Payload Planners Guide or Users Guide

http://www.ulalaunch.com/site/docs/product cards/guides/

DeltallPayloadPlannersGuide2007.pdf

http://www.ulalaunch.com/site/docs/product cards/guides/

DeltalVPayloadPlannersGuide2007.pdf

http://www.ulalaunch.com/site/docs/product cards/guides/

AtlasVUsersGuide2010.pdf

http://www.orbital.com/Newslnfo/Publications/Pegasus UG.pdf

http://www.orbital.com/NewslInfo/Publications/taurus-user-guide.pdf

http://www.spacex.com/Falcon9UsersGuide 2009.pdf

&Sucr
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* Air-conditioning is supplied to the spacecraft via an umbilical after
the payload fairing is mated to the launch vehicle.

 The payload air-distribution system provides air at the required
temperature, relative humidity, and flow rate as measured

* The air-distribution system uses a diffuser on the inlet air-
conditioning duct at the fairing interface.

* |f required, a deflector can be installed on the inlet to direct the
airflow away from sensitive spacecraft components

 The air can be supplied to the payload between a rate of

e 1300 to 1700 scfm.
 Diameter of Fairing is 3meters

JOHN £ KENNEDY SPACE CENTER

Q http://www.ulalaunch.com/site/docs/product cards/guides/
@ UCF DeltallPayloadPlannersGuide2007.pdf
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 The airis supplied to the payload at a maximum
flow rate of 36.3 kg/min to 72.6 kg/min (80 to
160 Ib/min) for 4-m fairing launch vehicles and
90.7 kg/min to 136.0 kg/min (200 to 300 lb/min)

for 5-m fairing launch vehicles.

* Air flows around the payload and is discharged
through vents in the aft end of the fairing.

* Fairing sizes 4meter and 5 meters in diameter

@) UCF http://www.ulalaunch.com/site/docs/product cards/guides/
sity oF CenTRAL FLO DeltalVPayloadPlannersGuide2007.pdf 39
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Internal ducting defectors in the PLF direct the gas upward to prevent direct
impingement on the spacecraft.

The conditioning gas is vented to the atmosphere through one-way flapper doors
below the spacecraft.

The PLF air distribution system will provide a maximum air flow velocity in all
directions of no more than 9.75 mps (32 fps) for the Atlas V 400 and 10.67 mps (35
fps) for the Atlas V 500.

There will be localized areas of higher flow velocity at, near, or associated with the
air conditioning outlet.

Maximum air flow velocities correspond to maximum inlet mass flow rates.
Reduced flow velocities are achievable using lower inlet mass flow rates.

Flow Rates
A) Atlas V 400: 0.38-1.21 kg/s £0.038 kg/s (50-160 Ib/min +5 Ib/min),
B) Atlas V 500: 0.38-2.27 kg/s +0.095 kg/s (50-300 Ib/min £12.5 Ib/min)

Fairing sizes are 4meters and 5 meters in diameter

http://www.ulalaunch.com/site/docs/product cards/40

e pe ety ey s S guides/AtlasVUsersGuide2010.pdf
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* The fairing is continuously purged with filtered
air.

JOHN £ KENNEDY SPACE CENTER

* The flowrate of air through the fairing is
maintained between 50 and 200 cfm.

* The air flow enters the fairing forward of the
payload and exits aft of the payload. There are
baffles on the inlet that minimize the
impingement velocity of the air on the payload.

. Fairing diameter is 0.97 meters

http://www.orbital. com/NewsInfo/Publlcatlons/
Pegasus UG.pdf

UNIVERSITY OF CENTRAL FLORIDA
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Upon encapsulation within the fairing and for
the remainder of ground operations, the
payload environment will be maintained by

the Taurus Environmental Control System
(ECS).

Fairing inlet conditions are selected by the
Customer

Fairing diameters are 63 inches and 92 inches

@) U C = http://www.orbital.com/NewslInfo/Publications/

taurus-user-guide.pdf
UNIVERSITY OF CENTRAL FLORIDA 42
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Falcon 9 /< )>
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* Once fully encapsulated and horizontal, the
Environmental Control System (ECS) is
connected

Payload environments during various
processing phases are:

— In hanger, encapsulated — Flow Rate: 1,000 cfm
— During rollout: 1,000 cfm
— On pad: Variable from 1000 to 4500 cfm

Fairing diameter is 5.2 meters
@1 UCF http://www.spacex.com/Falcon9UsersGuide 2009.pdf
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* Fairing Sizes are approximately 1Im, 1.6m, 2.3m, 3m,
4m, 5m in diameter.
* (3) generic fairing diameters are selected to envelop
the EELV fairing configurations
— 0.75m
—35m
—55m
* |nlet Conditions range from 1000 cfm to 4500 cfm

e Spacecraft diameters range with fairing sizes, a generic
spacecraft was drawn and scaled accordingly

Q
INIVERSITY OF CENTRAL FLORIDA
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 CAD model of the spacecraft was created in
Pro/ENGINEER, 0.75m
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(3) Configurations Z() >
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e 3.5m 5

&SucF
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(3) Configurations  //,

AUNCH SERVICES P

A

* 55m

&SucF
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CFD Modeling Z() >
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* Snappy Hex — Mesher

0.75m
Configuratiq
(6762865 nunjber
of cells) |

3.5m Configuration 5.5m Configuration

@1 UCF (8594480 number of (6980673number of
— cells)
UNIVERSITY OF CENTRAL FLORIDA Ce”S) 48
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* OpenFoam - SimpleFoam

one_coarsegrid (my/s)

one_coarsegrid (m/s)

iD

one_coarsegrid (m/s)

i[]

. ; 20

I‘]D +10
10

! | !

0

0.75m
Configuratipn
(6762865 number

of cells)
; 3.5m Configuration 5.5m Configuration
@ U C F (8594480 number of (6980673number of
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Chapter 5: Computational Fluid
Dynamics Uncertainty Analysis

Interpolation Scheme needed for CFD Uncertainty Analysis

Feasibility of using Richardson’s
Extrapolation for Entire Computational
Domain

Proposed CFD Uncertainty Method
Compared to Exact Solution — Laminar
Flow Between Parallel Plates

Proposed CFD Uncertainty Method Applied to
Heat Transfer over a Flat Plate

(*buc:F
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Interpolation Method needed for
Numerical Uncertainty Analysis of
Computational Fluid Dynamics

AlAA-2014-1433
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Summary of Richardson’s Extrapolation {())

JOHN £ KENNEDY SPACE CENTER )]
LAUNCH ss.cevn(fs7 SRAM -
\ F

* Navier Stokes Equations

— 2" order, non-homogeneous, non-linear partial
differential equations

* Richardson’s Extrapolation is used to produce
Ath order accurate solution from separate 2@
order accurate Navier Stokes Solutions

gs"
UNIvERSITY OF CENTRAL FLORIDA
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Summary of Richardson’s Extrapolation {())
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e ASME V&YV 20-2009 Outlines a 5-step Procedure
to Richardson’s Extrapolation using Roache’s
(1998) Grid Convergence Index (GCl) Method

* Assumptions
Three discrete solutions are in the asymptotic range

Meshes have a uniform spacing over the domain
Meshes are related through systematic refinement

Solutions are smooth

s whe

Other sources of numerical error are small

gsﬂ
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Solver Interpolation /5
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* FLUENT

* Includes a Mesh-to-Mesh Interpolation
* Performs a zeroth-order (nearest neighbor) interpolation
* Designed for initial conditions from a previous solution

* OPENFOAM

 Mapfields fuction interpolation
* Used for initialization of a solution from a previous model

e Using these ‘zeroth-order’ interpolation schemes is not
sufficient for comparing errors from the mesh

@UCF
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Matlab Interpolation Schemes {( 5
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 Matlab
* High level language used for numerical computations

e CFD datais in various forms
1D, 2D, 3D, uniform, non-uniform
* Generic Scheme is sought for all CFD data

Matlab Function

interpl interp2 interp3
Interpolation Method

'nearest’ - Nearest neighbor interpolation X X X
'linear' - Linear interpolation (default) X X X
'spline' - Cubic spline interpolation X X X

'pchip' - Piecewise cubic Hermite interpolation X

‘cubic’ X X (uniformly-spaced only) [ X (uniformly-spaced only)
'v5cubic' - cubic interpolation used in Matlab 5 X

@s‘nUCF
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Example Problem {())
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— Fully developed flow between parallel plates
 Exact Solution to Navier Stokes

JOHN £ KENNEDY SPACE CENTER

* Provide a good example of errors that can be induced
from interpolation

() L= 3| ()

a(m) 0.1
rho (kg/m3) 1.225
@ ucC F mu (Ns/m2) | 0.00001789
dp/dx (N/m3) -0.004

l\l\ll(ll\(l(l\ll |l| RID 56
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— Constructed a
CFD Model in
FLUENT

e 3 Grids

— Coarse, 7,140
Cells

— Medium, 14,186
Cells

— Fine, 24,780
Cells

&SucrF
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Example Problem (( o
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CFD vs. Exact

%

)] ~ [¢3] (o]

Gmm—EXACT

® Coarse

B

A Medium

w

B Fine

O O O 9 o O o o o
N (V]

Position y (m)
(@] (@] (@] (@] D o (@] (@] (@]

e

-0.005 0.005 0.01 0.015 0.02 0.025 0.03

Velocity (m/s)
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* Interpolation Direction?
1. Interpolate Coarse and Medium Mesh -> Fine

|||||||||
nnnnnnnnn
.........
|||||||||

(ID':, (Pg @,

“coarse medium >

2. Interpolate Medium and Fine Mesh -> Coarse

|||||||||
nnnnnnnnn
|||||||||
nnnnnnnnn

2 ®, TP,

medium “coarse

gﬁUCF
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Example Problem {( >
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1. Linearly Interpolate Coarse and Medium Mesh -> F|¥ne

T P31 P,

“coarse medium

Extrapolated Solution on Fine Grid
0.0600

0.0500

Max % Error Average %

o
E
o
&

E Extrapolated Error
>
:E 0.0300 | ¥ Extrapolated Solution Values Extra pOIated
& 0.0200 | ~EXACT Values
0.0100 |
0.0000 0.8950 0.0596
0.0000 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300

Velocity (m/s)

&S ucF
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: . . i
2. Linearly Interpolate Fine and Medium Mesh -> Coarse

nnnnnnnnn
|||||||||
.........
.........

@, ¢, P

medium “coarse

Extrapolated Solution on Coarse Grid

0.0600
0.0500 Max % Error Average %
200400 Extrapolated Error
% 00300 | Values Extrapolated
:E E Extrapolated Solution
& 0.0200 | ~=EXACT YEIVES
0.0100 |
0.0792 0.0175
0.0000

0.0000 0.0050 00100 0.0150 0.0200 0.0250 0.0300

&S ucF
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* Interpolation Direction? N

1. Interpolate Coarse and Medium Mesh -> Fine

Extrapolated Sotution o Fine Grid Max % Error Average % Error
0.0800 Extrapolated Extrapolated
0.0800 Values Values
E{l‘{l‘im
E“‘“ = fatrapalated Seletion
E{H}IDD =e=EXALT
“m‘l";_m Qo050 0O 0.0150 DOR00 GOS0 0.0300 0-8950 000596
Walacity [myfs)
@ Interpolate Medium and Fine Mesh -> Coarse
Extrapolated Solution on Coarse Grid Max % Error Average % Error
o.0800 Extrapolated Extrapolated
0.0500 Values Values
gﬂ‘ﬂ‘lm
B ougmon & [ atrapalated Schitien

% S DY AL, RitE AN, St 0.0792 0.0175
&S ucf
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Grids Max % Error |Average % Error
(Coarse vs Exact) 0.1910 0.1265
(Medium vs Exact) 0.0969 0.0367
(Fine vs Exact) 0.0289 0.0121
1. Linearly Interpolated Coarse, Medium to Fine
(Interpolated Coarse vs Exact) 1.9760 0.2528
(Interpolated Medium vs Exact) 0.6322 0.0679
2. Linearly Interpolated Medium, Fine to Coarse
(Interpolated Medium vs Exact) 0.0728 0.0362
(Interpolated Fine vs Exact) 0.0787 0.0223
Extrapolated
1. Linear Interpolation Coarse and Medium to Fine (Extrapolated vs
Exact) 0.8950 0.0596
2. Linear Interpolation Medium and Fine to Coarse (Extrapolated vs
Exact) 0.0792 0.0175

&Sucr

UNIVERSITY OF CENTRAL FLORIDA
COLLEGE OF ENGINEERING AND COMPUTER SCIENCE

)

62



Example Problem {( >

LAUNCH %EQVICE? SRAM .
O

— Interpolating to the coarse grid was selected

JOHN £ KENNEDY SPACE CENTER

— Other interpolation methods
* “nearest” — Fluent’s Mesh-to-Mesh

e “linear” — Matlab
vfi = interpl1(fine(:,2),fine(:,1),coarse(:,2),'linear’)

 “cubic” — Matlab
vfi = interpl1(fine(:,2),fine(:,1),coarse(:,2), cubic’)

@s‘nUCF
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Example Problem 12
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\ ;
 “nearest” — Fluent’s Mesh-to-Mesh
Zeroth Order
Interpolation
Exact
§ = CFDFine
CFD Med

* CFD Coarse

== nterp-fine-to-coarse

*
o
[ 0.001 0.002 0.003 0.004 0.005
Velocity (m/s)

UNIVERSITY OF CENTRAL FLORIDA 64
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Example Problem Z)
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e  “linear” — Matlab
yfi = interp1(fine(:,2),fine(:,1),coarse(:,2),'linear")
1st fﬂ‘der inear" Interpolation CFD vs. Exac
Interpolation

0.004

" vExact

= CFD Fine

Position

& CFD Med
X CFD Coarse
—_msnterp-"nearest”

s interp-"LINEAR"

*
o | | | | | | | | |
0 0.001 0,002 0.003
\ Velocity (m/s)

UNIVERSITY OF CENTRAL FLORIDA 65
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 “cubic” — Matlab
vfi = interpl1(fine(:,2),fine(:,1),coarse(:,2), cubic')

"cubic" Interpolation CFD vs. Exact

3rd Qrder
Interpolation

0.008

Exact

CFD Fine

CFD Med

CFD Coarse
—==interp-"nearest”
s interp-"LINEAR"

w—=interp-"CUBIC"

*
[ 0.001 0.002 0.003 0.004
Velocity (m/s)

UNIVERSITY OF CENTRAL FLORIDA 66
COLLEGE OF ENGINEERING AND COMPUTER SCIENCE




Matlab Interpolation Schemes {( 5
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* Extending the Interpolation Schemes to 2D and 3D

* Interp2 and Interp3 Matlab Functions
 Require use of MeshGrid
 Transforms the domain of vectors into arrays
* For Meshes in the 4 million to 8 million Cell Range

 Error “Maximum variable size allowed by program is
exceeded”

e @Griddata Function

 Nearest, Linear, Natural, Cubic, and v4

* Nearest, Linear, and Natural are the only options available in 2D and
3D

 The only options available for 1D, 2D, and 3D

* Interpl and Griddata — ‘nearest’
@s‘n UCF
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3D Example /<>
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* Airflow around encapsulated spacecraft
— Matlab griddata ‘linear’ option used

— Interpolating Fine and Medium Grid onto Coarse
Grid

one_coarsegrid three_finegrid

P 3
12 12
i &
3 ,
!. ]

&Sucr
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3D Example A[()>
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 Comparing using a Line Plot

&Sucr
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* Comparing using a Line Plot

20+

~——one_coarsegrid
= three_finegrid
28 two_medgrid

264

24+

22

20

T T T T T T - T T 1
22 24 206 28 3 32 3.4 3.6 38 4

&Sucr
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By comparing the interpolation schemes in one, two, and
three dimensions and investigating the options that are
readily available in Matlab

e Recommend the “linear” option be used when comparing the
error or uncertainty due to the grid

* interpl or griddata Matlab commands

* If coarse grid has the level of detail required

« Recommend interpolating from the fine and medium grids onto
the coarse grid

 Lower Error in the Extrapolated Solution
 Smaller Data Set

— Future Work include higher order interpolation schemes
in 3D (Radial Basis Function Interpolation, 4t order)

@"UCF
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Feasibility of using Richardson’s
Extrapolation for Entire Computational
Domain

72
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Summary of Method /£ />
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* Following method outlined by Stern, Wilson, Coleman, and Paterson

* Convergence studies require a minimum of three solutions to evaluate
convergence with respect to an input parameter. Consider the
situation for 3 solutions corresponding to fine S, ;, medium S,,, and
coarse S, values for the kth input parameter. Solution changes e for
medium-fine and coarse-medium solutions and their ratio R, are

defined by:

JOHN £ KENNEDY SPACE CENTER

€1 = S ~ Siq
€35 = Si3 — Sy,
Ry = €5 &3,
 Three convergence conditions are possible:
Monotonic convergence: 0< R, <1
Oscillatory convergence: R, < 0'
Divergence: R >1

&Sucr
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Results (Monotonic Convergence?)
Z(
D)

... Backward Facing Step >
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A

Three convergence conditions are possible:
Monotonic convergence: 0< R, <1
Oscillatory convergence: R, < 0
Divergence: R, >1

&S ucrk
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S Results (Monotonic Convergence?)
JOHNFKEYECENTER Spacecraﬂ/ ECS SYStem () D
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Three convergence conditions are possible: -

Monotonic convergence: O< R, <1
Oscillatory convergence: R, < 0
Divergence: R, >1

&S ucF
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Proposed CFD Uncertainty Method
Compared to Exact Solution —
Laminar Flow Between Parallel Plates
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m;' Example Fully Developed Laminar Flo

between Parallel Plates N ot
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 Heat Transfer Correlations, Traditional -

 The uncertainty analysis will follow the methodology laid out by Coleman
and Steele (Experimentation and Uncertainty Analysis for Engineers, 2"
ed, J. Wiley and Sons, 1999). This methodology is in line with the ISO
Guide to the Expression of Uncertainty in Measurement (1993).

U= (Zf:l{(:_;)z Bf} +220, T 1+1{(a;ﬁ) (ax ) [B; E.I.:].:-:-ﬂ'e!ated}—i_ )l {(:_;)E Pf})lfz

Bias Correlated Random
a? /P y 2 y ou oP
- — (= 2y — (= —_— = _ 2
U 2u (596) [(a) (a)] ou ox *yx (- a)/ (2w
ou azr,y\¢ ,y
~oP 2u [(E) - (E)]
0 =——
0x

&S ucF
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NA-'___# Example Fully Developed Laminar F
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Uncertainty for 5% Bias in pressure gradient
and viscosity

o (5 omore) w)- ((%k%f—(%)l)%é))l/z

Q%UCF
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O RO SR CENTER between Parallel Plates SP
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xample Fully Developed Laminar Flow )

* Numerically Evaluating (Traditional):

Exact Solution with Uncertainty Uncertainty

Exact + Unger

Veloclty (ms)

&Sucr
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CFD Uncertainty Cases

Coarse Grid
Medium Grid
Fine Grid
Velocity Low
Velocity High
Density Low
Density High
Outlet Pressure Low
Outlet Pressure High

Solver

Upq = 1.833 ( I
*
val . a

v N\
* (apressure> Boressure |

&Sucr
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2
2 -
num) B"um)+ ((avelocity

(e
(arho

LAUNCH SERVICES

Degrees of Freedom

Confidence 90%

6.314

2.92

2.353

2.132

2.015

1.943

| 895

1.796

1.782

1.771

2

v )2

velocity

+ o )2 B
dsolver) ~—sotver

Upa = 1.833 *

1
> (Su —S1)

1,
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* Results for proposed methodology v

o3

Position [y}

&Sucr
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Exact Solution vs. CFD Uncertainty

X ACT
———Uncert Low
——Uncert High
—coarse solutor

——med solutian

fine solutiomn

———nlet velocity Ik

——nler valocity h
pressure low

—rescure high

S—nu higghn

nu low

openFoam

D
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Comparison of IVIethodsAZc) >
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* Traditional vs. Proposed

Velocity

006

00

11}

i
0 0.003 0.0 001 0oz

&Sucr
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CFD Uncert Low

Uncertainty

006

Uncertainty in

005

}L\_

0

“Uncertainty in
: Traditional Metho

=t -Uncert 2003

—tyact

=yt Ungert

g

Exact + Uncert (CFD Uncert w/k Factar

s merical Ulow

042
s humerical Unigh

001

0 0.0003 0.001 0.001% 0.002 00023 0.003
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Comparison of Methods
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[ ] [ ) \ ;
* Traditional vs. Proposed
Uncertainty in Exact Solution vs. Numerical Solution (k=1.43)
0.06
.05 /
0.0 /
B /
:. gt xact Uncert
3
CFD Uncert w/k Factaor
0.02 /
=
0.1 fﬁ'ﬁ
fﬂﬁ-
) J:;’-""';.""/-
4] Quonos 0001 00015 o.oo02 0.0025
Velocity Uncertianty [m,/fs)

&Sucr
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AW Conclusion Example Fully Developed ,
| aminar Flow between Parallel Platesf<, />
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* Proposed Method Envelops the True value and uses
only CFD Data to Estimate the Uncertainty for
Laminar Flow between Parallel Plates

— No Testing

* Proposed methodology can be used to
conservatively estimate the uncertainty in CFD
models

(*buc:F
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Computational Fluid Dynamics
Uncertainty Analysis applied to Heat
Transfer over a Flat Plate

APS-DFD13-2013-000087

%UCF

F CENTRAL FLc
EERING AND COMPU



JOHN £ KENNEDY SPACE CENTER

 Heat Transfer Correlations, Traditional

 The uncertainty analysis will follow the methodology laid out by Coleman
and Steele (Experimentation and Uncertainty Analysis for Engineers, 2"
ed, J. Wiley and Sons, 1999). This methodology is in line with the ISO
Guide to the Expression of Uncertainty in Measurement (1993).

U= (Zf:l{(:_;)z Bf} +220, T 1+1{(a;ﬁ) (ax ) [B; E.I.:].:-:-ﬂ'e!ated}—i_ )l {(:_;)E Pf})lfz

xample Heat Transfer over Flat Plate (( 5
)

LAUNCH SERVICE?, SRAM .

Bias

h=c (%)4/5%

&Sucr
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Correlated

dh= 4ckp
" sty
an _ _4ackv
sty
h_ < (Le
dk L\ u

)4/5

Random
dh _ _ 4CVkp
dp LVp %
su2(Z0)
Lvp\4/5
dh _ _4CVkp ck( 2 )
dL IVoNS 12
suu(=7)°

86



xample Heat Transfer over Flat PIat Z 2

 Heat Transfer Correlation Uncertainty
o= (27 5e) + (7 88) + () m8)+ ()" )+ (") +
(o) p2)+ 2(5) Go) BoBi+ 2(52) (Gp) B+
1/2
2(2) (2)5:5,)

Q
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Xample

Heat Transfer over Flat Plate { 2

Plug in Partial Derivatives

c
Seban & Doughty 0.0236
Jakob 0.024
Sugawara 0.023
Fundamentals of Heat and Mass
Transfer 0.0296
c middle 0.0263
c uncert (random) 0.0033

2 2
3 4/5
=2, | B} |+ [|==]| B |+ ((f(%) ) 35)+
LVp\5 LVp\5
5“(79) . (Tp)s
Lvp\4/5 5
4Cvkp C"’(T) 2 k (pvL\*/5\" 1,
. L B2 |+ Z(#) PZ ) +
su(=)

4ckv
Variable Bias 2 i
Velocity, V 3% (L_Z_e)s
Density, rho 3%
Thermal Conductivity, k 3%
3%

Viscosity, mu

&Sucr
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4CVkp

E(L%) )BBk+ o= Y - |B,B, +
LVp\5 LVp\3
su(%.) su2(47)
1/2
4CVkp
Vo3 BkB‘u
P\3
s12(57)
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xample Heat Transfer over Flat Plate { )
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Numerically Evaluating (Traditional):

Heat Transfer Coefficient

5.5

Heat Tranzfer Coefficient Comelation [h) (Winm2K)
/

) i i i i i i

)] R R funnsasunaniuesnasncas — T—— HS— —— F— A— i

38 LN S S S S S e, i

25...._. .......... ,_ ...... ._____, .......... Pssssasanss Pessssianss Presassssa -

Position [m)

&Sucr
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Haat Transfer Coefficient Comelation Lncertainty (Lh) (Winm2K)

Uncertainty in Heat Transfer Coefficient

0.8

0.75
0.7 &
0.65 -L
06
0.55
05|
045

04
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CFD Only {( >
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LAUNCH SERVICES

CFD Uncertainty Cases Number of Cases Degrees of Freedom Confidence 90%
1 Coarse Grid — | =173
2 Medium Grid ; S ’ %
3 Fine Grid 2 ; ;'3;3
4 Velocity Low 3 ; ‘; l;"
5 Velocity High 5 S ;O—Ig
6 Density Low > 2) ;:943
7 Density High - g T 805
8 Thermal Conductivity High 5 3 I' 26
9 Thermal Conductivity Low m 5 7 333
10 Viscosity Low T 70 TR
11 Viscosity High
12 SA Turbulence Model
13 kwSST Turbulence Model

o= 8)+ (G ) (@ ) (') (2 1)+

(@ 72)+ 2(2) @m0+ 2(2) )5+

%(SU - SL)|

&SucF —
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Proposed Methodology using CFD Only {
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Results for proposed methodology /

Heat Transfer Coefficient | Uncertainty in Heat Transfer Coefficient
5.5 : : : : : : O hnominal CFD 2
: : : : : g +  hmedgid CFD
gl e e . . . ... #  hfinegidCFD 18
: : : : : ’ h ¥low CFD ¢
E L T Ot PSP P PPN R O h¥highCFD g 1.6
3 : hrholowCFD [ s
= +  hrho high CFD e
e It OO OO PP SOPR PP SOUUPRUPPT FUPN _ £ 14t
' O hklowCFD 2
(@ 2 : : : E S ' _+_hk high CFD I 'g "
E 35._ ....... ..:-:: .......... . .......... . .......... .. E hu|0wCFD g
£ h u high CFD H
8 3._+ ...... , .......... , ‘-J.,:. .......... .......... ; * SACFD - % 1
£ ™ 0 W | kwSST CFD 8
B ol . . £ 0s
b : E
e F
2 £ 05
1.5 0.4
Position [m) Position [m)
Average Difference in htc (W/m2K) | Ranking
Turbulence 0.693102673 1
. Grid 0.130514851 2
gg’ Velocity 0.117431782 3
s U C F Density 0.117431683 4
UNIVERSITY OF CENTRAL FLORIDA k (thermal COI"IdUCtiVity) 0.069466139 5 91
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 Traditional vs. Proposed :

Heat Transfer Coefficient Uncertainty in Heat Transfer Coefficient

6.5 : ! : ! : ! : : 2 ; ; ! ; ; ; ! ! o
N . N N N N ———— H . . . N . . . . |
h! - : : : : : : : i | ——ucFp
hiplus | 8f- o N o oo ool S - :

i. .................. Sl T T T

| : : : : : : : : : : : : :
|...i....CFD-Uncert-High-: hitnir s Vi iUncertainty.in.i....i...i.. .

5.5 e SfFD lg.lnce?rt I-Egh b ol CED 16 | orderrn i UNCEEEAIARYL AN o]

bbb | —©—CFD U Wl.i  iProposed Method : G i |

.............................................................................................

Hzat Tran zfer Coefficient (h) (Wim2K)

BB ............ N\ ennnsec s b dnnennend
| RN — e SOOI SRR SRS S— S e, S i

Hzat Tranzfer Coefficient Lncertainty (Lh]) (Wim2K)

04

L I

0.2

0.1 2 0.1 0.2 0.3 0.4 0.15 0.6 0.7 0.8 0.9 1
\ Position [m) Position (m)
CFD Uncert Low Uncertainty in

@, U C F Traditional Method
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* Traditional vs. Proposed Average Heat Transfer
Coefficient over Flat Plate

— Traditional
havg = 2.66 +/- 0.74 [W/m2K]

— Proposed CFD,
h,,=2.66 +/-1.39 [W/m2K]

UNIVERSITY OF CENTRAL FLORIDA 93
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* Proposed Method Envelops the True value and uses
only CFD Data to Estimate the Uncertainty for Heat
Transfer over a Flat Plate

— No Testing

* Proposed methodology can be used to
conservatively estimate the uncertainty in CFD
models

%UCF
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Chapter 6: Demonstration and S
Implementation of the Proposed
CFD Uncertainty Method for
Spacecraft ECS Systems

0.75m Configuration

3.5m Configuration
5.5m Configuration
ECS System Experimental Comparison

(*buc:F
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-

Spacecraft / ECS System
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Proposed Methodo

+
S _uval

— 2 2
Uyqr = k ( Unum + uinput )

Expanding

OgYy

O

Uncertainty Calculation 1)

LAUNCH SEQ\’ICEQ PR

Input Variable Description Bias
Grid 3 grids considered for each configuration

Inlet Velocity Boundary Condition low and high 10%

Outlet Pressure Boundary Condition low and high 2%

Turbulence Model

SA, ke-realizable, kwSST

Wall Functions

with and without

Rough Wall
Function smooth vs. rough
Compressibility incompressible vs. compressible
Solver OpenFoam, Fluent, STARCCM+

kinematic viscosity nu represents air [0-50-100] deg

1.36,1.5,2.306e-

Fluid Properties C 05
av v\ v\ v N\
tvat = (agrld) ria (apressure) Byressure | * (avelocity) Boetociey ) + (6rho) Brho
2 oV 2
+ ( ) szvallfunctlons + ( ) Bszurfaceroughness
owall functlons dsurface roughness
2 2
+ : + ) B¢
((6compre531bllzty) compressibliity <6solver SO“’")
2
; + BZ
\&% U C F <(6turbulence> turbulence)
A
97
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Configuration

Uncertainty Calculation 12
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Number of Cases Degrees of Freedom Conf%ienc 0%
2 1 6.314
3 2 2.92
4 3 2.353
5 4 2.132
6 5 2.015
7 6 1.943
8 7 1.895
9 8 1.86
10 9 1.833
11 10 1.812
12 11 1.796
13 12 1.782
14 13 1.771
15 14 1.761

Parameter 0.75 35 55
Case # Grid
1 coarse 1 1 1
2 med 2 2 2
3 fine 3 3
Boundary Conditions
4 inlet velocity low 4 4 4
S inlet velocity high S 5 5
6 pressure outlet low 6 6 6
7 pressure outlet high 7 7 7
Turbulence Models
8 SA 8 8 8
9 ke-realizable - same as1 9 9 9
10 kwsst 10 10 10
11 Wall Functions without wall functions 11 11:] 11
12 Surface Roughness rough wall function 12 12 | 12
13 Compressibility different openfoam solver 13 13 | 13
Solver
14 fluent 14 14 14
15 starccm 15 15 | 15
Fluid Properties
& nut high 16 16 | 16
17 nut low 17 17 | 17

Uy = 1.746

&S ucF
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5 Sy = S1)

20 19 1.729
21 20 1.725
22 21 1.721
23 22 1.717
24 23 1.714
25 24 1.711
26 25 1.708
27 26 1.706
28 27 1.703
29 28 1.701
30 29 1.699
31 30 1.697
41 40 1.684
51 50 1.676
61 60 1.671
81 80 1.664
101 100 1.66
121 120 1.658
infty infty 1.645
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* Solution and Uncertainty Contour Plots

id (M/s) uncert (m/s
15

one_coarse
15

INIVERSITY OF CENTRAL FLORIDA
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Results 0.75m Configuration
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L

e Solution Line Plot

— elght_sa

— gleven_nowallfrs
34 4 — fifteen_star

- five_uhigh

e — four_ulow

- fourteen_fluent
— nine_ke

28 —one_coarsegrid
—seven_phigh

*05 —— seventeen_nutiow
—sik_plow
—sixteen_nuthigh
22 — ten_kwsst

—— thirfteen_compr
204 — three_finegrid
— twelve_roughwall
— two_medgrid

24

N

18

oS

&S ucrF
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* Uncertainty Line Plot :

G’UCF
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Results 0.75m Conﬁgurahonl)
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Uncertainty Ranking

 The uncertainty for each of the input variables were ranked by the non-

R

dimensionalizing the difference in the results by the freestream value and
ranking from greatest uncertainty to least uncertainty.

Mean
Velocity Mean Non-
Uncertainty | Dimensionalized | Normalized | Numbered
Input Variable Description Bias (m/s) Uncertainty Ranking % Ranking
3 grids
Grid considered 1.6287 0.0543 13.40 2
Boundary
Inlet Velocity Condition 10% 1.3115 0.04737 11.69 5
Outlet Boundary
Pressure Condition 2% 1.1478 0.0383 9.45 8
SA, ke-
Turbulence realizable,
Model kwSST 1.4628 0.0488 12.04 4
with and
Wall Functions without 0.8286 0.0276 6.81 9
Rough Wall smooth vs.
Function rough 1.5237 0.0508 12.53 3
incompressible
Vs.
Compressibility compressible 1.3128 0.0438 10.81 6
OpenFoam,
Fluent,
Solver STARCCM+ 1.673 0.0558 13.77 1
kinematic
. viscosity nu
represents air
@ U ‘ F Fluid [0-50-100] deg | 1.36,1.5,2.306e-
A Properties C 05 1.1536 0.0385 9.50 7

UNIVERSITY OF CENTRAL FLORIDA
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e Solution and Uncertainty Contour Plots

one_coarsegrid (m/s)
15 4 uncert (m/s)

15
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Results 3.5m Conﬁgurationz() >
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 Solution Line Plot .

== aght_sa o

= glaven_nowalfns =

=== fifteen_star

=== fiva_uhigh

= four_ubw

=== fourteen_fluent

= nina_ke

~== one_coarsegrid
saven_phigh
savantaen_nutbw

—slx_plow

== sixtean_nuthigh

= fan_kwsst

= thirtean_compi

= three_finagrid N

= fwale_roughwal ¢

— two_medgrid 9

&SucF
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Results 3.5m Configuration
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LAUNCH SERVICES P I

» Uncertainty Line Plot SO E DCITEO g

3a-

2

20

20+

20+

A 12
- one_coarsegrid

#1 | =— uncert_nhigh

201 | ——uncert_low

;'i“i' ﬁ‘M’l"'l wilienn HG

&S ucrF
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Results 3.5m Configuration
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Uncertainty Ranking /
Mean
Velocity Mean Non-
Uncertainty | Dimensionalized Normalized | Numbered
Input Variable Description Bias (m/s) Uncertainty Ranking % Ranking
3 grids
Grid considered 0.6829 0.0228 8.28 7
Boundary
Inlet Velocity Condition 10% 0.7919 0.0264 9.59 6
Outlet Boundary
Pressure Condition 2% 1.4606 0.0487 17.70 1
SA, ke-
Turbulence realizable,
Model kwSST 1.3487 0.045 16.35 2
with and
Wall Functions without 0.6139 0.0205 7.45 9
Rough Wall smooth vs.
Function rough 1.0531 0.0351 12.75 3
incompressible
Vs.
Compressibility | compressible 0.8252 0.0275 9.99 5
OpenFoam,
Fluent,
Solver STARCCM+ 0.841 0.028 10.17 4
kinematic
viscosity nu
represents air
Fluid [0-50-100] deg | 1.36,1.5,2.306e-
Properties C 05 0.6345 0.0212 7.70 8

&S ucF
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. . i
* Solution and Uncertainty Contour Plots
one_coarsegrid (m/s) uncert (m/g)
15 15
: i
 p— 12
) ;e
| |
&Suck’ :
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 Solution Line Plot

— eight_sa (m/s)
= eleven_nowallfrs (m/s)
— fifteen_star (m/s)

= five_uhigh (m/s)

= four_ulow (m/s)

= fourteen_fiuent (m/s)
— nine_ke (my/s)

— one_coarsegrid (m/s)
~seven_phighl (m/s)
—seventeen_nutiow (m/s)
—sb_plow (m/s)
—siteen_nuthigh (mys)
= ten_kwsst (m/s)

= thirfeen_compr (m/s)
— _finegrid (m/s)
— twelve_roughwall (m/s)
— two_medgrid (m/s)

&S ucF
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- Results 5.5m Configuration
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* Uncertainty Line Plot
= uncert_high (m/s) 15
= uncert_low (m/s)

&S ucF
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Results 3.5m Configuration
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Uncertainty Ranking /
Mean
Velocity Mean Non-
Uncertainty | Dimensionalized Normalized | Numbered
Input Variable Description Bias (m/s) Uncertainty Ranking % Ranking
3 grids
Grid considered 2.0203 0.0673 12.44 3
Boundary
Inlet Velocity Condition 10% 1.6198 0.054 9.98 6
Outlet Boundary
Pressure Condition 2% 2.0173 0.0672 12.42 4
SA, ke-
Turbulence realizable,
Model kwSST 2.3049 0.0768 14.19 1
with and
Wall Functions without 1.4902 0.0497 9.18 7
Rough Wall smooth vs.
Function rough 1.4901 0.0497 9.18 8
incompressible
Vs.
Compressibility | compressible 1.4256 0.0475 8.78 9
OpenFoam,
Fluent,
Solver STARCCM+ 1.8172 0.0606 11.20 5
kinematic
viscosity nu
represents air
Fluid [0-50-100] deg | 1.36,1.5,2.306e-
Properties C 05 2.05 0.0683 12.62 2

&S ucF
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Kandula, M., Hammad, K.,
and Schallhorn, P., “CFD
Validation with LDV Test Data
for Payload/Fairing Internal
Flow,” AIAA-2005-4910, 2005.
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Comparison to Previous LDV Test

())
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Variable Bias |
Velocity Inlet 3% -
Kinematic Viscosity
[0-100] Deg C [1.36, 1.50, 2.306] e-5 m2/s
Pressure Outlet 3%
Turbulence ke-realiazable, kwsst, SA
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Comparison to Previous LDV Test

£

D

LAUNCH SERVICES PR
Uz (x=7in) Uy (x=7in)
15
"HE': Uncert_Low '?'5 g3 Uncert_Low
E =—Uncert_High E 0.5 ==Uncert_High
% = Experimental é “ Experimental
> — > s
0.5 -0.4 01 02 03 0.4 05 ~CFD i D
=Us
15
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-1. 2.
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’\ A os ﬂ
,::\‘4-\1_:5;___
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= = ]
% ® Experimental § “ Experimental
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Uz (x=9in) Uy (x=9in)
2 15
\E Uncert_Low .?.5 -0.4 0.3 0.2 -0.1 0 0.1 0.2 0.3 0.4 0 Uncert_Low
E ==Uncert_High E 05 ==Uncert_High
[ o
2 “ Experimental 2 =*~Experimental
[ @
> —CFD = =CFD
-1
-0.5 -0.4 -0.3 -0.2 -0.1\‘«._/ 0 0.1 0.2 0.3 04 0.5
Wy 1.5
\l\'—."
-0.5
-2
: 2.
z Emeters) z Fmeters)
Uz (x=11in) Uy (x=11in)
25 15
_E_’ Uncert_Low E.s -0.4 -0.3 0.2 -0.1 Q 01 0.2 03 0.4 05 Uncert. Lo
Z =Uncert_High o 05 ~=Uncert_High
é “ Experimental ;:J ==Experimental
= —CFD = ~—CFD
=1
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Comparison to Previous LDV Test {(}2>

Uz (z=-5in)

0.8

Uy (z=-5in)

"E‘ Uncert_Low 'E Uncert_Low
; ==Uncert_High E =Uncert_High
é = Experimental é 0.6 @ Experimental
2 —cFD = —CFD
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-1
-0.6
15
-2 -0.8
x (meters) x (meters)
Uz (z=-3in) Uy (z=-3in)
3 14
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-] 2
2 2
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Uz (z=-2in) Uy (z=-2in)
3 0.6
'é Uncert_Low 'E Uncert_Low
E =Uncert_High E —Uncert_High
8 “ Experimental é 0.6  © Experimental
(3
> —CFD > —CFD
0.6
-1
-0.4
15
2 -0.6
x (meters) X (meters)
Uz (z=0in) Uy (z=0in)
3 1
0.8
2
0.6
04
1
= = 02 5w o+
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(%3 [*3
T“) 0.6 © Experimental % 0 0.1 E@_P;EF'E%Z 03 0.4 0.5 0.6 © Experimental
> —CED > 02 —CFD
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COmparison to Previous LDV Test { ))
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e Assumed Confidence Interval from Student ’I/
distribution and CFD Uncertainty Prediction

—90%
e LDV Data
—Total of 1085 Points Measured

— 977 Points were inside the 90% CFD
Uncertainty Methodology

— 108 Points Outside CFD Uncertainty
Prediction
* 977/1085 = 0.90046
* “90%
&ucr
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* Proper validation with experimental data should be
used to verify ECS impingement requirements

* This research proposes a CFD uncertainty
methodology when experimental data is unavailable

and unobtainable

* Couples Student-T Distribution to the number of CFD
models and input parameters

* All input parameters considered had the same order of
magnitude uncertainty
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Chapter 7: Conclusions and Future
Work
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* Proper validation with experimental data should be
used when possible

* This research proposes a CFD uncertainty
methodology when experimental data is unavailable
and unobtainable

* Couples Student-T Distribution to the number of CFD
models and input parameters

 Methodology proved accurate for:
* Fully Developed Laminar Flow between Parallel Plates

 Heat Transfer over a Flat Plate
» Spacecraft / Fairing Environmental Control Systems

&Sucr
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Future Work {()))

* Run Experimental Configurations to further prove
methodology

JOHN £ KENNEDY SPACE CENTER

* Evaluate which models are most realistic
* Tryto reduce conservatism in proposed methodology
(if possible)
 Expand Method beyond internal, low-speed,
incompressible
* Other Flow Regimes: External, Compressible, Unsteady
 Expand Beyond Fluid Dynamics and Heat Transfer

%UCF
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Summary Z}),f_

* “Uncertainty (of measurement) — parameter,
associated with the result of a measurement,
that characterizes the dispersion of values that
could be reasonably attributed to the the
guantity intended to be measured” —
International Vocabulary of Basic and General
Terms in Metrology

JOHN £ KENNEDY SPACE CENTER

* Replace
— Measurement —> Simulation
— Measured -> Simulated

&SucF
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