Role of imaging spectrometer data for model-based cross-calibration of imaging sensors

K. Thome

NASA/GSFC
Need for cross-calibration

Climate-system modeling will rely on a wide array of current and future systems

- Research-quality systems (OLI and MSI)
- Operational weather systems (VIIRS and OLCI)
- Requires consistently calibrated and validated data sets
 - Intercalibration to a few high-quality sensors
 - Valid across time and multiple countries

Terra platform synergy of multiple sensors has been key to the mission’s success
Discuss SI-traceable cross-calibration approach relying on test site characterization

- Site characterization benefits from imaging spectrometry to determine spectral bi-directional reflectance of a well-understood surface

Outline

- Cross calibration approaches
- Uncertainties
- Role of imaging spectrometry
- Model-based site characterization
- Application to product validation
Recent years have seen great advancements in approaches for cross-calibration.

- Typically near-coincident views
 - Simultaneous Nadir Overpasses at Arctic sites
 - Chance coincidence at mid-latitude sites

- More recent work has emphasized methods that do not require simultaneous data collections
 - Invariant scene approaches
 - In-situ ground measurement methods

- Methods with SI traceability do not require sensor data to overlap in time
Scatter in coincident view cross-calibration

Calibration for ASTER green band using MODIS

MODIS and ASTER “easiest” case
- Same platform, coincident views, similar bands
- ASTER Band 1 (green band) results using MODIS
- Scatter caused by
 - Spectral band differences
 - Registration effects
Spectral band differences – We know this already

<table>
<thead>
<tr>
<th>ETM+ Band 2 Analogs</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Landsat-7 ETM+ B2</td>
<td>1</td>
<td>0.996</td>
<td>1.005</td>
<td>0.990</td>
<td>0.988</td>
<td>0.989</td>
</tr>
<tr>
<td>B: EO-1 ALI B2</td>
<td></td>
<td>1</td>
<td>1.009</td>
<td>0.994</td>
<td>0.992</td>
<td>0.993</td>
</tr>
<tr>
<td>C: Terra ASTER B1</td>
<td></td>
<td></td>
<td>1</td>
<td>0.985</td>
<td>0.983</td>
<td>0.984</td>
</tr>
<tr>
<td>D: Terra MODIS B4</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.998</td>
<td>0.999</td>
</tr>
<tr>
<td>E: Terra MODIS B12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1.001</td>
</tr>
<tr>
<td>F: Terra MISR B2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Uncertainty due to spectral differences decrease as hyperspectral data of sites are accumulated.

Ground data, Hyperion, SCIAMACHY
Calibration relative to in-situ

Calibration to SI-traceable, ground-based measurements

- Cross-calibration relative to in-situ data
- Requires sensors at ground site at overpass time
Best of both worlds

Combine philosophy of in-situ measurements with invariant site approaches

- Site measurements become basis for a physically-based model
 - Atmospheric
 - Surface
- Goal is SI-traceable result
- Requires innovative measurement approaches
Multidimensionality of the at-sensor radiance and non-identical sensors cause scatter

- View/solar geometry differences
 - Surface reflectance changes (BRDF)
 - Atmospheric effects
- Temporal differences
 - Solar angle
 - Surface reflectance
 - Atmospheric changes
- Spatial differences and registration effects
- Spectral differences
- Sensor effects

All successful methods attempt to account for these effects or minimize the sensitivity
Site characterization

High-accuracy, imaging spectrometry would provide necessary understanding of test sites

- Cannot decouple
 - On-orbit sensor effects
 - Atmospheric variability
 - Surface variability

- Past results indicate that all three play a role
 - Note that the comparison of sensors improves in the NIR
 - Bands with highest SNR for on-orbit and ground-based sensors
 - Atmospheric effects are not as dominant

- Sensors to do this need to be improved
Well-characterized imaging spectrometers such as CLARREO or TRUTHS or HyspIRI can provide site characterizations for SI-traceable cross calibrations.
SI-traceable sensors for climate model evaluations

- Traceable Radiometry Underpinning Terrestrial- and Helio- Studies
- Climate Absolute Radiance and Refractivity Observatory
- Spectrometer resolution
- Unprecedented uncertainties
 - Earth reflected solar radiance < 0.3% (k=2)
 - Earth emitted infrared (IR) radiances < 0.1 K (k=3)
- Rely on both
 - Direct climate benchmark
 - Improving other sensors to provide independent climate benchmarks
First question asked in cross-calibration is which instrument is better calibrated

- CLARREO and TRUTH-like accuracies would remove that issue
- Absolute uncertainties <0.3% in band-integrated albedo allows separation of surface effects from atmospheric effects permitting the development of the needed models for the at-sensor radiance prediction
- Similarly well-calibrated and characterized ground-based instrumentation and airborne sensors are likewise needed to improve site assessments
Basic approach

Selected Test Site

Ground-based Measurements

Satellite-based Measurements

Airborne-based Measurements

Model-based “Measurements”

Predicted At-sensor radiance

Radiance is for arbitrary
1) Time
2) View angle
3) Sun angle

SI-Traceable with documented error budget and uncertainty

Emphasizes the source radiance

Moves away from one-to-one cross calibrations and empirical only
Model-based measurements

Others have used a similar pathway

- Dome C empirical corrections for BRDF and atmospheric effects
- Inclusion of BRDF models in desert site work for MODIS, AVHRR, MSG
 - Surface BRDF model corrected by Terra MODIS or POLDER
 - Includes atmospheric corrections based on climatological values
- Coupling automated data with surface models
- Deep convective cloud calculations in radiance
Key measurements

Spectral and directional reflectance of surfaces are highest priority

- Temporal sampling
 - directional reflectance (or at least validation)
 - Site stability
- Imaging provides spatial information
- Spectral samples aggregated to simulate bands
- Imaging spectrometry can lead to knowledge of surface morphology
Level 2 data products would also benefit from TRUTHS and CLARREO

- Same basic methods as the sensor calibration
- Much of the efforts rely on
 - On-orbit comparisons
 - Airborne systems
 - Ground-based
- Goal is to understand the biophysical processes and impacts from scaling
- Current systems limited by the sensors
 - Implementing CLARREO-like calibration approaches will
 - Consider if Hyperion has been higher SNR and better accuracy
Switch from sensor-centric to SI-traceable source-centric mentality is key

- One-by-one empirical comparisons between sensors have been successful but have limits
- Combination of physically-based modeling and empirical data is not be trivial
- Inclusion of highly-accurate, imaging sensors is necessary to develop the physical models
- Method will provide improved relative calibration precision and absolute calibration that has the capability of matching current methods