Single-Event Effect Response of a Commercial ReRAM

Dakai Chen, Kenneth LaBel,
NASA Goddard Space Flight Center, Greenbelt, MD 20771

Hak Kim, Anthony Phan, Edward Wilcox,
ASRC Space and Defense, Inc., c.o. NASA Goddard Space Flight Center, Seabrook, MD 20706

Stephen Buchner, Ani Khachatrian, Nicolas Roche
Naval Research Laboratory, Washington, DC 29375

Acknowledgement

• Sponsors:
 • NASA Electronics Parts and Packaging (NEPP) Program
 • Defense Threat Reduction Agency (DTRA)
 • National Reconnaissance Office (NRO)
• Panasonic for providing technical support
Acronyms

- SEE – Single-event effect
- SEU – Single-event upset
- SEFI – Single-event functional interrupt
- RAM – Random access memory
- ROM – Read-only memory
- ReRAM – Reduction-oxidation random access memory
- 1T1R – 1 transistor 1 resistor
- LET – Linear energy transfer
- CMOS – Complimentary metal-oxide-semiconductor
Motivation

• Limited availability of radiation tolerant flash memories
• Radiation performance of state-of-the-art flash is generally good but include some weaknesses
• Flash already reaching scaling limits
• Resistive random access memory has shown very good tolerance to ionizing radiation*
• Currently available radiation test results only on test chips
• A first look at the SEE performance of a commercial production-level reduction-oxidation random access memory (ReRAM)

Device Details

Panasonic MN101L
- 16 bit microcontroller with embedded ReRAM
- Industry’s first mass production-level ReRAM
- 1T1R array architecture, with CMOS transistor as access transistor to each ReRAM stack
- TaO\textsubscript{x} as switching layer
- Minimum device width ~ 0.5 μm
- Fabricated back-end-of-line in a 180 nm CMOS process

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory Size</td>
<td>64 KB</td>
</tr>
<tr>
<td>Program Endurance</td>
<td>Program area (62 KB): (\geq 10^3)</td>
</tr>
<tr>
<td></td>
<td>Data area (2 KB): (\geq 10^5)</td>
</tr>
<tr>
<td>Programming Voltage</td>
<td>1.8 to 3.6 V</td>
</tr>
<tr>
<td>Reading Voltage</td>
<td>1.1 to 3.6 V</td>
</tr>
<tr>
<td>Data Retention</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Heavy Ion Testing

- Kovar lid collimator (254 µm) exposed ReRAM array and peripheral control circuits
- Used Panasonic’s evaluation card as test vehicle
- Read Only Memory (ROM) operating conditions: V_{cc} = 3.3 V, Frequency = 8 MHz or DC
- Test modes: static, dynamic read, read/compare/write, and write
- Data patterns: 00, FF, 55, and AA
- 15 MeV/amu heavy ions at Texas A&M University
 - Ne, Ar, Kr, and Xe at normal, 30°, and 45°
 - Flux = 10³ to 10⁴ cm⁻²·s⁻¹, fluence = 2 × 10⁶ cm⁻² per shot
Heavy Ion Test Results

- Static tests did not result in SEU
 - 1 functional error following Xe irradiation, during read-back, recovered by a reset

- Dynamic read and write tests resulted in mostly SEFI
 - 1 event set device into locked mode
 - Reset for read mode SEFI
 - Reset or power cycle for write mode SEFI

- Similar SEFI cross sections for read and write test mode

- Angular irradiation
 - Cross section of normal incident degraded beam several factors higher than angular irradiation with same effective LET
 - Beam shadowing from the collimator
SEE Characteristics

- **Functional interrupts**
 - Most SEFIs did not result in large scale errors
 - Microcontroller stops reading/writing
 - 1 SEFI showed mass errors from the RAM

- **Bit upsets**
 - Included single-bit and multiple-bit upsets
 - Error address locations distributed throughout the microcontroller memory bank
 - 8 SEUs in the ROM
 - Could not rule out array errors

Pulsed-Laser Testing

- Pulsed-laser testing was carried out at the Naval Research Laboratory
- Laser characteristics
 - Wavelength = 590 nm
 - 1/e penetration range = 2 μm in silicon
 - Beam diameter = 1.7 μm for 20× lens, 0.9 μm for 100× lens
- We probed the ReRAM array and surrounding peripheral circuits with a 20× lens to identify the sensitive regions
- Sensitive areas were further investigated with a 100× lens, and the energy was fine-tuned to determine the upset energy threshold
- Equivalent LET values are based on empirical data from previous studies on other device types
Sensitive Locations

- Bit upsets
 - Did not originate from the ReRAM array
 - Location sensitive to SEUs also susceptible to SEFI

- Functional interrupt
 - Stops reading/writing
 - Continuously reading out errors from the ROM
 - Stuck reading at end of Bank0 (FFFF)
 - Continuously reading errors from other address locations beside the ROM
Upset Sensitivity in the Most Sensitive Location

- SEFI energy threshold
- Location 1:
 - Read mode: 5.5 pJ (17 MeV·cm²/mg)
 - Write mode: 8.6 pJ (26.5 MeV·cm²/mg)
- Location 2:
 - Read mode: 71 pJ (220 MeV·cm²/mg)
- Location 3:
 - Read mode: 105 pJ (320 MeV·cm²/mg)
SEE Characteristics

- Compare SEE from location 1 with heavy ion results
- Memory address of errors from laser test are similar to those from heavy ion test
- SEFI modes from laser and heavy ion test are also similar
 - Although limited information was gained from SEFIs that caused immediate cease of operation
- Sensitive region consists of sense amplifier circuit
 - Similar characteristics to SEFI caused by SEU from sensing circuit in flash*

SF Register – Special function register
IO Register – Input/Output register

Conclusion

- ReRAM array is hardened against heavy ions with LET as high as 70 MeV·cm²/mg
 - SEU in CMOS access transistor not enough to cause bit flip

- SEFI is the dominant error mode
 - Sensitivity of peripheral circuits critical to SEE response of ReRAM
 - Sense amplifier vulnerable to upsets leading to SEFI

- Lack of charge pump reduces sensitivity to radiation-induced erase/program failure
 - Eliminates block erase failures (issue for flash)