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a  b  s  t  r a  c t

Accurate  estimation  of gross  primary  production  (GPP)  is essential  for  carbon  cycle  and climate  change

studies. Three  AmeriFlux  crop  sites of maize  and soybean were  selected  for this  study.  Two  of  the  sites

were irrigated and  the  other  one  was rainfed.  The  normalized  difference  vegetation  index  (NDVI), the

enhanced vegetation  index  (EVI),  the  green  band  chlorophyll  index  (CIgreen),  and the  green  band  wide

dynamic range  vegetation  index  (WDRVIgreen)  were  computed  from  the moderate  resolution  imaging

spectroradiometer (MODIS)  surface reflectance  data.  We examined  the  impacts  of the  MODIS  observation

footprint and  the  vegetation  bidirectional reflectance  distribution  function  (BRDF) on crop  daily  GPP  esti-

mation with  the  four  spectral  vegetation  indices (VIs -  NDVI, EVI, WDRVIgreen and CIgreen) where GPP was

predicted with  two  linear  models,  with and  without offset: GPP  =  a  ×  VI × PAR  and GPP  =  a  ×  VI × PAR  +  b.

Model performance  was evaluated  with  coefficient  of determination  (R2), root mean  square  error  (RMSE),

and coefficient  of  variation  (CV).  The  MODIS  data  were  filtered  into four  categories  and  four  experiments

were conducted  to  assess  the  impacts.  The  first  experiment  included all  observations.  The second  experi-

ment only  included observations  with  view  zenith  angle  (VZA) ≤ 35◦ to constrain  growth  of  the  footprint

size,which achieved  a  better  grid  cell  match with  the  agricultural  fields. The third  experiment  included

only forward  scatter  observations  with  VZA  ≤  35◦.  The fourth experiment  included only  backscatter  obser-

vations with  VZA  ≤  35◦.  Overall,  the  EVI  yielded the  most  consistently  strong  relationships  to daily  GPP

under all  examined  conditions.  The  model  GPP  = a ×  VI ×  PAR  + b had  better  performance  than the  model

GPP = a  ×  VI × PAR,  and  the  offset was significant  for  most cases.  Better performance  was obtained  for  the

irrigated field  than  its  counterpart  rainfed  field. Comparison  of  experiment 2 vs. experiment 1 was used

to examine  the  observation  footprint  impact  whereas comparison  of experiment  4 vs. experiment  3 was

used to examine  the  BRDF  impact. Changes  in R2, RMSE,CV  and  changes in model  coefficients  “a” and  “b”

(experiment 2 vs. experiment 1;  and  experiment 4 vs. experiment 3)  were  indicators  of the impacts.  The

second experiment  produced  better  performance  than  the  first  experiment,  increasing  R2 (↑0.13)  and

reducing RMSE  (↓0.68  g  C  m−2 d−1) and  CV  (↓9%).  For each  VI,  the  slope  of  GPP  =  a  ×  VI  ×  PAR in  the  second

experiment for  each crop  type changed  little  while the  slope and  intercept  of GPP  =  a  ×  VI ×  PAR +  b  varied

field by  field.  The  CIgreen was least  affected  by  the  MODIS  observation footprint  in estimating  crop  daily

GPP (R2, ↑0.08;  RMSE,  ↓0.42 g C m−2 d−1;  and  CV, ↓7%). Footprint  most affected  the  NDVI (R2, ↑0.15; CV,

↓10%) and  the  EVI  (RMSE,  ↓0.84  g  C  m−2 d−1). The vegetation BRDF  impact  also  caused  variation  of model

performance and  change  of model  coefficients.  Significantly  different slopes  were  obtained  for  forward

vs. backscatter  observations,  especially  for  the  CIgreen and the  NDVI. Both  the  footprint  impact  and  the

BRDF impact varied  with  crop  types, irrigation  options,  model  options  and VI  options.
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1. Introduction

Terrestrial carbon sequestration through vegetation photosyn-

thesis (PSN) is essential for carbon cycle and climate change studies.

The remote sensing data have been used to  study PSN and to  esti-

mate gross primary production (GPP) for more than two  decades

(Potter et al., 1993; Randerson et al., 1996; Sellers et  al., 1996;

Sellers et  al.,  1986; Zhao and Running, 2010).

Two typical remote sensing approaches have been developed

to estimate GPP. The first one is  based on either the fraction of

photosynthetically active radiation (PAR) absorbed for vegetation

photosynthesis (fAPARPSN) or leaf area index for photosynthe-

sis (LAIPSN). The fAPARPSN and LAIPSN are derived from either

physically-based models or empirical relationships with remote

sensing vegetation indices (VIs) (Bonan et al., 2011; Fensholt

et al., 2004; Field et al., 1995; Hall et  al., 2008; Heinsch et  al.,

2006; Hember et al.,  2010; Hilker et al., 2008; Hilker et al., 2011;

Knyazikhin et  al.,  1999; Prince and Goward, 1996; Randall et  al.,

1996; Ruimy et  al., 1999; Running et al.,  2004; Waring et al., 2010;

Xiao et al., 2004). For instance, the Simple Biosphere model (SiB)

used the monthly normalized difference vegetation index (NDVI)

from the Advanced Very High Resolution Radiometer (AVHRR) to

estimate the fraction of PAR absorbed by a canopy (fAPARcanopy)

and to simulate GPP (Sellers et al., 1996; Sellers et  al., 1986). The

monthly AVHRR NDVI has also been ingested into the Carnegie-

Ames-Stanford Approach (CASA) model to estimate terrestrial

productivity (Potter et al.,  1993; Randerson et al., 1996). The mod-

erate resolution imaging spectrometer (MODIS) land science team

has developed a  standard global fAPARcanopy product (MOD15A2

FPAR) (Myneni et  al.,  2002) that  is used as  input in MOD17 global

GPP algorithm (Zhao and Running, 2010). Xiao et  al. (2004) pro-

posed an 8-day Vegetation Photosynthesis Model (VPM) which

assumed the fraction of PAR absorbed by  the photosynthetic veg-

etation component (PV) for photosynthesis would be estimated

by the enhanced vegetation index (Huete et  al., 1997), i.e., the

fAPARPV =  EVI, fAPARPV is  also referred to as  the fraction of PAR

absorbed by  chlorophyll (fAPARchl)  (Jin et al.,  2013; Kalfas et  al.,

2011). The second approach predicts GPP directly as  the product

of an empirical function of  VI (f(VI)) and PAR: GPP =  f(VI) × PAR

(Cheng et al., 2009; Gitelson et al., 2012a; Gitelson et al.,  2008;

Gitelson et  al., 2006; Middleton et al.,  2009; Peng and Gitelson,

2011, 2012; Peng et  al.,  2010; Peng et al., 2011; Peng et  al., 2013;

Sakamoto et al., 2011; Wu  et  al., 2009). For example, Gitelson

and his colleagues have utilized the green band chlorophyll index

(CIgreen) and the green band wide dynamic range vegetation index

(WDRVIgreen) derived from field measurements (Gitelson et  al.,

2006; Peng and Gitelson, 2011, 2012; Peng et  al., 2011)  and the

Landsat data (Gitelson et al., 2012a; Gitelson et al., 2008)  to  estimate

GPP with the function GPP � ∝ VI  × PAR. Note that some process

models and machine learning models also involve remote sensing

data in GPP simulation (Moffat et  al., 2010; Potter et  al., 2009; Xiao

et al., 2010; Yang et al., 2007)  that are beyond the scope of  this

study.

There is no existing literature that presents quantitative anal-

ysis of the impact of MODIS observation footprint and the impact

of vegetation bidirectional reflectance distribution function (BRDF)

characteristics on estimation of  crop daily GPP. The footprint of  a

MODIS L1B observation (MOD021KM and MOD02HKM) is the area

it actually covers. MODIS is a whiskbroom sensor and the MODIS

observation footprint size grows with the view zenith angle (VZA)

while the grid cell dimension remains fixed (Wolfe et  al., 1998).

One MODIS L1B observation may  overlap with multiple grids, and a

grid may  overlap with multiple MODIS L1B observations from a sin-

gle swath. The gridded MODIS MOD09 surface reflectance products

have been widely applied in GPP estimation (Jin et al., 2013; Kalfas

et al., 2011; Peng et al.,  2013; Sims et al., 2008; Xiao et al., 2004; Zhao

and  Running, 2010). In the gridding process to  produce the standard

MOD09 products, “Rather than discard multiple observations of the

same location, . . . all observations that fall over a significant portion

of each output geolocated grid cell are stored” (Wolfe et al.,  1998).

This means, for any given grid of the standard MOD09 products,

(1) the footprint sizes and locations of  observations used to grid for

this grid cell vary with viewing geometries; (2) the footprints do

not necessarily always have common area or overlap each other;

and (3) the footprints do  not  always completely cover the grid. This

footprint study is  different from the study of climatology footprint

analysis (Chen et  al.,  2012)  which focused on climatology modeling

aspect of  variable footprints. We  used a  modified gridding approach

in this study to process MODIS bands 1-7 data (see Section 2) and

examined the impacts on daily GPP estimation of  (1) the MODIS

observation footprint and (2) the vegetation BRDF, for two crop

types (maize, soybean) using four vegetation indices (VIs) (NDVI,

EVI, WDRVIgreen and CIgreen). The VIs were coupled with two linear

models, GPP = a × VI × PAR and GPP = a × VI  × PAR +  b,  also referred

to as greenness and radiation models (GR) (Gitelson et al.,  2006;

Wu et al., 2011).

2.  Methods

We selected three AmeriFlux crop sites to investigate the impact

of MODIS observation footprint and the impact of vegetation BRDF

characteristics on crop daily GPP estimation from space. These crop

sites are located at the University of Nebraska–Lincoln (UNL) Agri-

cultural Research and Development Center near Mead, Nebraska

(US-NE1, US-NE2 and US-NE3). The US-NE1 site (41◦09′54.2′′N,

96◦28′35.9′′W)  and US-NE2 site (41◦09′53.6′′N, 96◦28′07.5′′W)

are two  circular fields (radius ∼ 390 m)  and the US-NE3 site

(41◦10′46.7′′N,  96◦26′22.4′′W)  is a  square field (length ∼  790 m).

The first two  fields are equipped with center-pivot irrigation

systems while the third field relies entirely on rainfall. Each

field is equipped with an eddy covariance flux tower (Gitelson

et al., 2008; Peng et  al.,  2013). The first field has a continu-

ous maize (Zea mays L.) planting scheme while the other two

fields are maize-soybean (Glycine max [L.] Merr.) rotation fields

(maize, planted in  odd years). The PAR and GPP data acquired at

the towers are publically available and can be downloaded from

ftp://cdiac.ornl.gov/pub/ameriflux/data/. The nighttime ecosystem

respiration/temperature Q10 relationship was  used to  estimate the

daytime ecosystem respiration. Daily GPP was  computed by  sub-

tracting respiration (R) from net ecosystem exchange (NEE), i.e.,

GPP = NEE-R (Suyker et al., 2005). These sites provide us an oppor-

tunity to examine these impacts on different vegetation types (C3

vs. C4 crops) in both irrigated and non-irrigated ecosystems.

MODIS L1B calibrated radiance data (MOD021KM and

MOD02HKM) and geolocation data (MOD03) were downloaded

from https://ladsweb.nascom.nasa.gov:9400/data/.  Two of  the

MODIS bands have nadir spatial resolution of 250 m: B1 (red,

620–670 nm)  and B2 (near infrared, NIR1, 841–876 nm). The

MODIS land bands 3–7 have nadir spatial resolution of 500 m:

B3 (blue, 459–479 nm), B4 (green, 545–565 nm), B5 (NIR2,

1230–1250 nm), B6 (shortwave infrared, SWIR1, 1628–1652 nm)

and B7 (SWIR2,  2105–2155 nm). Other MODIS bands have nadir

spatial resolution of  1 km.  The centers of the original 500 m grids

defined in the standard MOD09 products (Wolfe et al., 1998)  that

encompass the three tower sites are not the centers of the fields,

and the mismatches may  increase uncertainty in applications of

the MOD09 products [please check the Fig. 2 in (Guindin-Garcia

et al., 2012) for details]. Therefore a  modified gridding approach

was used in this study and we defined the centers of the three

fields as centers of three 500 m grids. In the modified gridding

process, the L1B radiance data from each swath were then gridded
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at 500 m resolution for MODIS bands 1–7  and 1 km resolution for

the other bands with area weights of each MODIS observation.

This gridding approach ensures, for a given grid, that it is fully

covered by  the observations from each swath and there is only one

gridded MODIS observation from the swath. This modified grid-

ding processing was included in the Multi-Angle Implementation

of Atmospheric Correction (MAIAC) algorithm (Lyapustin et al.,

2011a; Lyapustin et al.,  2008; Lyapustin et  al.,  2012; Lyapustin

et al., 2011b). MAIAC is  an advanced algorithm which uses time

series analysis and a combination of pixel-based and image-based

processing to improve accuracy of cloud/snow detection, aerosol

retrievals, and atmospheric correction by incorporating the BRDF

model of surface.

The bidirectional reflectance factors (BRF, also called surface

reflectance) in  MODIS bands 1–7 derived using the MAIAC algo-

rithm were used in this study. The surface reflectance data (�) were

used to calculate the following indices for further analysis (Deering,

1978; Gitelson et  al., 2012b; Gitelson et al., 2005; Huete et  al., 2002;

Huete et  al.,  1997; Tucker, 1979):

CIgreen = �NIR1

�green
−  1 (1)

WDRVIgreen = 0.3�NIR1 − �green

0.3�NIR1 + �green
+ 1 − 0.3

1 + 0.3
(2)

NDVI = �NIR1 − �red

�NIR1 + �red
(3)

EVI = 2.5
�NIR1 −  �red

1 + �NIR1 + 6�red − 7.5�blue
(4)

The products of MODIS vegetation indices (VIs) and daily PAR

(VI ×  PAR) were computed and compared against the tower based

daily GPP. For each VI, we tested two linear models with and

without offset: y  =  ax and y =  ax + b, where y = GPP, x = VI ×  PAR, the

coefficients “a”  and “b” were computed with the least squares best

fit algorithm. To  assess the impact of  MODIS observation footprint

and the impact of  vegetation BRDF characteristics on crop daily

GPP estimation, the data were filtered into four categories and

four experiments were conducted. The first experiment included

all observations. The second experiment included only observa-

tions with view zenith angle (VZA) ≤ 35◦ to constrain the footprint

size to achieve a  better match with the agricultural fields, and

their plant functional types. The third experiment included only

the observations in the forward scatter direction (relative azimuth

angle, RAA >  90◦)  from the second experiment. The fourth exper-

iment included only observations in  the back scatter direction

(RAA >  90◦) from experiment two. Comparison of experiment 2

vs. experiment 1 was used to examine the observation footprint

impact whereas comparison of  experiment 4 vs.  experiment 3 was

used to  examine the BRDF impact. In summary, we  tested thirty-

two cases in total (four vegetation indices, two  regression models,

four experiments) for the product of  VI and PAR versus daily GPP

acquired at the towers for two crop types in  three fields. Coeffi-

cient of determination (R2), root mean square error (RMSE), and

coefficient of variation (CV) are reported to evaluate model perfor-

mance. Changes in R2,  RMSE, CV and changes in model coefficients

“a” and “b” (experiment 2 vs.  experiment 1; and experiment 4  vs.

experiment 3) were indicators of  the impacts on daily GPP estima-

tion.

3. Results

Maize was planted in  US-NE1 in  all years and in US-NE2 and

US-NE3 in odd years. Soybean was planted in US-NE2 and US-

NE3 in even years. Figs. 1–4 compare the product of VI and daily

PAR versus daily GPP from tower fluxes for experiments 1–4  for

maize in US-NE1.The x intercepts of the model y=ax+b give the Ta
b

le

 

1
F
it

-f
u

n
ct

io
n

 

re
la

ti
o

n
sh

ip
s 

(U
S
-N

E
1

, m
a
iz

e
):

 

to
w

e
r 

b
a
se

d

 

V
I ×

 

P
A

R

 

v
s.

 

G
P

P
. C

o
lu

m
n

s 

3
–

6

 

su
m

m
a
ri

z
e

 

fo
r 

th
e

 

fu
n

ct
io

n

 

y

 

=

 

a
x

 

a
n

d

 

co
lu

m
n

s 

7
–

1
0

 

su
m

m
a
ri

z
e

 

fo
r 

th
e

 

fu
n

ct
io

n

 

y

 

=

 

a
x

 

+

 

b
, w

h
e
re

 

y

 

is

 

to
w

e
r 

fl
u

x

 

b
a
se

d

 

G
P

P

 

a
n

d

 

x

 

is

 

V
I ×

 

P
A

R

(V
Is

 

a
re

 

N
D

V
I,

 

E
V

I,

 

W
D

R
V

I g
re

e
n

a
n

d

 

C
I g

re
e
n
).

 

F
it

 

fu
n

ct
io

n
, d

e
te

rm
in

a
ti

o
n

 

co
e
ffi

ci
e
n

t 

(R
2
),

 

ro
o

t 

m
e
a
n

 

sq
u

a
re

 

d
e
v

ia
ti

o
n

 

(R
M

S
E

, g
 

C
 

m
−2

d
−1

) 

a
n

d

 

co
e
ffi

ci
e
n

t 

o
f 

v
a
ri

a
ti

o
n

 

(C
V

, %
) 

o
f 

e
a
ch

 

a
re

 

p
re

se
n

te
d

. T
h

e

 

m
o

st

 

su
cc

e
ss

fu
l 

m
o

d
e
l 

in

 

e
a
ch

g
ro

u
p

 

is

 

d
e
si

g
n

a
te

d

 

w
it

h

 

b
o

ld

 

te
x

t.

N
D

V
I 

E
V

I 

W
D

R
V

I g
re

e
n

C
I g

re
e
n

N
D

V
I 

E
V

I 

W
D

R
V

I g
re

e
n

C
I g

re
e
n

y

 

=

 

a
x

y

 

=

 

a
x

 

+

 

b

A
ll

 

o
b

se
rv

a
ti

o
n

s 

(e
x

p
e
ri

m
e
n

t 

1
) 

F
it

-f
u

n
ct

io
n

 

y

 

=

 

0
.4

7
x

 

y

 

=

 

0
.6

5
x

 

y
 

=
 

0
.4

3
x

 

y

 

=

 

0
.0

6
8

x

 

y

 

=

 

0
.9

0
x

 

− 

1
5

.6
6

 

y

 

=

 

0
.9

8
x

 

− 

9
.1

0

 

y

 

=

 

0
.8

0
x

 

− 

1
4

.9
2

 

y

 

=

 

0
.0

7
9

x

 

− 

3
.1

1

R
2

0
.6

0

 

0.
72

 

0
.6

1

 

0
.7

2

 

0
.7

9

 

0.
83

 

0
.7

9

 

0
.7

4

R
M

S
E

 

5
.3

4

 

4.
44

 

5
.2

9

 

4
.5

1

 

3
.9

1

 

3.
57

 

3
.9

4

 

4
.3

9

C
V

 

4
1

%

 

34
%

 

4
0

%

 

3
4

%

 

3
0

%

 

27
%

 

3
0

%

 

3
3

%

O
b

se
rv

a
ti

o
n

s  

(V
Z

A

 

≤ 

3
5

◦ )

 

(e
x

p
e
ri

m
e
n

t 

2
) 

F
it

-f
u

n
ct

io
n

 

y

 

=

 

0
.4

8
x

 

y
 

=
 

0
.6

5
x

 

y

 

=

 

0
.4

4
x

 

y

 

=

 

0
.0

7
0

x

 

y

 

=

 

0
.8

9
x

 

− 

1
4

.8
6

 

y

 

=

 

0
.9

3
x

 

− 

7
.8

0

 

y

 

=

 

0
.8

x

 

− 

1
4

.3
2

 

y

 

=

 

0
.0

8
1

x

 

− 

2
.9

7

R
2

0
.6

7

 

0.
80

 

0
.6

7

 

0
.7

8

 

0
.8

6

 

0.
89

 

0
.8

5

 

0
.7

9

R
M

S
E

 

4
.8

5

 

3.
74

 

4
.8

8

 

4
.0

5

 

3
.2

0

 

2.
84

 

3
.3

5

 

3
.9

0

C
V

 

3
1

%

 

24
%

 

3
1

%

 

2
6

%

 

2
1

%

 

18
%

 

2
2

%

 

2
5

%

F
o

rw
a
rd

 

sc
a
tt

e
r 

o
b

se
rv

a
ti

o
n

s 

(V
Z

A

 

≤ 

3
5

◦ )

 

(e
x

p
e
ri

m
e
n

t 

3
) 

F
it

-f
u

n
ct

io
n

 

y
 

=
 

0
.4

6
x

 

y

 

=

 

0
.6

6
x

 

y

 

=

 

0
.4

2
x

 

y

 

=

 

0
.0

6
4

x

 

y

 

=

 

0
.9

2
x

 

− 

1
6

.3
7

 

y

 

=

 

0
.9

7
x

 

− 

8
.2

1

 

y

 

=

 

0
.8

0
x

 

− 

1
5

.0
7

 

y

 

=

 

0
.0

7
7

x

 

− 

3
.5

9

R
2

0
.6

4

 

0
.8

0

 

0
.6

6

 

0.
82

 

0
.8

7

 

0.
90

 

0
.8

7

 

0
.8

4

R
M

S
E

 

5
.1

1

 

3
.8

4

 

5
.0

2

 

3.
72

 

3
.1

0

 

2.
77

 

3
.2

1

 

3
.4

5

C
V

 

3
3

%

 

2
5

%

 

3
2

%

 

24
%

 

2
0

%

 

18
%

 

2
1

%

 

2
2

%

B
a
ck

sc
a
tt

e
r 

o
b

se
rv

a
ti

o
n

s 

(V
Z

A

 

≤ 

3
5

◦ )

 

(e
x

p
e
ri

m
e
n

t 

4
) 

F
it

-f
u

n
ct

io
n

 

y

 

=

 

0
.5

0
x

 

y

 

=

 

0
.6

5
x

 

y

 

=

 

0
.4

6
x

 

y

 

=

 

0
.0

7
6

x

 

y

 

=

 

0
.8

5
x

 

− 

1
3

.1
9

 

y

 

=

 

0
.9

2
x

 

− 

7
.9

4

 

y

 

=

 

0
.8

0
x

 

− 

1
3

.4
2

 

y

 

=

 

0
.0

8
9

x

 

− 

3
.2

5

R
2

0
.6

9

 

0.
81

 

0
.6

9

 

0
.7

9

 

0
.8

5

 

0.
89

 

0
.8

5

 

0
.8

1

R
M

S
E

 

4
.2

1

 

3.
52

 

4
.6

3

 

3
.8

4

 

3
.2

6

 

2.
82

 

3
.2

9

 

3
.6

9

C
V

 

2
7

%

 

23
%

 

3
0

%

 

2
5

%

 

2
1

%

 

18
%

 

2
1

%

 

2
4

%



54 Q. Zhang et al. / Agricultural and Forest Meteorology 191 (2014) 51–63

y = 0.068 x
R² = 0.72

y = 0.079x -3.11
R² = 0.74

0

5

10

15

20

25

30

35

0 10 0 20 0 30 0 40 0 50 0 60 0

GP
P 

(g
 C

 m
-2

 d
-1

)

(MODIS  500  m CIgreen)*PAR (mol m-2 d- 1)
All  obs

y = 0.43 x
R² = 0.61

y = 0.80x -14 .92
R² = 0.79

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

GP
P 

(g
 C

 m
-2

 d
-1

)

(MODIS 500  m WDRVIgree n)*PAR (mol m-2 d- 1)
All  obs

y = 0.65 x
R² = 0.72

y = 0.98x -9.10
R² = 0.83

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

GP
P 

(g
 C

 m
-2

 d
-1

)

(MODIS 500 m EVI)*PAR (mol m-2 d-1)
All  obs

y = 0.47x
R² = 0.60

y = 0.90x -15.66
R² = 0.79

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

GP
P 

(g
 C

 m
-2

 d
-1

)

(MODIS 500 m NDVI)*PAR (mol m-2 d-1)
All  obs

(a)

(d)(c)

(b)

Fig. 1. Relationships between VI ×  (daily PAR) vs. tower flux daily GPP for the US-NE1 site: (1) NDVI ×  PAR vs. GPP; (2) EVI × PAR vs. GPP; (3) WDRVIgreen × PAR vs. GPP; and

(4)  CIgreen ×  PAR vs. GPP. The solid lines force intercepts to zero (upper eqns.) while dashed lines do not (lower eqns.). All observations are included.

minimum VI*PAR values at zero GPP on all charts (Figs. 1–4). In

order to save pages, we  do not present the similar figures for

experiments 1–4 for maize/soybean in  US-NE2/US-NE3 in this

publication, but all the statistics for each crop type in each field

were summarized in Tables 1–5. Tables 1,  2 and 4 list the slopes

(coefficient “a”, g C mol  PPFD−1) and intercepts (coefficient “b”,

g C m−2 d−1) of the linear relationships (y = ax and y  =  ax +  b) of the

thirty-two fit-functions for maize in  fields US-NE1, US-NE2 and

US-NE3 while Tables 3  and 5  report the slopes and intercepts

of the thirty-two fit-functions for soybean in fields US-NE2 and

US-NE3.

Daily GPP of  maize, a C4 crop, ranged from ∼0–34  g C m−2 d−1

while daily GPP of  soybean, a  C3 crop,ranged from ∼
0–19 g C m−2 d−1. For each experiment, CIgreen has the widest

range among the four VIs  and EVI has the narrowest range.

For instance, in Fig. 1, the ranges of NDVI, EVI, WDRVIgreen and

CIgreen were 0.22–0.90, 0.13–0.75, 0.30–1.11, and 1.04–11.32,

respectively. R2,  RSME and CV values in  Tables 1–5 indicate the

performance of  the thirty-two cases of each crop type per field.

In general, the model y  =  ax +  b yielded better performance (higher

R2, lower RMSE and lower CV values) than y = ax (Tables 1–5).

Tables 1–5 show that the NDVI and WDRVIgreen are clearly infe-

rior in estimating daily crop GPP. Tables 1–5  also present that,

in experiment 1,  EVI performs best in five groups and CIgreen

performs best in  the other five groups in  aspects of R2,  RMSE

and CV; in  experiment 2, EVI performs best in nine groups while

CIgreen performs best in the other one group; in  experiment 3, EVI

performs best in seven groups while CIgreen performs best in the

other three groups; and, in  experiment 4,  EVI performs best in

nine groups while CIgreen performs best in the other one group

(see bold text in Tables 1–5).

3.1. Impact of MODIS observation footprint on crop daily GPP

estimation (experiment 1 vs. experiment 2)

Comparison of experiments 1 vs. experiment 2 was used to

show the impact of  MODIS observation footprint on crop daily

GPP estimation. The first experiment included all observations and

the second experiment included only observations with VZA less

than 35◦ (Tables 1–5). Changes in  R2,  RMSE, CV, and changes in
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Fig. 2. Relationships between VI ×  (daily PAR) vs. tower flux daily GPP for the US-NE1 site: (1) NDVI ×  PAR vs. GPP; (2) EVI × PAR vs. GPP; (3)  WDRVIgreen × PAR vs. GPP; and

(4)  CIgreen × PAR vs. GPP. The  solid lines force intercepts to  zero (upper eqns.) while dashed lines do  not  (lower eqns.). Only observations with view zenith angle less than 35◦

are included.

coefficients “a” and “b” of  the models of experiment 1 vs. experi-

ment 2 express the impact of footprint on daily crop GPP estimation.

Minimum and maximum of changes in  R2, RMSE, CV, and coeffi-

cients “a” and “b” due to the MODIS observation footprint impact

(experiment 2  – experiment 1) are listed in  Table 6. The R2 values

with CIgreen for the US-NE2 field do  not  change (Tables 2 and 6)

from experiment 1 to experiment 2. All other cases of experi-

ment 2  had higher R2, lower RMSE and lower CV values than their

counterpart cases of experiment 1(Figs. 1–4 and Tables 1–6) (on

average, R2, ↑0.13; RMSE, ↓0.68 g C m−2 d−1;and CV, ↓9% in  exper-

iment 2).

The average changes in  R2,  RMSE and CV due to the footprint

impact on maize (Tables 1,  2 and 4) were less than the changes on

soybean (Tables 3  and 5) (maize vs.  soybean: R2,  ↑0.07 vs.  ↑0.22;

RMSE, ↓0.59 vs.  ↓0.82 g C m−2 d−1; and CV, ↓8% vs. ↓11%). The aver-

age changes in R2 and RMSE due to the footprint impact in  the

irrigated fields US-NE1 and US-NE2 (Tables 1,  2,  and 3) were less

than the changes in the rainfed field US-NE3 (Tables 4 and 5) (irri-

gated vs. rainfed: R2, ↑0.10 vs.  ↑0.17; RMSE, ↓0.61 vs.  ↓0.79 g C m−2

d−1;  and CV, ↓9% vs.  ↓9%). The average changes in  R2,  RMSE and CV

due to the footprint impact on the model y = ax were less than the

changes on the model y  =  ax +  b (Tables 1–5) (y =  ax vs. y  =  ax + b: R2,

↑0.11 vs. ↑0.14; RMSE, ↓0.58 vs.  ↓0.78 g C m−2 d−1; and CV, ↓8% vs.

↓10%). The average changes in R2,  RMSE and CV due to the foot-

print impact using CIgreen (R2,  ↑0.08; RMSE, ↓0.42 g C m−2 d−1; and

CV, ↓7%) were the least while the largest changes varied with VIs

and terms (R2: NDVI, ↑0.15; RMSE: EVI, ↓0.84 g C m−2 d−2; and CV:

NDVI ↓10%) (Tables 1–5).

Relative changes in  coefficient “a” of the model y =  ax due to  the

footprint impact were less than the relative changes in coefficient

“a” of the model y  = ax +  b (Tables 1–5). The minimum and maxi-

mum values of relative changes in coefficient “a” of y = ax +  b  varied

with VIs, field irrigation options and crop types. Changes in coeffi-

cient “b” for maize ranged from −1.4–2.6 g C m−2 d−1 while changes

in coefficient “b” for soybean ranged from 0.2–6.3 g C m−2 d−1.

Changes in coefficient “b” also varied with field irrigation

options and VI options (Tables 1–6). Overall, the footprint impact

varied with crop types (maize < soybean), irrigation options (irri-

gated <  rainfed), model options (model y  = ax <  model y =  ax +  b) and

VI options (CIgreen < other VIs).
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Fig. 3. Relationships between VI ×  (daily PAR) vs. tower flux daily GPP for the US-NE1 site: (1) NDVI ×  PAR vs. GPP; (2) EVI × PAR vs. GPP; (3) WDRVIgreen × PAR vs. GPP; and

(4)  CIgreen ×  PAR vs. GPP. The solid lines force intercepts to  zero (upper eqns.) while dashed lines do not  (lower eqns.). Only forward scatter observations with view zenith

angle  less than 35◦ are  included.

3.2. Impact of vegetation BRDF characteristics on crop daily GPP

estimation (experiment 3  vs. experiment 4)

The second experiment combines all observations with VZA

less than 35◦ without distinguishing forward scatter/backscatter

looking. The third experiment combined only the forward scatter

observations in  the second experiment while the fourth experiment

combined only the backscatter observations.

Comparison of experiments 3 and 4 was used to show the

impact of vegetation BRDF characteristics on crop daily GPP esti-

mation (Tables 1–5). Minimum and maximum changes in R2,

RMSE, CV, and coefficients “a” and “b” of the models due to  the

impact of vegetation BRDF characteristics were summarized in

Table 7.  Change in  R2 ranged from −0.15 to  0.12, change in  RMSE:

−0.90–0.65 g C m−2 d−1,  and change in CV: −22%–6%. Relative

change in coefficient “a” of y  = ax ranged from −6%–26%, relative

change in coefficient “a” of y = ax +  b: −36%–37%, and change in

coefficient “b” of y  =  ax +  b: −3.53–6.69 g C m−2 d−1. Significantly

different slopes were obtained for forward vs. back scatter obser-

vations, especially for the CIgreen and the NDVI (Tables 1–5). The

vegetation BRDF impact varied with crop types, irrigation options,

model options and VI options (Table 7).

4. Discussion

The modified gridding procedure ensures (1)  the centers of  the

grid cells match the centers of the fields and (2) the grid cells

are completely covered by  the observations from each swath data,

which makes the gridded MODIS observations more appropriate

for the footprint impact study than the standard MODIS gridded

observations. Diameters of the two  circular fields (US-NE1 and US-

NE2, ∼780  m)  and length of the square field (US-NE3, ∼790 m)

are greater than the length of  the 500 m grids. There is  only one

crop type at each field in each year, and is  relatively homoge-

neous. Grass cover surrounding the study fields contributes to  the

worse performance of experiment 1  compared to experiment 2

since observations acquired at oblique angles are more likely to

contain areas adjacent to the crop fields.

For both maize and soybean, almost all irrigated cases

(Tables 2  and 3)  from all of the four experiments had better
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Fig. 4. Relationships between VI ×  (daily PAR) vs. tower flux daily GPP for the US-NE1 site: (1) NDVI ×  PAR vs. GPP; (2) EVI × PAR vs. GPP; (3)  WDRVIgreen × PAR vs. GPP; and

(4)  CIgreen ×  PAR vs. GPP. The  solid lines force intercepts to zero (upper eqns.) while dashed lines do not (lower eqns.). Only backscatter observations with view zenith angle

less  than 35◦ are included.

performances in terms of R2, RMSE and CV  than their counterpart

rainfed cases (Tables 4 and 5). Vegetation in the irrigated field has

less drought stress than in the rainfed field. Therefore the irrigated

field is  more favorable for vegetation photosynthesis and better

model performance is obtained at the irrigated field than at the

rainfed field.

For each VI, the slopes of the model y =  ax of  the irrigated

and the rainfed maize fields in the second experiment were

very close to each other but with variable model performance

(Tables 1,  2 and 4). For instance, the slopes of  the model with

EVI were 0.65, 0.66 and 0.67 for US-NE1, US-NE2 and US-NE3

. The slopes of the model y  =  ax of the irrigated and the rainfed soy-

bean fields in  experiment 2 were also very close to each other but

with different model performance (Tables 3 and 5). For instance,

the slopes of the model with EVI were 0.40 and 0.39 for US-NE2 and

US-NE3. In contrast, the slope and intercept values of the counter-

part y = ax + b cases in  experiment 2 varied field by field although

the counterpart cases had better performance. For example, the

fitted functions with EVI of the maize fields were: y =  0.93x  −  7.8

(US-NE1), y =  0.83x  −  5.16 (US-NE2), and y  =  0.94x  − 6.56 (US-NE3)

(Tables 1, 2 and 4). In experiment 2, the slope of y  =  ax changed

little for each crop type while the performance changed field by

field; however, in order to  achieve best prediction capability, the

slope and intercept of y  =  ax + b changed field by field even for

the same crop type. Both models have advantages and disadvan-

tages.

NDVI, EVI, WDRVIgreen and CIgreen were proposed for different

purposes using data from a  variety of sources by various scientists

(Deering, 1978; Gitelson et al., 2012b; Gitelson et  al., 2005; Huete

et al., 2002; Huete et al., 1997; Tucker, 1979). NDVI, WDRVIgreen

and CIgreen are two-band VIs, while EVI uses three spectral bands.

The formulas of  NDVI, WDRVIgreen and EVI include normalization

while the CIgreen formula does not. In addition, the EVI formula has

a factor that is designated to  reduce soil/background impact while

the other three do not. These differences among the formulas of

the VIs contribute to the difference of their performance. Using

MODIS red band WDRVI in GPP estimation may  result in different

performance from MODIS WDRVIgreen, and with different impacts

(personal communication, Anatoly A. Gitelson, University of

Nebraska-Lincoln).
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The values of any particular VI  for same field may  vary

when determined from different sensors (Kim et  al., 2010; Miura

et al., 2006). For instance, the US-NE1 CIgreen during 7/11–7/20 of

2001–2004 computed from the field measured surface reflectance

provided by UNL (field CIgreen: 9.6–11.4) (Gitelson et al., 2006) was

greater than the CIgreen of the same field at the same time period

derived from MODIS surface reflectance (MODIS CIgreen: 7.0–8.8).

In other words, the coefficients of  functions relating daily GPP and

CIgreen × PAR developed with the UNL field measurements may  be

different from those developed with MODIS data, with different

performance in terms of R2, RMSE and CV.

Many studies have been conducted to  validate/evaluate the use-

fulness of MODIS VIs in estimation of GPP without considering the

impacts addressed here (Peng et  al., 2013; Sims et  al., 2005; Sims

et al., 2008; Sims et al., 2006; Turner et  al., 2004; Turner et  al., 2003;

Xiao et al., 2004). It  is critical to investigate both the MODIS obser-

vation footprint impact and the BRDF impact on GPP estimates.

Unlike the managed sites in  this study, natural ecosystems often

consist of multiple plant functional types within a  500 m or larger

field. One should consider whether a  grid cell (location and size) can

well represent the field surrounding a flux tower site when using

MODIS data. We hope the service that provides “standard” MODIS

ASCII subsets for the AmeriFlux sites (http://ameriflux.ornl.gov/)

also offers the subsets using the modified gridding procedure for

all the AmeriFlux sites soon, so that the impacts for other types of

ecosystems can be investigated.

5. Conclusions

On one hand, surface reflectance and VIs of a grid cell may  vary

with MODIS VZA (Galvão et al., 2011; Sims et al., 2011). On  the

other hand, MODIS observation footprint size changes with VZA.

Both grid location and grid size should be considered when apply-

ing MODIS data in  GPP  estimation. This study examined the impacts

of MODIS observation footprint and the vegetation BRDF on crop

daily GPP estimation using four VIs and the linear models with and

without offset: y  =  ax and y  =  ax +  b.  The performance of the model

y = ax +  b was better than the model y = ax in  aspects of R2, RMSE and

CV, which is  consistent with previous works (Cheng et al., 2010;

Wu et  al.,  2011). The MODIS EVI has the greatest probability to

perform best in experiment 2 among the four VIs for crop daily

GPP estimation. The MODIS observation footprint can affect the

performance of  both models with any of  the four VIs. The MODIS

observation footprint has the least impact on crop daily GPP esti-

mation when using CIgreen while the largest impact changes with

VIs and terms: R2 (NDVI), RMSE (EVI) and CV (NDVI). The impact of

MODIS observation footprint can be reduced by using the modified

gridding procedure and excluding observations with large VZAs.

The vegetation BRDF can affect the slopes and intercepts of the

models and their performance. Both impacts varied with crop types,

irrigation options, model options and VI options. One should use

caution when s/he extrapolates a  VI based GPP model developed

for a specific circumstance to other circumstances.

VIs do not  explicitly express physical meaning in the mod-

els y = ax and y =  ax +  b. Many studies have tried to  find empirical

relationship between NDVI and fAPARcanopy (Fensholt et al., 2004;

Goward and Huemmrich, 1992; Huemmrich and Goward, 1997;

Justice et al., 1998; Myneni et al.,  2002; Myneni and Williams, 1994;

Sims et al.,  2005; Wu et al., 2012). Our earlier studies utilized mul-

tiple 30 m and 60 m spectrally MODIS-like images simulated from

EO-1 Hyperion images to  explore correlation between fAPARchl and

EVI and found that they were strongly correlated (Zhang et al., 2013;

Zhang et  al., 2012). Exploration of linear relationships between

the actual MODIS VIs and fAPARchl (fAPARchl =  p1 × VI +  p2)  is  under

way and findings will be reported in  another paper. We  will also

examine whether the relationships vary with fields, plant func-

tional types and irrigation options.
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