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Introduction @
e Aeroacoustics for Airplanes

o0 Mostly for community noise reduction

o very few vibro-acoustics concerns (such as failures of nozzle cowlings)

e Aeroacoustics for space vehicles
o Mostly for vibro-acoustic concern
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National Aeronautics and Space Administration Introduction @
The end goal of acoustic analysis is to predict structural
responses due to acoustic loads

3.1 Acoustic-Load Parameters NASA SP-8072

To the extent required for design, the predicted acoustic loads shall be given as a
function of position and tinie in terms of:

e  Owerall sound-pressure level
e  Frequency spectrum

e  Spatial correlation

2.2 Vehicle Loading

The minimum description of the loading on the wvehicle, needed to estimate the
structural response, is given in terms of the detailed distribution on the structure of the
sound-pressure spectrum. A more detailed description also requires the spatial
correlation pattern of the sound-pressure field to enable more exact vibration
prediction. Such analyses are required for examining certain types of failures, such as
the sonic fatigue of lightweight external panels.

1/28/2014
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Aeroacoustics : part of Fluids — Structure Interactions

NASA CR-1596: Himelblau, Fuller, Scharton, “Assessment of space vehicle aeroacoustic-
vibration prediction & testing”

the displacement spectral density for location x at each frequency f due to a
spatially~distributed applied loading is

Mod e\shAape /Freq response including damping
Acoustic a@;spectrum b ()b (R)H*(f)ﬂk(f}jz (£)
. A2 P S Sl i St 1
G (x,f) A Gpr(f) b 2 2 (2)
St ctura‘TT =1 -1 (2w) fikaiMk
response arca

where the cross-joint acceptance function is given by Modal mass

-1
326 = [Achr(f)] ,[/;:P{g,g',f)¢i(5_)¢k(§')d§d_§' (2a)
A

/

Acoustic cross-spectrum

e Modelling via splitting the problem into aero-acoustics and vibro-acoustics
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Separation of fluid dynamics and structural dynamics
- Aero-acoustics as a part of combined load

e Forcing function - Distribution of Auto and Cross-spectra of acoustic pressure fluctuations

Diffused Acoustic Field Progressive Wave Field
— 1 L —c k,d . s
6o =Gu()nld) Gy =G () feos(ld)isin )
k,d
G4= DAF autospect
EARRS @ G = PWE autospetrum
’»» ««. - % k, = o/U, = trace wavenumber

k, = o/c, = acoustic wavenumber

[ %

d = separation distance
cy = correlation decay coefficient

u@?ul \

e Prediction of Structural response - forcing functions input to structural dynamics analyses -
FEM, BEM, SEA models of the components, systems and subsystems of the vehicle.
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Vibro-Acoustics tests for flight certification @

|
Ofle of the 25Hz

horns in the test
chamber
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NASA Plum Brook Station Mechanical Vibration Facility
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Roadmap:

e Launch Acoustics
o Description of launch pad
o Prediction, CAA
o Static fire test
o Flight test
o Identification of acoustic sources During Antares launch
by a microphone phased array
e Ascent Acoustics
e Abort Acoustics

Jay Panda (NASA ARC) 8
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Launch Acoustics
Why study launch acoustics? [\
e Very high acoustic level during launch 4 149
creates high vibro-acoustics environment T 180
» All payloads, many parts of I :%’[“&151
the vehicle, and ground op systems need Nhan o 182
to be designed, tested and LU el
qualified for this environment A4~ *l 164
» The fluctuation levels ;‘“--J;:\ L 155
influence the weight and the cost of the J. SN 1*1.5;0
vehicle — L—_i i} "" 163
MOBILE LAUNGH PLATFORM
® The acoustic suppression systems needs 1‘& ]L
to perform optimally to provide relief M’M§
DEFLECTOR
] )

5 N
L L
MAXIMUM OVERALL LEVELS, dBre 2 X '“:'-'_5 N.’ME

Fig. 2 Engine noise fevels during Shutile Lift-aff,
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Launch Acoustics

Shuttle Pad water injection

Rk

——

e Deflector

e Trench/Duct

e Mobile launch platform
e Service Tower

e Water flow systems

e Vehicle trajectory

- elevation
- drift
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Prediction — NASA SP-8072, “Rocket Vehicle Liftoff Acoustics and Skin Vibration
Acoustic Loads Generated by the Propulsion System” 1971
eThere exists no prediction methodology from the fundamental equations

eTotal acoustic power W, 1s related to the mechanical power W generated by the rocket,
n = efficiency factor 0.2% to 0.8%

W,=nW,=n > 0.5Thrust)U,,,

All nozzles

B Ref. 16
® Ref. 13
M Ref. 9, J.57 jet engine

C Ref. 20, Mach 2.5 nitrogen jet

Rockets
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OASPL (dB)
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Prediction - based on flight data from prior vehicles
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National Aeronautics and Space Administration Pred iction - CAA Launch Acoustics

SLA Launch simulation, NASA Ames
LAVA code, Kiris et al, AIAA 2014-0070.

Challenges —
—=Complex geometry, high Re, multi-phase
flow, multiple y, multiple species

Paths for CAA simulation:

*RANS + acoustic analogy LES simulation: Fukuda et al, 2009

o LES T

e Need of experimental data for validation Effect of water injection: Fukuda et al, 2011

Jay Panda (ARC-AOX) 650-604-1553 13



National Aeronautics and Space Administration Launch Acoustics

Model scale static fire tests - ASMAT

4

Static fire tests are the best
means to determine
Wbt g ehdil e @ launch environment

e water schedule

e pad modification

model

® 5% scale model of ARES 1

14 Jay Panda (NASA ARC) 12802014
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Validation/adjustment from Flight sensors
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What are the true sources of noise during liftoft?

- Use of microphone phased array

e Phased array — Acoustic camera, a tuned ear.

e Ubiquitous in Aeronautics, new in Space applications
e Need for a large size array for a full-scale vehicle application
— Angular resolution of array ~ (acoustic wavelength) / (array aperture)

® Design of a brand new array

» 10°X10’ size, use 70 microphones

» lighter weight
» weather protection
» debris protection

P vibration isolation for camera

Microphone pattern for new 10’ array
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Launch Acoustics

National Aeronautics and Space Administration

Evolution of phased array project

e Array validation in Ames hybrid motor test
» revealed the need for solid state electronics
P vibration i1solation

» need for rain protection

e Software
» Conventional beamform

s

» Spectral Element Technique (SEM) provided

most promise , o /-
40 21000 S
] N @ “ 40 -20 0 20 4«
. . _ 2. % S - 1% 220
E (a]' f ) — z G om/ E Wim@; Wi/ z ——
m,m/=1 j=1 s i
x 20
(o}
e All hardware shipped to NASA Wallops e, P 20omueen 4
0 -20 0 20 40 40 -20 0 20 40
Look angle in x (deg) Look angle in x (deg)

Noise map during hybrid motor burn
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Phased array set-up at Wallops pad 0A

: IR camera visible camera
% ‘window window

i :

- -
.
=
T N SN &
s gu— S T ——  — —
— ' 3 ~
- - o =

" Guy wires (8) for | /’ "
X ability; increase /Zf

b

7 / (front view) Mylar cover for each microphone
/ i ‘ Instrumentations:

N2 supply for | (22! | e 70 condenser microphones

purgmajam ; ¢ e 1 visible band camera
- e 1 long wave Infra-red camera

e | x-y accelerometer

The phased was mounted on a scissor lift at south side of pad 0A, ~ 400’ from the
Antares Engine, & 40’ above ground

18 Jay Panda (NASA ARC) V282014
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Phased array in Antares A-one launch: April 21, 2013

Rest of the presentation is from A-one launch

19 Jay Panda (NASA ARC) —



<4 Water injection
inside launch mount
(on the top of the
flame trench).

:539:20.0/8

On-deck water injection
using 4 Rain-bird headsp

e Water started to flow from 3 short 4 .
rainbirds at t+5.7s o : | R \ |
e Water started to flow from 1 tall | Rainbir"ds-;’\"‘
rainbird at t+6.8s A
e Tall rainbird is 6’ taller than rest
e It takes ~2s to build full flow.

&Jay Panda (NASA ARC) 1/28/2014
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Initial Trajectory

e Slow moving vehicle
e TEL avoidance maneuver to avoid contact with the service tower

Time dependent beam- = = // %I ' (c)
forming: M=SSS=S=s=s==———F .
e Microphone time signals 'GS-: SESE=SSSS=SS= === o [
were segmented into 02s 3/ g ||
wide segments 5 — . =

| : : 3
Propagation delay: ————— ~
® Microphones received the - ==y
launch events at a delayed e 2
time. ~ 0.4s for soundsto 2| S=E=E " o
propagate from the launch é 1\ | )J" —— | -E
pad to the phased array. & ESS=S 2

=== ¥
1 4 time(s) g 13 4 9 14

time t(s)
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Noise source map at t+(0.6s,
conventional beam-form at 2kHz

Source strength at 2kHz in 80Hz wide band - Auto-scaled

freq: 2000.0 seq:10
81
-80
-79
7B
-
75
75
74

73

2 § v WM‘!\?QS"

7
-

P—

[

e Engine Ignition created noise source at launch mount
e Phased array, mounted 40’ above ground, saw both the primary source and its image on ground

22 Jay Panda (NASA ARC)
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Noise source map at t+2.9s @

freq: 2000.0 seg:21
-106
105
- 4104
103
102

ek Ot

T S R ——

. > i
E— e

i - -:< =+ /-:/ :
|y ——— v

] g

&

-

A%0.408

-a

-
-

e The duct (trench) exhaust became the primary noise source as the hot plume started to
come out (see movie).
e Effective cooling by duct water minimized the extent of the noise source

— the OASPL was somewhat reasonable.

e Launch mount remained as a strong noise source.

23 Jay Panda (NASA ARC)



Noise source map at t+3.7s

freq: 2000.0 seq:35

National Aeronautics and Space Administration Launch Acoustics .

Large spread
of hot plume

opfil 115 938 * e |
e Vehicle drifted even more towards east, caused heavy spreading of the hot plume over the

pad, - Extended the size of the noise source.
e Start of flow from short 3 Rainbirds (not much water). No flow from 1 tall rainbird. Duct

water in full force.

1/28/2014
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Noise source map at t+8.7s

freq: 2000.0 seq:50
-114

11
112

oplil 115, 6B
o The long, exposed plume was the prlmary noise source.
e Still some impingement on the pad, yet the rainbird system had come to full force, and

quenched the hot plume and the deck.
e From this time on, as the vehicle gained altitude and speed, the acoustic level on the vehicle

was expected lower; however, ground service equipment did not see any decrease for another

few seconds

® round reflection

25 Jay Panda (NASA ARC)
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Optimization of Antares Water injection schedule

Hi Jay,
Yes the activation timing of the water deluge rambirds was moved up from T+5s to T+3.8s.

Subject: Re: Antares Test Launch

Understood, thanks. Yes from a ground system standpomt, we also noted less ablative wear on
the launch mount this time around, which i1s most likely attributable to faster water deluge
activation. The phased array effort was mdeed beneficial.

Jay Panda (NASA ARC) v 26
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Ascent Acoustics

o Vehicle trajectory and dynamic pressure

o Buffet and acoustics

o Prediction — empiricism and existing
database, CFD

o Wind tunnel tests

o shape modification

o Flight tests

Jay Panda (NASA ARC)

Ascent Acoustics

1/28/2014
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Prediction - Aerodynamics of Launch Vehicle
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Ascent Acoustics

Prediction - steady state CFD to determine input
parameters for empirical relations
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Attached turbulent boundary layer: 0.01
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Prediction - steady state CFD to determine input parameters
for empirical relations
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USM3D calculated flow-field over ARES IX at flight M = 1.6 (Source: Steve Bauer LaRC)
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Prediction - based on flight data from prior vehicles

(a) Apollo, M=0.9

Att 160 |—
Exp 150 —
M>| 4
-é ‘ 160 —
150 —
Normal Shock L
q'
160 —
Seporo+d Flow \
3 150 —
Normal Shocks -
x T
; 160 —
g 150 [—
! é MO_:—*‘
= 7T
@ 160 —
<
=)
: 150 F -
140 —
)
e Falls apart when vehicle shape changes
597.5

Ascent Acoustics

Predicted Level for CEV
M=0.82
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Ascent Acoustics @
Wind tunnel tests and scaling Laws

Table 17. Rigid buffet model scaling laws.

Quantity to be Scaled | Full-scale to Model-scale Relation
“:'l“,“,'” % gy " Pressure P =P Qﬁ
Force — J
Time I,=1, D Vo
D, V,
-
Frequency fﬁ. = fms ‘st VS
Space Launch System (SLS) test at o
o 2
NASA Ames Unitary Pressure PSD S 4o o0\ D,V
(psi“/HZz) J: ms Q}(yi) D, st
What to do 1f measured fluctuations 0P (DT
. . Force PSD (Ibf/Hz) (;555 =g F ms
are very high? — cost and weight | Ons” ) \ D) Vg
penalty
Jay Panda (NASA ARC) 33
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Real Engineering — What if the acoustic levels are too high?
MPCYV Shape Optimization to Reduce Aero-acoustic environment

£ o a—
. .\.‘ -
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National Aeronautics and Space Administration

Ascent Acoustics
MPCYV Shape Optimization to Reduce Acoustic environment
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National Aeronautics and Space Administration

Ascent Acoustics

MPCYV Shape Optimization to Reduce Acoustic environment
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National Aeronautics and Space Administration Ascent ACO“StiCS

Comparison with Data from Flight Test — ARES-IX
Reed et al. ATAA 2011-174

aADaz1P

Dezzp

Fig. 6 Tramdocers QADSIYP, OADSZOP, OADSZIIP, and OADS22P
lncations

=©—Transonic (Prediction)
=B8-Supersonic (Prediction;
~®-0AD8B19P Transonic
~&-0OADB19P Supersonic
~8-0ADSB20P Transonic

—#-OADB20P Supersonic o oS 0-6g _ o oGS Fig. 9 Transducer OADS27P location

l<_1o da->l

=€—Transonic (Prediction)
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~®-0ADB27P Supersonic
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—

10 100 1000 10000
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e In general reasonable comparison

e Discrepancies near changes in outer mold line geometries.

® zones near protuberances show poor comparison

e Data from supersonic part of the flight show poor comparison
e Flaws in the scaling laws?? Reynolds number effect?
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Ascent Acoustics @
Buffet:

e Coupling between global bending and/or torsional modes of the
vehicle with unsteady separated flow.

e Frequently associated with unsteady shock motion at transonic M
e Low freq <20Hz

e May lead to catastrophic failures
e Estimation of Buffet forces via integrating pressure fluctuations
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Abort Acoustics

o Problem definition

o Wind tunnel simulation, CFD
o Flight test

Apollo Abort test
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Abort Acoustics

ORION/MPCYV and the Launch Abort System
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@ Abort Acoustics

Prediction —
e Initial prediction Based on SP-8072 — Not dependable

e No prior experience from Mercury or Saturn programs
e All microphones burnt out in one flight test
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Abort Acoustics

Measurement of plume-generated noise in the static test of
MPCYV launch abort motor ST1

Pole for
mounting
far-field
mics

High-speed

imaging &

BOS

_,.-r" : - - '}‘
- !i sk . > S -. ‘.“e—--MnNgMeld

Jeia)  JTTT " [plume acoustics fowes
Aero-thermo plate (PIA‘PF .= _ar aﬁ¢::;"‘5 e (~ ] , B

Project Orion: Crew Exploration Vehicle (CEV)
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Results from ST1 Abort Acoustics

e No prior aerospace structure was subjected to this high level of dynamic load
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How to create acoustic environment for Abort?

e Single flight tests are unsuitable to create a design environment
e we needed to know levels over 0<M<4 and 10°<a, 3 <-10°
e Requires transonic supersonic wind tunnel to simulate forward flight
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@ Why hot-Helium? Abort Acoustics

e Hot He reproduces acoustically relevant parameters:

speed of sound, velocity, density.
Pressure fluctuations at a point X on LAV (Ffowcs-Williams,1965):

1 82T rdZ

X,1)=— | —%(z,:--)2= (1
p(X,7) sz; ozaz LT ) W)

Tyg = pusue+8z(p—c*p) (2)

e Validation from prior small-scale tests:
SRM vs. He: Morgan & Young (1963)
Jet engine noise: Doty & McLaughlin (2001), Kinzie & McLaughlin (1999)
Papamoschou (2007), Greska & Krothapalli (2009)

e Practicality of operation:
- Suitable in a wind tunnel .
- Use of high fidelity model with all 4 nozzles.
- Survivability of the kulite sensors

e Cost effective means of creating 80 abort conditions.
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e Primary differences between He and rocket plume:
- Lack of afterburning;
- Absence of Al,O; particles;
- Different y
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g-fully expanded plume / g-free stream

Velocity ratio: He plume/AM plume

1.10

Matching between wind tunnel

and flight conditions
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Abort Acoustics Q
Influence of forward flight

Distribution of turbulence
intensity

T = | M, = 1.6, a=-10°, B = -10°
= Helium in*Wind tunnel

CFD by: William J. Cairier,
Kratos/DFI

Project Orion: Crew Exploration Vehicle (CEV)
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Abort Acoustics
Abort initiated at M 1.2 : Influence of forward flight

80AS Run 210, M = 1.2, Re=5¢6
NASA Ames 11’X11”, Sept 2010

o e

o S

e \Wind tunnel pressure fi"t.jctuatlo s need to be scaled to flight condition
- problem of two different ratios of dynamic pressures:

p'(model) [ Dynamicpresstunnel DynamicpressHelium plume

f 9
p'(flight) Dynamicpressflight DynamicpressRocket plume
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» Each abort condition was simulated by two Helium + Wind tunnel setup:
- Nozzle exit match
- g-ratio match
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@, Run Matrix — Test Conditions | Abort Acoustics ﬁ

« Test conducted in the NASA Ames 11-Ft Unitary Plan wind tunnel

Mach Range 0.3-1.2

« Reynolds Number: 2x10° - 5.0x10%/foot,
 He pressure at Model Plenum: 300psi to 600psi
 He temperature at Model Plenum: 660F to 700F

* Internal piping for 11 different model attitudes:
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Abort Acoustics
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Abort Acoustics

Hot He supply
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Model and Instrumentation Abort Acoustics

0 6% scaled of LAV 606 F.1

e Continuous active cooling of the model core
e Subjected to very large temperature cycle —
periodic heating and cooling.

e 237 Kulite sensors

K301—_ N
K057 ik N\
SEE peTAIL E— K300 \ /

Project Orion: Crew Exploration Vehicle (CEV)
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X ) KULITE LOCATIONS
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Abort Acoustics
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Effect of Forward Flight Abort Acoustics

Lost sensor 2:
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National Aeronautics and Space Administration

July 2010

Pad Abort-1 is a NASA
flight test of a system that
could be used to rescue a
crew and its spacecraft in
case of emergencies at

the launch pad.

Www.nasa.gov
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Abort Acoustics

Pad Abort test flight PA1:

o Happened on July 2010 from White Sands

o Full scale unmanned flight vehicle, old Mold Line,

o accelerated from M 0 to ~ 0.7 over the burn duration.
o 57 sensors distributed over lower tower and Party-haty

e Not exactly apple-to-apple comparison
o Older, slimmer profile

o Flight: transient data, wind tunnel: steady state
o Wind tunnel: No Attitude Control Motor
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Comparison with PA1 flight data Abort Acoustics

CPrms

Cprms
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x4 CPrms -

e 80AS show wider crest-trough variation than PA1
- PA1 flew with non-zero a,
- PA1 had ACM induced turbulence

Project Orion:

660 Vehicle x-pos
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Abort Acoustics

Comparlson with PA1 flight data — q scallng

S R I T T L B O L I L O I n e PPLTT T ? L 4 RO D Teriery
| ————- 80AS K171 030 JE i o ok (5 ) 3 Pl g doemr RO
| ————- 80AS:K171, : R FSE AR S
————— 80AS:K171, M:0.50|: ‘ jred : et : ﬁ : s
80ASZK171, e Lo (ST ET TR ATPRT PRI SN SR S P A SThe A = ' peee i ia <is
----- 80AS:K171,
80AS:K171,
| (o 80AS:K171,
----- 80AS:K171,
PA1 csOO1v

; *_ "v"-long Plume axes

PA1 csOO3
80AS K1 73

ad

x10

Normalized PSD: (p”/q,’)/(Af b/U)

. l

PAI cs004
80AS. K1 35

| ————- SOAS K172 M:0_30 T R AR AR S R e Y ]
_____ SOASKIT2 M0.38 |- LLb ot s :
_____ 80AS:K172, M:0.50 Ja¥ e aa e AR AR AR A m A
80AS:K172,M:0.60| '
————— 80AS:K172, M:0.70|
80AS:K172, M:0.29 |
| ————- 80AS:K172, M:049| o
————— 80AS:K172, M:0.70 i}
PA1:cs002v '

.,;:n Between Plum

Normalized PSD: (p”/q’)/(Af D/U)

AAA

=
LLl
Q
L)
O
©
=
-
i)
g
©
G
L)
o
>
LL
=
()
| S
@)
-
9
(-
@)
-
(@)
N
@)
|
al

Jay Panda (ARC-AOX) 650-604-1553 59




National Aeronautics and Space Administration Abort ACO“StiCS @

Existing uncertainties:

e Scaling laws for abort initiated at transonic/supersonic flight

e Increment 1n environment due to scattering of plume by vehicle
induced shock waves

Expecting further validation from another flight test
e Ascent Abort 2 (AA2) — Abort initiated at M ~ 1.1
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National Aeronautics and Space Administration Summaryo
Basics

e For launch vehicles aeroacoustics is a part of fluid-structure interaction problem
e Separation into Aeroacoustics and Vibro-acoustics
e Acroacoustics = surface pressure fluctuations
e Forcing functions for vibro-acoustic calculations
- overall level — extremely high
- auto-spectra
- Cross-spectra
e Need for direct solution of fluid-structure interaction.

Launch Acoustics
e Complexity of launch pad — acoustic suppression systems
- deflector and trench design
- vehicle trajectory and drift
- amount of water injection and timing schedule
e Prediction via NASA SP-80672 & limitations
- ignores plume impingement, water injection, vehicle drift
e Prediction via flight data from prior launch vehicles
- very large spread, different for a new vehicle
e Limited ability of CAA
e Use of a microphone phased array for direct identification of noise sources
- Very different description of noise sources that SP-8072

-]

Jay Panda (NASA ARC) 112812014

61



National Aeronautics and Space Administration Summaryo
. [}
Ascent Acoustics

e Source- turbulent flow over vehicle surface, local flow separation, unsteady shocks
- dynamic pressure and vehicle trajectory
e Prediction — identification of local flow separation and transonic/supersonic shock wave.
- Improvement of empiricism via input from CFD
- Future need for less empiricism - CFD ?
- Data from prior flight experiences
e Wind tunnel test - validation/verification
e Change of vehicle OML to reduce ascent acoustics— MPCV experience
e Limitations observed from flight data

Abort Acoustics
e Lack of prior experience and database
e Creation of database from Static Fire test — spectral trends, shock amplitude
e Challenge of simulating hundreds of abort scenario within a reasonable budget
© Hot helium to simulate rocket plume
- similarity parameters
- scaling problems
o Increasing Flight Mach shows a reduction in overall levels, but increases low freq content.
o Plume impingement generally reduces level of pressure fluctuations
e Comparison with flight data from Pad Abort 1:
o Not an apple-to-apple comparison: different shape, transient flight vs steady simulation
o Nonetheless, comparable overall level and the spectral shape
e Unique, one-of-a-kind test provides aeroacoustics environment for the design and qualification testing
of ORION/MPCYV Launch Abort Vehicle which is meant to save astronauts lives.
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BACKUP
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National Aeronautics and Space Administration
Summary: @

® Unobstructed plume: noise sources are distributed along the plume

® |n a launch configuration: locations where plume impinges on solid
surfaces are the primary sources

» Current Lift-off models (SP8072) does not account for impingement
- Need investments in changing/updating these models
» Minimization of plume impingement will attenuate liftoff environment
o By reduce vehicle drift in early part of liftoff
o Possibly by increasing the MLP hole size

e Open/Uncovered part of the trench are noise sources
o Closing the trench as much as possible will reduce liftoff environment

e \Water injection in the hole & trench is effective in reducing trench generated noise
e On-Deck water (Rainbird) is partially effective in noise source mitigation

e Microphone phased-array is an ideal tool to study all launch acoustic environments
- Results from the current study are expected to help SLS pad design

Future work:
Looking for opportunities to use phased-array in full-scale launch
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Ascent Acoustics
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Phased array in Antares Engine Test: Feb 22, 2013
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Summary of results from Engine Test:

e The primary noise source was the duct exit

e Plume out of the duct exit was NOT a primary source - very large amount of water pumped at the duct
inlet quenched the flame

e Noise generated during impingement on the deflector, and general mixing inside the duct, emerged out of
the duct exit.

e First time application of phased array in full-scale engine test
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