Introduction:
Solar cells made from directionally solidified silicon cover 57% of the photovoltaic industry’s market [1]. One major issue during directional solidification of silicon is the precipitation of foreign phase particles. These particles, mainly SiC and SiN₄, are precipitated from the dissolved crucible coating, which is made of silicon nitride, and the dissolution of carbon monoxide from the furnace atmosphere. Due to their hardness and size of several hundred micrometers, those particles can lead to severe problems during the wire sawing process for wafering the ingots. Additionally, SiC particles can act as a shunt, short circuiting the solar cell. Even if the particles are too small to disturb the wafering process, they can lead to a grit structure of silicon micro grains and serve as sources for dislocations. All of this lowers the yield of solar cells and reduces the performance of cells and modules. We studied the behaviour of SiC particle depots during float-zone growth under an oxide skin, and strong static magnetic fields. For high field strengths of 3T and above and an oxide layer on the sample surface, convection is sufficiently suppressed to create a diffusive like regime, with strongly dampened buoyancy convection [-2, 3]. To investigate the difference between atomically rough phase boundaries and facetted growth, samples with [100] and [111] orientation were processed.

Experimental:
- Buoyancy convection seems to have no significant effect on depot incorporation
- Crystal orientation seems to have no significant effect on depot incorporation
- Depots of 7µm particles get incorporated with growth rates higher than 5 mm/min
- Depots of particles of 60µm particles get incorporated at first lower phase boundary

Results:
- [100] Orientation
- [111] Orientation

Conclusions:
- Buoyancy convection seems to have no significant effect on depot incorporation
- Crystal orientation seems to have no significant effect on depot incorporation
- Depots of 7µm particles get incorporated with growth rates higher than 5 mm/min
- Depots of particles of 60µm particles get incorporated at first lower phase boundary

References:
[1] Photon Magazine, 6, 2002