
U.S. Government work not protected by U.S. copyright

 1

Autonomous Real Time Requirements Tracing

George Plattsmier
Marshall Space Flight Center.

Huntsville, AL 35812
256-544-3963

George.l.Plattsmier@nasa.gov

Howard Stetson
Teledyne Brown Engineering

Huntsville, AL 35812
256-961-0399

Howard.K.Stetson@nasa.gov

Abstract – One of the more challenging aspects of software
development is the ability to verify and validate the functional
software requirements dictated by the Software Requirements
Specification (SRS) and the Software Detail Design (SDD).
Insuring the software has achieved the intended requirements
is the responsibility of the Software Quality team and the
Software Test team. The utilization of Timeliner-TLX TM Auto-
Procedures for relocating ground operations positions to ISS
automated on-board operations has begun the transition that
would be required for manned deep space missions with
minimal crew requirements. This transition also moves the
auto-procedures from the procedure realm into the flight
software arena and as such the operational requirements and
testing will be more structured and rigorous. The auto-
procedures would be required to meet NASA software
standards as specified in the Software Safety Standard (NASA-
STD-8719), the Software Engineering Requirements (NPR
7150), the Software Assurance Standard (NASA-STD-8739)
and also the Human Rating Requirements (NPR-8705). The
Autonomous Fluid Transfer System (AFTS) test-bed utilizes
the Timeliner-TLXTM Language for development of
autonomous command and control software. The Timeliner-
TLXTM system has the unique feature of providing the current
line of the statement in execution during real-time execution of
the software. The feature of execution line number internal
reporting unlocks the capability of monitoring the execution
autonomously by use of a companion Timeliner-TLXTM
sequence as the line number reporting is embedded inside the
Timeliner-TLXTM execution engine. This negates I/O
processing of this type data as the line number status of
executing sequences is built-in as a function reference. This
paper will outline the design and capabilities of the AFTS
Autonomous Requirements Tracker, which traces and logs
SRS requirements as they are being met during real-time
execution of the targeted system. It is envisioned that real time
requirements tracing will greatly assist the movement of auto-
procedures to flight software enhancing the software assurance
of auto-procedures and also their acceptance as reliable
commanders.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. SOFTWARE REQUIREMENTS 1
3. TIMELINER-TLX CODING STANDARD .. 4
4. SRS / TIMELINER PARSER 5
5. TRACKER SEQUENCE 8
6. REAL TIME EXECUTION 9
7. LOG OUTPUT AND ANALYSIS 9
8. SUMMARY ... 10
REFERENCES .. 10
BIOGRAPHY .. 11

1. INTRODUCTION

The Advanced Exploration Systems (AES) Autonomous
Mission Operations (AMO) Project at Marshall Space Flight
Center (MSFC) is researching the movement of ground
operations to on-board operations for manned deep space
missions. Command and control procedures are developed
utilizing the Timeliner-TLX TM auto-procedure system for
autonomous fluid transfers within the AFTS test-bed located
at MSFC. The research involves not only the development
of intelligent auto-procedures but also the software
standards and engineering requirements that would facilitate
the qualification of auto-procedures as flight software.
Auto-procedure analysis has shown that there are 4 types of
procedures and that these have a consistent coding layout.
Furthermore, a coding standard could be developed that
could include the insertion of requirement identifiers within
the coding layout, and that these identifier’s could be paired
to encompass the code that is developed for a specific
requirement. The implementation allowed the team to
develop a tracing program that would track auto-procedure
execution in real-time, reporting the requirements that were
encountered during the execution.

2. SOFTWARE REQUIREMENTS

All auto-procedure development should be driven by a
Software Requirements Specification (SRS) which
identifies the base requirements of the system being
developed. It has been a standard practice at MSFC to label
each requirement with a unique identifier. This unique
identifier is then utilized by Software Quality personnel to
track the requirements for test case analysis and during
software testing to insure functional completeness. The

 2

Autonomous Fluid Transfer System (AFTS) SRS is utilized
for deriving the list of unique identifiers for the complete
system. The SRS was divided into 4 sections: General,
Safety, Autonomous Operations, and Fault Detection
Isolation and Recovery requirements. The General
requirements encompassed the overall operation of the test-
bed. The Safety requirements pertained to the safe
operations and safety rules defined for the test-bed. The
Autonomous Operations requirements specified the
operations functions to be developed. The Autonomous
Fault Detection Isolation and Recovery requirements
specified the monitoring and real-time reaction to faults that
were to occur. The Unique identifiers within the SRS
provided uniqueness between requirement sections as
shown in Figures 1 through 4.

3.1 GAFTS-0001 The software system shall query the crew to verify all manual valves
are in the correct positions before operation of the AFTS.

3.2 GAFTS-0002 The software system shall allow transfer of fluid from the supply
tank through the primary flow path to the multiuse tank.

3.3 GAFTS-0003 The software system shall allow transfer of fluid from the supply
tank through the backup flow path to the multi-use tank.

3.4 GAFTS-0004 The software system shall allow the transfer of fluid from the multi-
use tank through the return path to the supply tank.

3.5 GAFTS-0005 The software system shall provide for fluid heater control.

Figure 1 – AFTS General Requirements Sample

4.1 SAFTS-0001 The software system shall insure that fluid temperatures do not
exceed 75 degrees F.

4.2 SAFTS-0002 The software system shall insure fluid heaters are safed whenever the
fluid levels are below the fluid heater interface.

4.3 SAFTS-0003 The software system shall verify fluid transfer quantity requests
from the crew are valid before initiating autonomous functions.

Justification: There has to be enough fluid to transfer and enough volume for the
fluid to be received.

4.4 SAFTS-0004 The software system shall have the capability to safe the complete
fluid transfer system with a single crew action.

Justification: In an emergency, there may not be enough time to execute a manual
procedure

Figure 2 – AFTS Safety Requirements Sample

 3

5.1 AAFTS-0001 The software system shall be capable of performing quarter tank
fluid transfers over the primary flow path with a single crew action.

5.2 AAFTS-0002 The software system shall be capable of performing quarter tank
fluid transfers over the backup flow path with a single crew action.

5.3 AAFTS-0003 The software system shall be capable of performing quarter tank
fluid transfers over the return flow path with a single crew action.

5.4 AAFTS-0004 The software system shall be capable of performing half tank fluid
transfers over the primary flow path with a single crew action.

5.5 AAFTS-0005 The software system shall be capable of performing half tank fluid
transfers over the backup flow path with a single crew action.

5.6 AAFTS-0006 The software system shall be capable of performing half tank fluid
transfers over the return flow path with a single crew action.

5.7 AAFTS-0007 The software system shall be capable of performing a crew selectable
quantity tank fluid transfer over the primary flow path with a single crew action.

5.8 AAFTS-0008 The software system shall be capable of performing a crew selectable
quantity tank fluid transfer over the backup flow path with a single crew action.

5.9 AAFTS-0009 The software system shall be capable of performing a crew selectable
quantity tank fluid transfer over the return flow path with a single crew action.

5.10 AAFTS-0010 The software system shall be capable of performing a full tank fluid
transfer over the primary flow path with a single crew action.

5.11 AAFTS-0011 The software system shall be capable of performing a full tank fluid
transfer over the backup flow path with a single crew action.

5.12 AAFTS-0012 The software system shall be capable of performing a full tank fluid
transfer over the return flow path with a single crew action.

5.13 AAFTS-0013 The software system shall be capable of controlling the temperature
of the fluid.

5.14 AAFTS-0014 The software system shall message all autonomous actions performed
during real-time.

Figure 3 - AFTS Autonomous Operations Requirements Sample

6.1 FAFTS-0001 The software system shall detect failures of the hardware during real-
time operations.

6.2 FAFTS-0002 The software system shall safe hardware upon detection of failures
during real-time operations.

6.3 FAFTS-0003 The software system shall recover failed operations during real-time
operations.

6.4 FAFTS-0004 The software system shall message all autonomous actions performed
during real-time operations.

Figure 4 - AFTS FDIR Requirements Sample

 4

Notice that each SRS section has unique identifiers. As code
is developed for the system, the unique identifiers are
entered into the code via comment lines as identifier pairs
that bound the code from top to bottom encompassing the
requirement the code is implementing. This bounding by
unique identifier pairs is essential in the compiler listing
scan that is performed to obtain the line numbers that will be
reported in telemetry during real-time execution.

3.TIMELINER-TLXCODING STANDARD

The unique requirement identifier inserted into the source
code becomes part of the coding standard for Timeliner-
TLX TM auto-procedures. These identifiers must be in pairs
and cannot be nested within a sequence. Figure 5 depicts the
unique requirement identifier example placed within source
code.

The example shows the GAFTS-0001 requirement for the
manual valve status query to the crew. The requirement is
paired at the beginning of the supported code and at the end.
After compilation of the source code by the Timeliner-TLX
TM compiler, a compiler listing file is produced. The
compilation produces a listing file where each executable
line of code is assigned a unique line number as all code in
the file is numbered contiguously. Figure 6 depicts the
manual valve status query compilation listing that was
shown first as source code.

--*** Now check that the test bed is in an operational state ***
--**
-- GAFTS-0001 Manual Valve Status Query Requirement
confirm "HAL: Are the Manual Valves One and Two in the On Position?"
 when RESPONSE_RECEIVED WITHIN 1:00 then -- crew one minute to respond
 if OPERATOR_RESPONSE = AFFIRMATIVE THEN
 MESSAGE "HAL: AFTS Test Bed is Ready for Operations!"
 Set ReadyForOps = TRUE
 else
 WARNING "HAL: AFTS Test Bed is Not Ready for Operations!"
 Set ReadyForOps = FALSE
 end if
 otherwise
 disregard "HAL: Manual Valve Inquiry timeout!"
 WARNING "HAL: Automatic Bundle Installation Inhibited "
 Set ReadyForOps = FALSE
 end when
-- GAFTS-0001 Manual Valve Status Query Requirement

Figure 5 – Unique Identifier Pairs

 5

The GAFTS-0001 requirement is bounded by line numbers
25 through 38 which would be reported in real-time during
execution of this segment of code. There is no limit to the
number of lines of code within a single requirement nor is
there a limit to the number of requirements.

4. SRS, TIMELINER PARSER

A program written in ANSI C was developed to

automatically generate the Autonomous Real Time Tracking
Sequence. The storage mechanism employed in this program
is a single linked list data structure. A single linked list
structure consists of a head pointer which points to the entire
list by storing a pointer to the first node. Each consecutive
node contains a pointer to the next node and so on. The last
node has its next field set to NULL to mark the end of the
linked list. A single linked list diagram is depicted in
Figure 7.

 --*** Now check that the test bed is in an operational state ***
 --**
 -- GAFTS-0001 Manual Valve Status Query Requirement
25 confirm "HAL: Are the Manual Valves One and Two in the On Position?"
26 when RESPONSE_RECEIVED WITHIN 1:00 then -- crew one minute to respond
27 if OPERATOR_RESPONSE = AFFIRMATIVE THEN
28 MESSAGE "HAL: AFTS Test Bed is Ready for Operations!"
29 Set ReadyForOps = TRUE
30 else
31 WARNING "HAL: AFTS Test Bed is Not Ready for Operations!"
32 Set ReadyForOps = FALSE
33 end if
34 otherwise
35 disregard "HAL: Manual Valve Inquiry timeout!"
36 WARNING "HAL: Automatic Bundle Installation Inhibited "
37 Set ReadyForOps = FALSE
38 end when
 -- GAFTS-0001 Manual Valve Status Query Requirement

Figure 6 – Compiler Listing Example

Figure 7 – Single Linked List Diagram

 6

The AFTS SRS and Timeliner TLXTM compiler listing
files are given as inputs to the program. The program begins
by reading in the AFTS SRS saved in a .txt extension. The
parsing of the SRS document consists of storing all of the
requirements found in the SRS into the linked list structure.
The sample code segment in Figure 8 depicts the insertList
function which inserts the requirement into the linked list.

Parsing of the Timeliner-TLXTM files involves first checking
to make sure the requirement found matches a requirement
in the SRS. This check is accomplished using a search
function which iterates through the linked list of
requirements. An example of the SRS to Timeliner-TLXTM
requirement validation is depicted in figure 9.

// Define a linked list structure to store the SRS requirement
typedef struct requirement
{
 char req[10]; //allocate a string array of ten elements
 struct requirement *next; //next pointer to point to next element in the linked list
}srs_req;

if(strstr(str,"%")) //check if substring contains Requirement unique identifier in SRS
{

 if(p = strchr(str, '%')) //find first occurrence of % in substring
 {
 strncpy(&temp[0], p, 11); //copy from eleventh element to temp array starting at element zero
 temp[10] = '\0'; //Null terminate the string
 insertList(temp); // Insert requirement into linked list
 }
}

Figure 8 Sample linked list implementation

 7

if(strstr(str,"%")) //check if substring contains unique Requirement identifier compiler listing file
{
 if(p = strchr(str, '%')) //find first occurrence of % in substring
 {
 strncpy(&temp[0], p, 11); //copy from element eleven to zero element of temp array
 temp[10] = '\0'; //null terminate temp array
 strcpy(temp2,temp); //copy contents of temp array to temp2 array
 if(strcmp(temp1,temp2)==0) //check to make sure the requirement matches
 {
 sscanf(str + 19, "%[^\n]", test4); //copy requirement description
 test4[strlen(test4) - 1] = '\0'; //null terminate test4 array

 if(searchList(temp1, temp2)) //search linked list for existing SRS requirement
 {
 result = beg_count + end_count; //store line number
 genBundle(test2,temp1,test3,test4,beg_count,result); //Generate Requirement Tracker file
 end_count = 0;//clear end count variable
 first = false; //reset second requirement pair search loop
 done = true; //reset while loop search flag
 }
 else
 {
 printf("Requirement %s%s ",temp1, " not found in SRS\n");//Inconsistent requirement
 result = beg_count + end_count; //store line number
 genBundle(test2,temp1,test3,test4,beg_count,result); //Generate Requirement Tracker file
 end_count = 0;//clear end count variable
 first = false; //reset second requirement pair search loop
 done = true; //reset while loop search flag
 }
 }
 else
 {
 printf("breaking loop, second match not found\n");//Inconsistent requirement pairing
 done = true; //reset while loop search flag
 }
 }
}
//--
// Function: searchList(char *req, char *retVal)
// Purpose: Search for a requirement in the
// linked list, and return result into the variable
// pointed to by *retVal.
// Returns: TRUE if search was successful
// or FALSE if the search failed.
//--
char searchList(char *req, char *retVal)
{
 ListItem *temp;

 temp = head; //set temp equal to beginning of linked list
 while((temp != NULL) && (!strum(req,temp->req)==0)) //Continue while the list is not empty
 {
 temp = temp->next; //advance to next node in linked list
 }
 // If item not found or list is empty return FALSE
 if(temp == NULL) return false; //requirement not found, so return false
 else
 strcpy(retVal,temp->req); //copy requirement found into variable

 return true; // Signal successful search
}

Figure 9 Sample search function implementation

 8

A key point to notice in Figure 9 is that the program will
catch if the Timeliner TLXTM source code and SRS
requirements do not match. Also, the program will
determine if the Timeliner TLXTM unique identifiers are not
paired, or have an erroneous or misspelled unique identifier.
The program will conclude with generating a Timeliner
TLXTM source file which will be converted into the Tracker
Sequence.

5. THE TRACKER SEQUENCE

The Tracker Sequence is the output file of the
SRS/Timeliner-TLXTM file parser. This file will be compiled
which generates an executable and a listing file. The
executable is then installed into the Timeliner-TLXTM

Executor / Engine. Upon installation, the operator must start
the Tracker Sequence. As soon as the Tracker Sequence
becomes active, this sequence will run every second
scanning for active bundles. The first check in the sequence
will determine if a given bundle is active. The logic will then
decide if the specified sequence in the current bundle is
active. If the sequence is active, it will then check if the
sequence statement is within a range of line numbers. If the
active sequence lies between the sequence statement range, a
message will then be logged to the Timeliner-TLXTM engine
log file indicating a requirement has been encountered.
Figure 10 depicts a Sequence Tracker code segment.

Sequence TRACKER Active--***
--*** We start our control loop to monitor every second
--***
Every 1.0 then
 If AWTS_HAL_MAIN.BUNSTAT = BUN_ACTIVE Then -- Is the bundle active?
 If AWTS_HAL_MAIN.Initialize.SEQSTAT = SEQ_ACTIVE Then -- Is the Initialize Sequence active?
 If AWTS_HAL_MAIN.Initialize.SEQSTMT IN 25..38 then -- Current line within the req range?
 Message "GAFTS-0001 Manual Valve Status Query Requirement"
 End If
 If AWTS_HAL_MAIN.Initialize.SEQSTMT IN 39..54 then -- Current line within the req range?
 Message "GAFTS-0006 Autonomous Procedure Installation Requirement"
 End If
 End If
 End If

Figure 10 – Example Tracker Code

 9

6. REAL TIME EXECUTION

The Tracker Sequence must be started first in the execution
order as installing the HAL_Main Bundle will begin
autonomous operations for the AFTS Test-Bed. The Tracker
Sequence monitors for the bundle installation of HAL_Main.
When the bundle is installed, sequences within the bundle
become “active” automatically. Once the HAL_Main bundle
installation is detected, the Tracker Sequence monitors for
the individual sequences to become active. Once the
sequences become active, Timeliner-TLX TM begins
reporting execution line numbers. The Tracker Sequence
monitors the reported line numbers for requirement ranges,
matching a line number to the requirement line number
ranges. When a match is found, a message statement is
issued to the Timeliner-TLXTM console. A log message is
written to the log file. This same interaction is performed
for each bundle and sequence that is installed and becomes
“active”, as many times as the sequence is executed. After
the test-plan is executed, the log is utilized for analysis of
requirement coverage. For the AFTS Test-Bed, the log
depicts the time of execution and the order of the test-plan as
executed in real-time. If multiple test plans are to be
executed, such as an autonomous plan of fluid transfers, the
Tracker sequence can simply stay active as it continually
scans for bundle installations and active sequences until
manually stopped by the operator. There are occasions
where a requirement is satisfied by only a few lines of code
producing a line number range that is small. The AFTS Test-
Bed had 1 requirement (validate transfer quantity), that
encompassed only one or two lines of code. During testing,
the team noticed the validation requirement was not being
reported, although the validation code was executed. This
meant that the Timeliner-TLX TM execution engine was
executing these lines of code rapidly enough that the
reported execution line was past the requirement bounded
code. The TLX engine executes at a 1 Hz rate within the
CPU, and the number of statements that the engine can
execute is dependent upon the number of sequences that are
currently active. The more sequences that are active, the less
number of statements within each sequence are executed.
The solution to force reporting of bounded statements is to
place a “Wait 1” statement within the requirement range.
The WAIT statement provides a one second wait in
execution and will force the sequence to give up its
execution time slice within the TLX engine, and the current
line number will be reported.

7. LOG OUTPUT AND ANALYSIS

Figure 11 shows the log output produced by the Tracker
Sequence. The time frame of this log file shows the
initialization of the AFTS through three autonomous fluid
transfers; one via the back-up leg with one of a quarter tank
quantity, a second transfer where the crew selects the
quantity transferred over the backup leg, and the third
transfer which is a crew selectable quantity transferred over
the primary leg. During initialization of the AFTS, the
software system queries the crew on the status of manual
valves which does not provide telemetry. If the manual
valves are not in an operational state, or the query is not
answered within one minute, the system inhibits the
autonomous installation of auto-procedures, preventing
operation of the test bed in a non-operational state. The log
traces the date and time, the requirement encountered and
executed, the Timeliner-TLXTM Bundle Name that contained
the requirement, the tracking tag of the bundle which is
created at compilation time and utilized for configuration
management of the software system, and the requirement ID
including the text that was encountered during execution.
The Tracking Tag is another unique feature of the Timeliner-
TLX TM system as this internal identifier is also reported in
telemetry during execution allowing operations to uniquely
identify the procedures in execution. The Tracking Tag can
be decoded as it is a date/time stamp, produced in binary
coded decimal, after a successful compilation of the
procedure. The log output shows that after the crew manual
valve query, autonomous installation of the AFTS software
occurred and that three fluid transfers of different types were
directed by the crew. The log is then used to determine
which requirements were met during the current test plan. In
this way, test plans can be tailored to include operations that
were missed. Software Quality personnel can now scan the
log for requirement and test plan analysis.

 10

8. SUMMARY

The Command and control procedures developed utilizing
the Timeliner-TLX TM within AFTS test-bed have been
instrumental in proving the concept of automated and
autonomous operations for a deep space mission. The
testing has helped to pave the path for extended research and
validating the transition from auto-procedure to flight
software. The idea of moving command and control from
ground control centers to the crew on a manned deep space
mission involves extended research of how to develop
intelligent auto-procedures and how much of the operational
environment will change. The early analysis of Auto-
procedures has shown that there are 4 types of procedures.
Extensive testing and research will be needed to solidify this
confidence and exactly detail the development requirements
for auto-procedures to be an accepted norm for operations.
Further hardware software integration testing will lead to a
more detailed concept of what an autonomous architecture
will entail and how to qualify the software for flight. The
Timeliner-TLX TM system’s unique line reporting feature
provides a process to verify and validate what requirements
are met in real time to aid hardware and software designers
in this endeavor. It is envisioned that on-board intelligent
auto-procedures will be required on manned deep space
missions due to the extreme communications delays, and
auto-procedure updates will still be occurring with Earth-
based assets. A rapid verification and validation of auto-
procedures will be needed for such “on mission” vehicle
updates.

REFERENCES

[1] Stetson, H.K.; Haddock, A.T.; “Automated Operations
Development for Advanced Exploration Systems,”
American Institute of Aeronautics and Astronautics, Space
Ops 2012, Stockholm Sweden

TIME TAG BUNDLE NAME TRACKING TAG MESSAGE TEXT
------------- ------------------- ------------------------- --
07/16/13 09:22:18 REQUIREMENT_TRACER2 1307160850040151 GAFTS-0001 Manual Valve Status Query Requirement
07/16/13 09:22:24 REQUIREMENT_TRACER2 1307160850040151 GAFTS-0006 Autonomous Procedure Installation Requirement
07/16/13 09:22:26 REQUIREMENT_TRACER2 1307160850040151 GAFTS-0006 Autonomous Procedure Installation Requirement
07/16/13 09:22:27 REQUIREMENT_TRACER2 1307160850040151 GAFTS-0006 Autonomous Procedure Installation Requirement
07/16/13 09:27:58 REQUIREMENT_TRACER2 1307160850040151 AAFTS-0002 Quarter Tank Backup Transfer Requirement
07/16/13 09:38:10 REQUIREMENT_TRACER2 1307160850040151 AAFTS-0008 Crew Selectable Backup Transfer Requirement
07/16/13 09:39:37 REQUIREMENT_TRACER2 1307160850040151 AAFTS-0007 Crew Selectable Quantity Primary Transfer Requirement

Figure 11 – Example Log Output

 11

BIOGRAPHY

George Plattsmier is employed by
NASA’S Marshall Space Flight
Center (MSFC) in Huntsville
Alabama, in the Mission Operations
Lab (MOL). Currently, Mr.
Plattsmier is a member of the
Simulation and Computer System
Team with NASA’S Advanced

Exploration Systems-Autonomous Mission Operation
(AES-AMO) project. Prior to the AES-AMO project, he
was a team member of a flight software tools team which
developed a requirements traceability tool. He holds a
Bachelor of Science degree in Computer Engineering
from the University of Alabama in Huntsville. Mr.
Plattsmier, and his wife Andrea have three children;
Morgan, Louis, & Liam.

 Howard K. Stetson is a contractor
for Marshall Space Flight Center,
Space Systems Operations and is
currently working as an analyst for
the Advanced Exploration Systems-
Autonomous Mission Operations
project and has over 34 years of
experience in software development

and engineering, encompassing numeric intensive
computing, parallel processing, computer graphics,
simulation and modeling, computational fluid dynamics,
real-time C&C operations, operations automation, and
software integration and test. Preceding the AES projects,
Mr. Stetson designed, developed and implemented the
Higher Active Logic (HAL) autonomous system for ISS
payloads and has worked flight operations development
for the Ares and SLS programs. Mr. Stetson is also a
member of and instructor for the United States Parachute
Association and has over 3239 jumps to date.

