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In an analytical study, SMART active flap rotor hub loads have been minimized using nonlinear programming 
constrained optimization methodology. The recently developed NLPQLP system (Schittkowski, 2010) that 
employs Sequential Quadratic Programming (SQP) as its core algorithm was embedded into a driver code 
(NLP10x10) specifically designed to minimize active flap rotor hub loads (Leyland, 2014). Three types of 
practical constraints on the flap deflections have been considered. To validate the current application, two other 
optimization methods have been used: i) the standard, linear unconstrained method, and ii) the nonlinear 
Generalized Reduced Gradient (GRG) method with constraints. The new software code NLP10x10 has been 
systematically checked out. It has been verified that NLP10x10 is functioning as desired. The following are 
briefly covered in this paper: relevant optimization theory; implementation of the capability of minimizing a 
metric of all, or a subset, of the hub loads as well as the capability of using all, or a subset, of the flap harmonics; 
and finally, solutions for the SMART rotor. The eventual goal is to implement NLP10x10 in a real-time wind 
tunnel environment. 
 
 

Notation 
 

A Control amplitude vector 

AMAX Control amplitude upper limit vector 

AMAX Σ Control amplitudes summation upper limit 

C
T
 Helicopter thrust coefficient 

CTHHC Continuous-Time Higher Harmonic 

Control 

[CV] Control vector,  [CV] ≡ θ ; same as flap 

deflection vector [d] in current SMART 

rotor application 

[CV]max Control vector upper limit,  

  [CV]max ≡ θmax  

[CV]min Control vector lower limit, [CV]min ≡ θmin  

CVR Element of the reduced control vector 

[d]      Flap deflection column vector 

[d*]     Optimal flap deflection column vector 

[EC] End conditions/measurement vector,  

[EC] ≡ Z; same as hub loads vector [HL] 

in current SMART rotor application 

ECR Element of the reduced end 

conditions/measurement vector  

FX, FY, FZ Axial, side, and normal NP hub shears, 

respectively 

 General performance index function 

GRG Generalized reduced gradient (method) 

[HL] Hub loads column vector 

 

[HL0] Baseline hub loads column vector, no flap 

deflection 

J Performance index,  

MX, MY Roll and pitch NP hub moments, 

 respectively 

N Number of blades 

NLP Nonlinear programming 

NLP10x10 Rotor hub loads minimization driver   

NLPQLP   Nonlinear programming system with SQP 

as core algorithm  

NP N per rev 

SMART Smart Material Advanced Rotor 

Technology 

SQP Sequential quadratic programming 

[T] T-matrix; linearly relates measurement 

vector to control vector 

[W] Diagonal weighting matrix for hub loads 

[HL] 

[V] Diagonal limiting matrix for flap 

deflection [d] 

Z End conditions/measurement vector,  

 Z  ≡  [EC]; same as hub loads vector [HL] 

in current SMART rotor application 

αs Rotor shaft angle 

 g[Z (θ )]

J = g[Z (θ )]
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θ Control vector, θ  ≡  [CV]; same as flap 

deflection vector [d] in current SMART 

rotor application 

θmax  Control vector upper limit,θmax ≡ [CV]max 

θmin  Control vector lower limit,θmin  ≡ [CV]min 

θsol  Optimal solution control vector 

μ Rotor advance ratio 

σ Rotor solidity ratio 

 Equality constraint function 

  Inequality constraint function 

Subscripts 

R Reduced 

0 Previous duty cycle or reference epoch 

time 

 
Introduction 

  

In 2008, DARPA, Boeing, the U.S. Army, and NASA 
completed a test of the Boeing Smart Material Advanced 
Rotor Technology (SMART) bearingless rotor in the 

USAF National Full-Scale Aerodynamics Complex 40- 

by 80-Foot Wind Tunnel at NASA Ames, Refs. 1-2 and 
Fig. 1. During the test, hub loads were successfully 

minimized using the continuous-time higher harmonic 

control (CTHHC) algorithm, Ref. 2.  

 

Recently, a driver code specifically designed to minimize 

active flap rotor hub loads (NLP10x10) has been 

developed and used to analyze several rotorcraft control 

problems for which the plant was modeled by a 

“synthetic” randomly defined T-matrix, with the rotor hub 

loads also simulated by randomly defined synthetic data, 

Ref. 3. The NLP10x10 driver code employs the very 

successful recently developed NLPQLP nonlinear 

programming/quadratic programming system, Ref. 4. The 

eventual goal of the current effort is to implement 

NLP10x10 in a real-time wind tunnel environment. 

 

The objectives of this paper are twofold: i) present the 

recently developed methodology to minimize hub loads 

for an active flap rotor using the constrained optimal 

control approach of Ref. 3; and ii) show results applicable 

to the full-scale SMART active flap rotor that have been 

used to validate the current optimization capability. 

Compared to Ref. 3, this paper considers more realistic 

simulations of an active flap rotor by using the rotorcraft 

comprehensive analysis CAMRAD II, Refs. 5-7, in 

conjunction with constrained optimal control 

methodology. The five-bladed bearingless SMART active 

flap rotor CAMRAD II model, refined and validated over 

the years, is used to predict the hub loads, Refs. 8-10. 

 

An outline of this paper is as follows. First, the two other 

optimization methods that have been used to validate the 

current method are briefly described. These two other 

methods are: i) the standard, linear unconstrained method, 

and ii) the nonlinear Generalized Reduced Gradient 

(GRG) method with constraints. Second, the statement of 

the General Nonlinear Programming (NLP) Problem is 

given. This is followed by a brief description of the basic 

solution procedure NLPQLP used in this study. Next, the 

formulation used in the current driver code NLP10x10 to 

minimize the NP hub loads of an active flap rotor is 

described. This is followed by a description of the 

implementation of the critical capability of minimizing a 

metric of all, or a subset, of hub loads as well as the 

capability of using all, or a subset, of flap harmonics as 

elements in the control vector. In general, the NLPQLP 

optimization solution procedure allows a user to specify 

the required constraints in a relatively straightforward 

manner. In NLP10x10, three types of practical constraints 

on the flap deflections have been implemented and a brief 

statement of these constraints is given in this paper. 

Finally, sample results for the SMART rotor active flap 

application and a summary of the effort to validate the 

current software implementation of NLP10x10 are given. 

 

Control Algorithms 
 

This analytical study uses the T-matrix approach, Ref. 11. 

The T-matrix relates the fixed system NP hub loads to the 

harmonics of the trailing edge flap deflection, and is 

defined as follows: 

 

                          [HL] = [T][d] + [HL0]       (1) 

 

where [HL0] refers to the hub loads with zero (or 

minimal) flap deflection. The quadratic objective function 

J to be minimized is:  

 

                J = [HL]
T 

[W][HL] + [d]
T 

[V][d]  (2) 

 

Standard, linear unconstrained optimization 
 
The unconstrained optimal solution [d*] that minimizes J 

is: 

 

                    [d*] = - [D][T]
T 

[W][HL0]  (3) 

 

where          [D] = [[T]
T
 [W][T] + [V]]-1

  (4) 

 

GRG nonlinear optimization with constraints 
 

In this study, the Microsoft Excel Solver version of the 

nonlinear algorithm GRG with constraints is used. 

 

φ (θ )

ψ(θ )
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Nonlinear Constrained Optimization NLP10x10 
 

General Nonlinear Programming (NLP) Problem 
 
The currently addressed optimization problems are special 

cases of the General NLP Problem described in Refs. 3 

and 12-14. The solution process involves seeking the 

optimal control vector  that minimizes a performance 

index J subject to specified constraints on the control 

vector . For the General NLP Problem, the performance 

index and the constraints can in general be nonlinear.  The 

general constrained optimization problem can be stated as 

follows.  

 Determine the vector that solves the problem: 

 Minimize      J = g[Z (θ )]   (5)
 

  

 where g can be a nonlinear function and:  

 

                       
Z = Z (θ ) = [... Zq ...]

T
(6)

  

                       
θ = [... θ p ...]

T
(7)

 

 
The subscripts q and p denote the q-th and p-th 
elements of the Z and  vectors, respectively. 
The problem is subject to direct constraints on the 
control vector : 
 

           
−∞ < θ

min p ≤ θ p ≤ θmax p < + ∞  

                                    Direct constraints           (8) 

  
 and general equality and inequality constraints: 
  
 φ (θ ) = 0 Equality constraints (9)  
 

 ψ(θ ) ≤ 0 Inequality constraints (10)   
 
The vectors  and  can have different dimensions. 
 
NLP problem solution by NLPQLP 
 
An investigation of various methods (Ref. 15) that can 

solve the general NLP problem led to the current selection 

of the method of Schittkowski (Ref. 4) that is partially 

based on related methods by Schittkowski, Powell, Stoer, 

and Gill (Refs. 16-22). These methods solve the general 

NLP problem by solving a sequence of related quadratic 

programming sub-problems until either convergence to 

the desired solution is obtained or the specified maximum 

number of iterations (i.e., the maximum number of 

quadratic programming sub-problems to be solved) is 

reached. This process is described in detail in Ref. 12. 

 

One important advantage of this technique is that 

quadratic programming problems can be solved 

efficiently. A very important property of quadratic 

programming problems is that if the quadratic coefficient 

matrix in the performance index is positive definite, the 

problem has a unique solution which is, of course, the 

global solution. This means that the sequence of solutions 

to the quadratic programming sub-problems will converge 

to the global solution of the general problem in the limit, 

provided that the quadratic coefficient matrix in the 

performance index remains positive definite in the 

process. 

 

The NLP algorithm described in Ref. 23 is coded in 

Fortran 77 and available as IMSL library routines 

(specifically, IMSL main driver routines DNCONF and 

DNCONG described in Ref. 23). This IMSL 

NCONF/DNCONF subroutine system, dating back to 

1989, worked quite well in the research described in Refs. 

12 and 15 and has proven to be quite robust and efficient 

in those applications. Professor Klaus Schittkowski of the 

University of Bayreuth, Germany, has subsequently 

revised and updated his Sequential Quadratic 

Programming (SQP) method that is part of the IMSL 

MATH/LIBRARY via several versions of the original 

code, which has resulted in performance improvements 

and error eliminations. This revised SQP code is available 

by license as the stand-alone NLPQLP code. 

 

In the NLPQLP system, the successive quadratic 

programming sub-problems to be solved are formulated 

by using a quadratic approximation for the general NLP 

performance index  and linear 

approximations for the general NLP equality and 

inequality constraint functions  and . These 

approximations are obtained by a simple replacement of 

the , , and  functions with their 

appropriately truncated matrix Taylor series expansions.  

Specifically, the matrix Taylor series expansion for 

 is truncated after the quadratic term. The 

quadratic coefficient of the truncated  is its 

Hessian, that is .  If the Hessian does not 

remain positive definite during the iteration process, the 

NLPQLP algorithm adjusts it so that it is positive definite 

in order to assure global optimality of this newly defined 

quadratic programming sub-problem. The matrix Taylor 

series expansions for the constraint functions  and 

 are truncated after their linear terms. The linear 

coefficients of these constraint functions are their 

respective gradients . If 

optimality, as measured by the Kuhn-Tucker (KT) 

criterion at the completion of an iteration step, is not 

satisfied and if the specified maximum number of 

θSol

θ

θSol

θ

θ

φ ψ

J = g[Z (θ )]

φ (θ ) ψ(θ )

g[Z (θ )] φ (θ ) ψ(θ )

J = g[Z (θ )]

g[Z (θ )]

∂2g(θ ) ∂θ 2

φ (θ )

ψ(θ )

∂φ (θ ) ∂θ and ∂ψ(θ ) ∂θ
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iterations has not been reached, the Hessian and the 

constraint gradients are updated (Refs. 4 and 23); a new 

quadratic programming sub-problem is defined.  A new 

iteration is then initiated starting with the last value of  

and the newly updated Hessian and constraint gradients. 

 
Active flap rotor hub loads minimization, NLP10x10 
 
The NLP10x10 solution process seeks to minimize the 

performance measure/index defined by the weighted 

squares of the selected fixed system NP rotor hub load(s). 

The NP hub loads that can be considered are: axial, side, 

and normal forces and roll and pitch moments. The 

process assumes that these hub loads are controllable by 

trailing edge flap deflections at frequencies of 2P, 3P, 4P, 

5P, and 6P, individually or combined. Constraints on the 

individual and sum of flap deflections can be imposed as 

required. A linear global plant model  (i.e., T-Matrix 

formulation) that linearly relates the measurement vector 

(sine and cosine components of the hub loads) to the 

control vector (sine and cosine components of the flap 

deflections) is assumed. This model is widely used in 

rotorcraft aeromechanical behavior studies.  

 

In the description that follows, an attempt has been made 

to make the notation consistent with the variable names 

used in the Fortran code NLP10x10 in order to facilitate 

easier understanding of the code. The most general model 

that is addressed in this research and treated by the 

NLP10x10 system assumes the following:  

 

i) The general end conditions vector [EC] is a (10x1) 

vector composed of the sine and cosine components of the 

NP axial, side, and normal hub shears and the roll and 

pitch hub moments.  

 

ii)  The general control vector [CV]
 
is a (10x1) vector 

composed of five harmonics of the flap deflection, that is, 

the sine and cosine components of the 2P, 3P, 4P, 5P, and 

6P flap deflection angles. The corresponding T-matrix is 

a (10x10) matrix. The general model relates the general 

end conditions vector [EC] to the general control vector 
[CV]

 
according to the equation: 

 
                        [EC] = [T][CV] + [EC]0              (11) 

where 

  

[EC]0  is  [EC] defined during a previous duty cycle 

or a reference epoch time 

 

ECi  and EC0i are the i-th elements of [EC] and [EC]0, 

respectively and 

 

 CVj is the j-th element of  [CV]. 

 

Let FX, FY, and FZ be the axial, side, and normal NP hub 

forces and MX and MY be the NP hub roll and pitch 

moments, respectively. Then let the suffixes S and C 

denote the sine and cosine components of the NP hub 

forces and the NP hub moments, respectively (e.g., FXS 

and FXC denote the sine and cosine components of FX, 

respectively). Also, let d2, d3, d4, d5, d6 denote the 

respective 2P, 3P, 4P, 5P, 6P harmonics of the flap 

deflection angles. As in the case of the hub loads, the 

suffixes S and C denote the sine and cosine components 

of the harmonics of the flap deflection angles (e.g., d2S 

and d2C denote the sine and cosine components of the 2P 

flap deflection angle, respectively). The general [EC] and 
[CV]

 
vectors then have the following forms as shown in 

Eq. (12) below. 

  
This general representation includes all hub load 

components and separately, all flap deflections. A major  

 

EC⎡⎣ ⎤⎦ =

EC
1

EC
2

EC
3

EC
4

EC
5

EC
6

EC
7

EC
8

EC
9

EC
10

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

FXS

FXC

FYS

FYC

FZS

FZC

MXS

MXC

MYS

MYC

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

and

CV⎡⎣ ⎤⎦ =

CV
1

CV
2

CV
3

CV
4

CV
5

CV
6

CV
7

CV
8

CV
9

CV
10

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

d2S

d2C

d3S

d3C

d4S

d4C

d5S

d5C

d6S

d6C

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

   (12) 

θ
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and critical feature is the capability to allow for all 10 hub 

load components to be actively considered or a specified   

selected subset of hub load components (e.g., only FX, or 

only FX and FY, etc.) to be actively considered. All 10 

flap deflection components can be actively considered or 

a specified selected subset of these flap deflection 

components can be actively considered. For these 

purposes, NLP10x10 provides options to reduce the 

number of elements in the general model, which can 

result in a reduced model.  Sine and cosine pairs of 

elements of either or both the general end conditions 
(10x1) vector [EC] and/or the general control vector 
(10x1) vector [CV]

 
 can be eliminated to define a reduced 

model. In these cases, the T-matrix size is reduced by 

eliminating the appropriate rows and/or columns to define 

a reduced matrix, [T]R. This reduced model relates the 

reduced end conditions vector [EC]R to the reduced 
control vector [CV]R according to: 

 

        [EC]R = [T]R [CV]R + [EC]0R   (13) 

 

where 

 

 [T]R is the correspondingly reduced T-matrix and 

 

[EC]0R is the reduced [EC]R vector defined during a 

previous duty cycle. 

 

The NLP10x10 system needs the following three 

elements of information as inputs: 1) the T-matrix; 2) the 

actual previous cycle control vector [CV]0; and 3) the 

actual previous cycle measurement vector [EC]0. Two 

options are currently provided in the NLP10x10 system to 

define these three elements. These options are: 1) 

Synthetically define the above three elements using a 

uniformly distributed random function to generate these 

elements; and 2) Input actual test data or analytically 

simulated data to define these three elements. The 

synthesis option (i.e., Option 1) has been successfully 

used for check out prior to using actual test data. In the 

current full-scale SMART rotor application, analytically 

simulated data (i.e., Option 2) obtained using the 

CAMRAD II model of the SMART rotor (Refs. 8-10) was 

used to define these three elements. 

 

Implementation of model dimension reduction 
 

The core of the driver code NLP10x10 consists of logic 

that ultimately provides the user with the capability to 

specify the NP hub load(s) to be minimized and the 

control to be used, i.e. the flap deflection harmonic(s) to 

be used in the minimization process. Within the driver 

code NLP10x10, the first major step pertaining to the 

specific problem of interest is to define: i) the user 

specified NP hub load couples (sine and cosine pairs) to 

be minimized; these couples are the end conditions to be 

considered for the specific problem; and ii) the user 

specified control, i.e. the flap deflection harmonics. Only 

an outline of the model reduction process is given here. In 

the context of the above considerations, let:  

 

 MEC denote the total number of selected end 

conditions NP hub load couples (sine and cosine pairs of 

the specified hub load elements); these end conditions are 

selected from the general end condition vector [EC] to 

comprise the reduced vectors [EC]R and [EC]0R , 

respectively. 

 

 NCV   denote the total number of selected control 

flap deflection harmonics (sine and cosine pairs) from the 

general control vector [CV] to comprise the reduced 

vector [CV]R . 
 

 HECi denote a preselected index, internal to 

NLP10x10, associated with the user specified NP hub 

loads couple, where i can take on values 1, 2,…5. 

 

 HCVj denote a preselected index, internal to 

NLP10x10, associated with the user specified flap 

deflection harmonic, where j can take on values 1, 2,…5. 

 

Then the elements of [EC]R (and correspondingly of 

[EC]0R  ) are: 

 

ECRi = ECk   for i = 1, 2, 3, … 2MEC where MEC  ≤  5    

     (14) 

and where the subscript k in ECk is defined as: 

 

     k =
2HECi - 1 if i is odd

2HECi if i is even

⎧
⎨
⎪

⎩⎪
(15)  

 

The elements of [CV]R are defined similarly: 

 

 CVRj = CVl   for l = 1, 2, 3, … 2NCV where NCV  ≤  5    

     (16) 
 

and where the subscript l in  is defined as: 

 

      l =
2HCVj - 1 if j is odd

2HCVj if j is even

⎧
⎨
⎪

⎩⎪
(17)  

 

The corresponding reduced T-matrix [T]R is defined by 

eliminating the rows and columns from [T] that 

correspond to the elements eliminated from [EC], [EC]0, 

and [CV] when constructing

 

[EC]R, [EC]0R, and [CV]R, 

respectively. 

CVl
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An example of model dimension reduction is shown 

below where only the in-plane hub shears (i.e., the X and 

Y components) and a single harmonic (4P) of the flap 

deflection are considered. In this case, only the FX and 

FY components of the hub loads define [EC]R and [EC]0R

 
 

and only the 4P flap deflection angle defines [CV]R.  In 

this case MEC=2; NCV=1; HEC1=1 and HEC2=2; HCV1=3, 

and the corresponding reduced vector forms are: 

   

EC⎡⎣ ⎤⎦
R

=

ECR
1

ECR
2

ECR
3

ECR
4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

FXS

FXC

FYS

FYC

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

and

EC⎡⎣ ⎤⎦0R
=

EC0R
1

EC0R
2

EC0R
3

EC0R
4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

FXS0

FXC0

FYS0

FYC0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

and

CV⎡⎣ ⎤⎦
R

=
CVR

1

CVR
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
CV5

CV6

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
d4S

d4C

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

 (18) 

 

where 

 

 ECRi and EC0Ri are the i-th elements of [EC]R  and 
[EC]0R

 
 vectors, respectively and  

 

 CVRj is the j-th element of [CV]R . 

 
NLP problem with constraints on flap deflection 
 

This problem is a special case of the general NLP 

problem outlined previously. The optimization problem 

seeks to minimize the performance index J consisting of 

selected NP hub loads and subject to specified constraints 

on the flap deflection. The actual SMART rotor, Ref. 1, 

has hard limits for the maximum flap deflection. Any 

combination of the following three types of constraints is 

currently available in NLP10x10: i) constraints imposed 

directly on each flap deflection harmonic, i.e. on each 

element CVRj
 
of the reduced vector [CV]R; ii)

 
constraints 

imposed on selected flap deflection amplitudes, i.e. on 

elements of [CV]R; and iii) a constraint imposed on the 

summation of selected amplitudes of the flap deflection.  

Specifically the minimization problem considered in this 

study is: 

 

Minimize     J = Wi (ECR i )
2

i=1

2M
EC

∑ (19)  

 where  is a specified weighting coefficient. 

 

The problem is subject to one of the following three types 

of constraints: 

 

 i) Direct control element constraints: 

 

  
−∞ < CV

min j ≤ CVj ≤ CVmax j < + ∞
 

 
                where j = 1, 2, 3, … 2NCV  (20) 
 

 ii) Control amplitudes constraints: 

 

  
Aq = CV

2q−1

2 + CV
2q
2 ≤ A

MAX q  

     (21) 

 

where the subscript q is determined by user specified flap 
harmonic(s) and preselected index number(s) internal to 
NLP10x10. 
 
 iii) Control amplitude summation constraint: 
   

  
A p

≤ A
MAX Σ

p
∑  (22) 

where the subscript p is determined by user specified flap 
harmonic(s) and preselected index number(s) internal to 
NLP10x10. 
 

Results 
 
The five-bladed bearingless SMART active flap rotor 

CAMRAD II model was used to predict the hub loads, 

Refs. 8-10. The selected operating condition is one of the 

operating conditions in the Vibration Control part of the 

SMART rotor wind tunnel test (Ref. 1): μ=0.3,  

C
T
 /σ=0.075, αs =-9.1

o
. The T-matrix has been assembled 

Wi
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using ten CAMRAD II runs, each with 1
o
 trailing edge 

flap amplitude; for example, a run with 1
o 

3P cosine flap 

amplitude has all other flap components close to zero. 

 

As noted earlier, the standard, linear unconstrained 

method has been used first to get optimal flap deflections 

for a number of specified cases, and then for validation 

purposes NLP10x10 was used to get optimal solutions for 

the same cases. For the constrained cases considered in 

this study, optimal solutions have been obtained using 

both NLP10x10 and GRG. The NLP10x10 validation 

effort is discussed in the next section with the linear 

unconstrained solution results presented below. 

 

Linear unconstrained solution results 
 

An initial estimate of the optimal solution [d*] is obtained 

from Eq. (1) by setting its left side to zero, giving: 

 

                        [d*] = - [T ]
-1 

[HL0]  (23) 

 

This optimal flap deflection is shown in Fig. 2. The 

maximum flap deflection is less than 0.8
o
 and includes all 

5 harmonic flap inputs.  For a quadratic performance 

index J with all 10 hub load components equally 

weighted, the [d*] from Fig. 2 results in 12% reduction in 

J. The baseline and optimal hub loads are shown in Table 

1; all hub loads except MYC (cosine component of the 

pitch moment) are reduced. 

 

Next, the 5P hub shears are considered individually. A 

single harmonic flap input is considered. Optimal 

solutions using [d*] from Eq. (3) have been obtained for 

the following three scenarios: i) Minimize normal shear 

FZ; ii) Minimize axial shear FX; and iii) Minimize side 

shear FY. The frequency of the single harmonic input has 

been varied from 2P to 6P (5 separate optimal inputs for 

each shear; total 15 CAMRAD II cases, each with one 

optimal input). Since the T-matrix was calculated using 1
o
 

flap amplitude, the current optimal flap amplitudes are 

kept reasonable by adjusting the diagonal limiting matrix 

[V], and the resulting amplitude range turns out to be 

0.33
o
 to 1.44

o
. 

 

Figures 3a-3c show the resulting minimizations for FZ, 

FX, and FY, respectively. Each figure shows the shears, 

moments, and three indexes, defined as follows. The first 

two indexes are based on equally weighted shears and 

separately, moments, and the third is a total index that 

includes both shear and moment components (equally 

weighted). The best reductions are listed as follows: 

 

i) FZ minimization, Fig. 3a: 4P input reduces FZ by 

90%. A 5P input is also effective. The 

effectiveness of the 4P and 5P inputs is consistent 

with the SMART rotor test results, Ref. 1. 

 

ii) FX minimization, Fig. 3b: 5P input reduces FX by 

37%. 

 

iii) FY minimization, Fig. 3c: 4P input reduces FY by 

50%.  

 

Overall, the three best reductions in the total index with 

all hub loads equally weighted are as follows: 

 

    Reduction in  Hub shear Active 

 total index minimized harmonic 

 

 27% FZ 4P 

 24% FX 5P 

 20% FY 4P 

 

The bottom charts in Figs. 3a-3c show the actual indexes. 

The current reductions in hub shears are encouraging. The 

linear unconstrained solution design space allows for 

solutions with single harmonic inputs that give better 

reductions compared to a solution using all 5 harmonics. 

The linear unconstrained method does not guarantee a 

globally optimum solution. 

 

NLP10x10 validation 
 
As noted in a previous section, NLP10x10 including 

NLPQLP and associated subroutines were first installed 

on a mainframe (operating system OpenVMS, Fortran 77) 

and code debugging and fine-tuning of the algorithm was 

done on this mainframe. In order to prepare for an 

eventual wind tunnel installation, the OpenVMS code was 

ported to a Mac desktop (OS 10.6, gfortran). 

Compatibility issues were encountered and a significant 

amount of time and effort was expended in resolving 

these issues. Currently, all compatibility issues have been 

sorted out and NLP10x10 can be run on both systems. 

 

The current NLP10x10 software with NLPQLP as its core 

algorithm has been validated in the following manner. 

 

Unconstrained cases 
 

A major and critical step is the development and 

verification of the capability to allow for all 10 hub load 

components to be actively considered at one time or a 

specified, selected set of hub load components (e.g., only 

FX, or only FX and FY, etc.) to be actively considered. 

An additional complexity is the development and 

verification of the capability to allow the flap deflection 

vector to be fully populated or partially populated 

depending on the specified control harmonic(s) under 

active consideration. Over 35 cases (Table 2) have been 

formulated and used to successfully validate these 

capabilities. Finally, it has been confirmed that the 
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NLP10x10 optimal solutions are the same as or very close 

to all of the solutions obtained from the standard linear 

method (Table 3). 

 

Constrained cases 
 
For the unconstrained test cases studied so far, two of the 

cases have resulted in relatively large optimal flap 

deflections (Cases 20 and 25, Tables 2-3). NLP10x10 has 

been successfully run with constraints in order to limit the 

flap amplitude. Several cases have been considered with a 

specified, wide limiting amplitude range (0.1
o
 to 9

o
). 

Individual test cases have been run with the following 

amplitude limits: 0.1
o
, 0.3

o
, 0.6

o
, and 1

o
 to 9

o
 in steps of 

1
o
. It has been confirmed that the resulting constrained 

NLP10x10 and GRG optimal solutions are the same or 

very close to each other (Table 4). 

 

Sensitivity to starting conditions 
 
The sensitivity of the NLP10x10 optimal solutions to the 

initial starting conditions has been studied by starting with 

both best guess starting conditions based on the standard 

linear method (that is, [dO]=[d*] from Eq. 3) and zero 

initial conditions ([dO]=[0]). The results show that for the 

current application the NLP10x10 method is relatively 

insensitive to the starting conditions. A preliminary 

observation is that there is some increase in the number of 

iterations required for convergence (Tables 5-6). This 

topic will have to be eventually revisited for a more 

comprehensive evaluation during the actual use of the 

method in a real-time wind tunnel environment. 

 

Thus, it appears that the current software is functioning as 

desired. 

 
Conclusions 

 

A new software code NLP10x10 that employs the 

nonlinear optimization algorithm NLPQLP was 

developed with the purpose of minimizing active flap 

rotor hub loads in a real-time wind tunnel environment. 

Full-scale SMART active flap rotor hub loads were 

analytically minimized using the current nonlinear 

programming constrained optimization methodology. It 

was verified that the new code is functioning as desired. 

Details on this analytical effort were presented. 
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Table 1. Baseline and minimized hub loads from initial estimate of optimal solution,  

linear unconstrained method. 
 

 

Hub 
load 

Baseline, 
lb, ft-lb 

From optimal 
solution Eq. 23, 

lb, ft-lb 

FXC 75.6 75.3 

FYC 80.7 72.0 

FZC 77.7 67.7 

MXC 31.4 23.4 

MYC 12.2 24.1 

FXS -95.5 -82.8 

FYS 84.9 81.7 

FZS -65.8 -42.3 

MXS -37.3 -32.2 

MYS 43.6 29.7 

 
 
 
 
 
 
 
 
 

Table 2. NLP10x10 validation cases (unconstrained). 
 

 

Case Hub load (sine and cosine) Control inputs (sine and cosine) 

1 FX, FY, FZ, MX, MY 2P, 3P, 4P, 5P, 6P 

2 FX, FY, FZ, MX, MY 3P, 4P, 5P 

3 to 7 FX, FY, FZ, MX, MY Single harmonic, 2P to 6P 

8 to 12 FX, FY, FZ Single harmonic, 2P to 6P 

13 to 17 MX, MY Single harmonic, 2P to 6P 

18 to 22 FX Single harmonic, 2P to 6P 

23 to 27 FY Single harmonic, 2P to 6P 

28 to 32 FZ Single harmonic, 2P to 6P 

33 to 37 FX, FY Single harmonic, 2P to 6P 
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Table 3. Comparison of standard (Eq. 3) and NLP10x10 optimal flap deflections (unconstrained). 

 

 
Case Hub load(s) Active cosine, deg sine, deg 

minimized harmonic(s) Std. NLP10x10 Std. NLP10x10 

1 FX, FY, FZ, MX, MY 2P -0.33 -0.33 -0.16 -0.16 

1 " 3P 0.23 0.23 0.08 0.08 

1 " 4P 0.00 0.00 -0.16 -0.16 

1 " 5P -0.12 -0.12 -0.19 -0.19 

1 " 6P -0.17 -0.17 -0.02 -0.02 

2 FX, FY, FZ, MX, MY 3P -1.02 -1.03 -0.55 -0.55 

2 " 4P -0.40 -0.40 0.49 0.50 

2 " 5P 0.09 0.09 0.19 0.19 

3 FX, FY, FZ, MX, MY 2P -0.49 -0.50 -0.37 -0.38 

4 " 3P -0.54 -0.55 -0.62 -0.63 

5 " 4P -0.61 -0.65 -0.02 -0.01 

6 " 5P -0.21 -0.22 -0.36 -0.38 

7 " 6P -0.29 -0.31 -0.41 -0.47 

8 FX, FY, FZ 2P -0.46 -0.47 -0.39 -0.39 

9 " 3P -0.81 -0.81 -0.43 -0.44 

10 " 4P -0.85 -0.90 0.25 0.29 

11 " 5P -0.19 -0.19 -0.39 -0.40 

12 " 6P -0.48 -0.51 -0.57 -0.60 

13 MX, MY 2P -0.95 -0.95 -0.16 -0.15 

14 " 3P -0.33 -0.34 -1.04 -1.04 

15 " 4P -0.30 -0.30 -0.18 -0.18 

16 " 5P -0.37 -0.38 -0.19 -0.19 

17 " 6P -0.23 -0.23 -0.12 -0.12 

18 FX 2P -0.51 -0.51 -0.30 -0.30 

19 " 3P -1.55 -1.55 0.09 0.09 

20 " 4P 4.05 4.49 -8.05 -8.76 

21 " 5P 0.02 0.02 -0.69 -0.69 

22 " 6P -1.12 -1.12 -0.46 -0.46 

23 FY 2P -0.44 -0.44 -0.38 -0.38 

24 " 3P -1.10 -1.10 -0.23 -0.23 

25 " 4P -3.39 -3.48 3.89 4.03 

26 " 5P 0.34 0.34 -0.90 -0.90 

27 " 6P -0.44 -0.44 -1.06 -1.06 

28 FZ 2P -0.45 -0.45 -0.64 -0.64 

29 " 3P -0.37 -0.37 -0.97 -0.97 

30 " 4P -0.80 -0.80 0.60 0.60 

31 " 5P -0.17 -0.17 -0.29 -0.29 

32 " 6P 1.15 1.15 -0.81 -0.82 

33 FX, FY 2P -0.48 -0.48 -0.33 -0.33 

34 " 3P -1.28 -1.28 -0.10 -0.09 

35 " 4P -1.25 -1.31 0.62 0.68 

36 " 5P 0.13 0.13 -0.76 -0.76 

37 " 6P -0.65 -0.66 -0.70 -0.71 
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Table 4. Comparison of GRG and NLP10x10 optimal flap deflections (constrained). 

 

 
Hub shear Active Constraint cosine, deg sine, deg 
minimized harmonic deg GRG NLP10x10 GRG NLP10x10 

FX 4P  None 4.49 4.49 -8.76 -8.76 

" " 9.0 4.04 4.04 -8.04 -8.04 

" " 8.0 3.52 3.52 -7.19 -7.19 

" " 7.0 2.99 2.99 -6.33 -6.33 

" " 6.0 2.47 2.47 -5.47 -5.47 

" " 5.0 1.94 1.94 -4.61 -4.61 

" " 4.0 1.41 1.41 -3.74 -3.74 

" " 3.0 0.87 0.87 -2.87 -2.87 

" " 2.0 0.32 0.32 -1.97 -1.97 

" " 1.0 -0.30 -0.30 -0.96 -0.96 

" " 0.6 -0.50 -0.50 -0.33 -0.33 

" " 0.3 -0.25 -0.25 -0.16 -0.16 

" " 0.1 -0.08 -0.08 -0.05 -0.05 

FY 4P  None -3.48 -3.48 4.03 4.03 

" " 5.0 -3.30 -3.30 3.76 3.76 

" " 4.0 -2.75 -2.75 2.91 2.91 

" " 3.0 -2.19 -2.19 2.05 2.05 

" " 2.0 -1.62 -1.62 1.17 1.17 

" " 1.0 -0.98 -0.98 0.19 0.19 

" " 0.6 -0.52 -0.52 -0.30 -0.30 

" " 0.3 -0.25 -0.25 -0.16 -0.16 

" " 0.1 -0.08 -0.08 -0.05 -0.05 

 
 
 



 

 13 

Table 5. Comparison of number of iterations for best guess start and zero initial conditions (unconstrained) 
using NLP10x10. 

 

 
Case Hub load(s) Active Best guess Zero initial 

minimized harmonic(s) start conditions 

1 FX, FY, FZ, MX, MY 2P, 3P, 4P, 5P, 6P 14 19 

2 FX, FY, FZ, MX, MY 3P, 4P, 5P 13 13 

3 FX, FY, FZ, MX, MY 2P 5 9 

4 " 3P 7 8 

5 " 4P 9 9 

6 " 5P 7 8 

7 " 6P 8 8 

8 FX, FY, FZ 2P 5 8 

9 " 3P 9 8 

10 " 4P 9 8 

11 " 5P 6 8 

12 " 6P 8 7 

13 MX, MY 2P 9 7 

14 " 3P 6 8 

15 " 4P 7 6 

16 " 5P 6 7 

17 " 6P 7 7 

18 FX 2P 6 8 

19 " 3P 7 8 

20 " 4P 6 7 

21 " 5P 6 8 

22 " 6P 9 9 

23 FY 2P 6 7 

24 " 3P 7 8 

25 " 4P 6 6 

26 " 5P 6 7 

27 " 6P 7 7 

28 FZ 2P 8 10 

29 " 3P 6 8 

30 " 4P 8 8 

31 " 5P 7 6 

32 " 6P 10 10 

33 FX, FY 2P 5 8 

34 " 3P 7 8 

35 " 4P 8 6 

36 " 5P 6 8 

37 " 6P 7 7 
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Table 6. Comparison of number of iterations for best guess start and zero initial conditions (constrained)  

using NLP10x10. 
 

 
Hub shear Active Constraint Best guess Zero initial 
minimized harmonic deg start conditions 

FX 4P None 6 7

" " 9.0 7 7

" " 8.0 7 7

" " 7.0 7 7

" " 6.0 6 6

" " 5.0 6 6

" " 4.0 6 6

" " 3.0 6 6

" " 2.0 6 6

" " 1.0 7 7

" " 0.6 10 10

" " 0.3 9 9

" " 0.1 10 13

FY 4P None 6 6

" " 5.0 7 6

" " 4.0 6 6

" " 3.0 6 6

" " 2.0 7 7

" " 1.0 7 7

" " 0.6 10 10

" " 0.3 9 9

" " 0.1 13 12
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Fig. 1. Boeing SMART active flap rotor installed in USAF National Full-Scale Aerodynamics Complex 40- by 80-

Foot Wind Tunnel, Refs. 1-2. 
 

 
 

 

 

 

 

Fig. 2. Initial estimate of optimal flap deflection using the linear unconstrained method, Eq. (23), μμ=0.3,  
CT /σ=0.075, α s =-9.1o. 
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Fig. 3a. SMART rotor FZ (normal) hub shear minimization using single harmonic flap input (2P-6P), 
μμ=0.3, CT /σ=0.075, α s =-9.1o. 
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Fig. 3b. SMART rotor FX (axial) hub shear minimization using single harmonic flap input (2P-6P), 
μμ=0.3, CT /σ=0.075, α s =-9.1o. 
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Fig. 3c. SMART rotor FY (side) hub shear minimization using single harmonic flap input (2P-6P), 
μμ=0.3, CT /σ=0.075, α s =-9.1o. 

 

 


