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ABSTRACT

We present a new code for radiation transport around Kerr black holes, including arbitrary emission and absorption
mechanisms, as well as electron scattering and polarization. The code is particularly useful for analyzing accretion
flows made up of optically thick disks and optically thin coronae. We give a detailed description of the methods
employed in the code and also present results from a number of numerical tests to assess its accuracy and
convergence.
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1. INTRODUCTION

Since the beginning of X-ray astronomy over 50 yr ago, there
has been steadily growing interest in relativistic radiation trans-
port. Because of the high energies of both photons and electrons
relevant to these astrophysical sources, special relativistic ef-
fects must be included in most particle interactions. Because
the central engines of so many X-ray sources are compact ob-
jects such as neutron stars and black holes, full general relativity
must also be incorporated into any physically realistic code.

Here, we present in detail for the first time the fully rel-
ativistic Monte Carlo radiation transport code Pandurata.3

While this is the first formal description of the code in the
literature, it has been under development for many years and
has already been used in numerous publications (Schnittman &
Krolik 2009, 2010; Noble et al. 2011; Schnittman et al. 2013).
Pandurata shares features with numerous existing codes in the
literature, but we believe its combination of full general relativ-
ity, wide range of emission and absorption processes, scatter-
ing, polarization, and optically thin/thick capabilities make it
uniquely valuable in the rapidly evolving field of black hole
astrophysics. Most recently, in Schnittman et al. (2013) we
demonstrated how the code can be used to make a major step
toward bridging the gap between global magnetohydrodynam-
ics (MHD) simulations and real X-ray observations of accreting
black holes.

The literature of radiation transport in astrophysics is ex-
tremely broad and includes scores of different techniques and
applications. It would be a futile endeavor to attempt to give a
comprehensive summary of the work here. Rather, we will sim-
ply highlight a few recent contributions that are most relevant
to the applications of interest, namely photon transport around
Kerr black holes. By far the most common approach has been
ray-tracing geodesic paths backward from a distant observer
to the accretion flow, calculating a transfer function of some

3 The name Pandurata comes from Coelogyne pandurata, a species of
black orchid native to Borneo. Much of the core radiation transport is derived
from the code Buttercup, developed by J.D. Schnittman for inertial fusion
applications (Schnittman & Craxton 1996, 2000) at the University of
Rochester’s Laboratory for Laser Energetics (LLE). In holding with LLE’s
long tradition of naming codes after flowers, the name Pandurata was chosen
to represent the joint heritage of black holes and laboratory radiation
hydrodynamics.

sort, and coupling this to some model for emission to gener-
ate spectra and light curves. A few of the many examples of
this observer-to-emitter approach include Rauch & Blandford
(1994), Broderick & Blandford (2003, 2004), Schnittman &
Bertschinger (2004), Dovciak et al. (2004), Schnittman et al.
(2006), Noble et al. (2007), Dexter & Agol (2009), and Dexter
et al. (2009).

A smaller number of codes have been written with the emitter-
to-observer approach, which may be more physically intuitive,
but is almost always more computationally intensive, with the
exception of Laor et al. (1990) and Laor (1991); Kojima (1991)
who use uniform sampling of emission angles, these codes are
generally Monte Carlo in nature, such as grmonty by Dolence
et al. (2009) and the present work. As we will show below,
particularly when electron scattering is included, the emitter-
to-observer paradigm is almost essential for capturing the most
relevant physics of the problem.

Another feature that is relatively uncommon in these ray-
tracing codes, but of increasing interest in the high energy
community, is polarization. It is included in Agol & Krolik
(2000), Dovciak et al. (2008), Huang et al. (2009), Shcherbakov
& Huang (2011), Huang & Shcherbakov (2011), and Marin
et al. (2012), although often only for vacuum transport and not
including scattering. Disk polarization is treated by Laor et al.
(1990), Matt et al. (1993), and Dovciak et al. (2008) for both
Schwarzschild and Kerr black holes, but neglecting electron
scattering. Dovciak et al. (2011) includes illumination from a
source above the disk, while Dovciak et al. (2008) includes a
cold plane-parallel atmosphere above the disk, geometrically
thin with varying optical depth. A small number of ray-tracing
codes also allow for non-standard black hole metrics as a way
of testing general relativity. Krawczynski (2012) follows the
emitter-to-observer paradigm for calculating polarized flux from
a thermal disk and Psaltis & Johannsen (2012) describes an
observer-to-emitter framework that can be applied to a large
number of space-time tests such as timing, spectra, and imaging
(Johannsen & Psaltis 2010a, 2010b, 2011, 2013).

The body of literature including detailed scattering and
polarization is generally restricted to flat spacetime and often
only the most simple geometries (Connors & Stark 1977;
Connors et al. 1980; Sunyaev & Titarchuk 1985; Haardt &
Maraschi 1993; Haardt et al. 1994; Poutanen & Svensson 1996).
Here, we attempt to synthesize the strengths of all these various
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codes into a single flexible radiation transport tool for analyzing
both global MHD simulations and also simpler toy accretion
models. The ultimate goal is to produce concrete predictions
that can be compared directly with the large and continually
growing body of X-ray observations of accreting black holes.

Precisely because of the large interest in this topic, we give
here a comprehensive description of the technical components
of our radiation transport code Pandurata. We hope that the
techniques outlined below will be valuable to others who are
interested in developing similar (or even better, more powerful)
tools. We also present the results from a suite of simple
numerical tests to verify the code, thus lending support and
increasing our confidence in earlier work based on Pandurata.

2. LOCAL ORTHONORMAL FRAMES

The most general input for Pandurata is a body of tabu-
lated data including the extrinsic fluid variables density, tem-
perature, magnetic field, and the four-velocity at each point in
a three-dimensional volume. Multiple data slices in the time
coordinate allow for studies of variability. The coordinates are
Boyer–Lindquist for a Kerr black hole with mass M and dimen-
sionless spin parameter a/M . The fluid variables are given in
physical cgs units for a specific black hole mass and accretion
rate. The source of the data is quite general and Pandurata
has been used successfully to analyze simulation data from the
relativistic MHD codes Harm3D (Noble et al. 2011; Schnittman
et al. 2013) and GRMHD (Schnittman et al. 2006), as well as
two-dimensional hydro simulations (Schnittman & Rezzolla
2006) and analytic models for the accretion disk and corona
(Schnittman & Krolik 2009, 2010).

We adopt a (−+ ++) metric signature and a convention where
Greek indices run from 0 to 3 and Latin indices are restricted to
spatial coordinates from 1 to 3. The coordinate metric is given
by (Boyer & Lindquist 1967)

gμν =

⎛
⎜⎝

−α2 + ω2� 2 0 0 −ω� 2

0 ρ2/Δ 0 0
0 0 ρ2 0

−ω� 2 0 0 � 2

⎞
⎟⎠ . (1)

This allows for a relatively simple form for the inverse metric:

gμν =

⎛
⎜⎝

−1/α2 0 0 −ω/α2

0 Δ/ρ2 0 0
0 0 1/ρ2 0

−ω/α2 0 0 1/� 2 − ω2/α2

⎞
⎟⎠ . (2)

In geometrized units with G = c = 1, we have

ρ2 ≡ r2 + a2 cos2 θ (3a)

Δ ≡ r2 − 2Mr + a2 (3b)

α2 ≡ ρ2Δ
ρ2Δ + 2Mr(a2 + r2)

(3c)

ω ≡ 2Mra

ρ2Δ + 2Mr(a2 + r2)
(3d)

� 2 ≡
[
ρ2Δ + 2Mr(a2 + r2)

ρ2

]
sin2 θ . (3e)
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Figure 1. Fluid density (top) and temperature (bottom) profiles for a slice of
Harm3D data in the (r, z) plane, taken from the ThinHR simulation (Noble
et al. 2010, 2011). Contours show surfaces of constant optical depth with
τ = 0.01, 0.1, and 1.0. Fiducial values for the black hole mass M = 10 M� and
luminosity L = 0.1 LEdd were used, as described in Schnittman et al. (2013).

(A color version of this figure is available in the online journal.)

2.1. Simulation Data

We briefly describe here the format of data from the Harm3D
MHD simulations. Similar data can be generated from GRMHD
and any analytic model can be understood as a subset of the
full tabulated simulation data. As described in greater detail in
Noble et al. (2011) and Schnittman et al. (2013), the first step
in post-processing the simulation data is to convert from code
units of density and local dissipation to cgs units of density
and temperature. Given the density everywhere, we integrate
the optical depth along paths of constant (r, φ) coordinates
starting from both θ = 0 and θ = π to get τtop(r, θ, φ) and
τbot(r, θ, φ). The disk midplane can then be defined as the
surface θmid(r, φ) where τtop(r, θmid, φ) = τbot(r, θmid, φ). When
τ (r, θmid, φ) > 1, the disk is optically thick and we define a
top and bottom photosphere Θ(r, φ) such that τtop(r, Θtop, φ) =
τbot(r, Θbot, φ) = 1. In Figure 1, we show a slice in the
(r, z) plane of simulation data from the Harm3D “ThinHR”
run (Noble et al. 2010). The local temperature is represented
by the logarithmic color scale and the contours show surfaces
of constant τ . In Figure 2, we show a three-dimensional
representation of the photosphere surface Θtop(r, φ) for the same
simulation data.

From the photosphere surfaces, thermal photons are launched
into the optically thin corona above and below the disk. Because
the opacity within the disk is usually dominated by electron
scattering, the seed photons are emitted with the limb-darkening
and polarization dependence on angle given by Chandrasekhar
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Figure 2. Three-dimensional representation of the disk photosphere surface Θtop(r, φ), along with the local spatial tetrad definitions of Equation (18a). The simulation
data are the same as in Figure 1. The color scale is a linear representation of the disk’s local thermal temperature. The labels (ri , φj ) correspond to coordinates of the
computational grid boundaries.

(A color version of this figure is available in the online journal.)

(1960). The spectrum is that of a diluted blackbody with
temperature Teff and hardening factor f:

Iν = 1

f 4
Bν(f Teff), (4)

where Bν is the blackbody function. We take f = 1.8 (Shimura
& Takahara 1995) and the local effective temperature is
given by

Teff(r, φ) ≡
(F(r, φ)

σ

)1/4

, (5)

where 2F(r, φ) is the total integrated flux from the optically
thick part of the disk (the factor of 2 comes from the fact that the
flux is emitted equally from the top and bottom photospheres).
As shown in Figure 1, the gas has a constant temperature inside
the disk for a given (r, φ), due to the high level of thermalization
caused by the large optical depth.

Synchrotron and bremsstrahlung seed photons can also be
generated in the coronal regions, in which case we use an
unpolarized, isotropic distribution function for the emission
angles, as measured in the local fluid frame and by the angle-
averaged formulae of Mehadevan at al. (1996). Because the
current version of Pandurata does not include angle-dependent
synchrotron emission, all polarization comes from electron
scattering. Future work will include polarized synchrotron seeds
as well. Due to the high temperatures and low densities of the
coronal regions, the net power in the coronal seed photons is
typically much lower than that of inverse Compton scattering
from the thermal seeds coming from the disk (Schnittman et al.
2013).

2.2. Photosphere Tetrads

We begin with a short discussion of notation. As stressed
in Misner et al. (1973), vectors are invariant geometric objects
independent of coordinate system and we represent them with
bold font u, while the components in a specific basis are
represented with italics: uμ. We adopt a naming convention
such that the components of a vector in the coordinate basis
are represented by μ and in the local fluid frame by μ̂. The
basis vectors themselves are labeled with (μ). For example, the
coordinate basis is spanned by the vectors e(μ) with components

eν
(μ) = δν

(μ), where δ is the usual Kronecker delta. Note that
the coordinate basis vectors are not normalized and not even
orthogonal in the Kerr metric:

e(μ) · e(ν) = gαβeα
(μ)e

β

(ν) = gμν . (6)

Einstein’s Equivalence Principle, one of the bedrocks of
general relativity, states that an orthonormal basis (a “tetrad”)
can be defined at any point in space. In fact, an arbitrary number
of tetrads can be defined at any point and are all related by
Lorentz boosts and/or rotations. One particularly useful tetrad
in the Kerr metric is that of the zero angular momentum observer
(ZAMO; Bardeen et al. 1972). We denote the ZAMO frame with
μ̃ labels. It can be constructed from the coordinate basis by

e(t̃) = 1

α
e(t) +

ω

α
e(φ) (7a)

e(r̃) =
√

Δ
ρ2

e(r) (7b)

e(θ̃ ) =
√

1

ρ2
e(θ) (7c)

e(φ̃) =
√

1

� 2
e(φ) . (7d)

Any vector can be represented by its components in different
bases:

u = e(μ)u
μ = e(μ̃)u

μ̃ (8)

and the components are related by a linear transformation E
μ

μ̃
:

uμ = E
μ

μ̃
uμ̃ , (9a)

uμ̃ = [E−1]μ̃μuμ . (9b)

In our example of the ZAMO frame, E
μ

μ̃
is given by

E
μ

μ̃
=

⎛
⎜⎜⎜⎝

1
α

0 0 0

0
√

Δ
ρ2 0 0

0 0 1
ρ

0
ω
α

0 0 1
�

⎞
⎟⎟⎟⎠ . (10)
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At each point on the photosphere, we define a tetrad in the
comoving fluid frame (designated with sub/superscripts μ̂) such
that the time coordinate is in the direction of the fluid four-
velocity:

e
μ

(t̂)
= uμ. (11)

In our notation, this equation says that the four-vector tangent
to the world line of an observer moving with the fluid can
be expressed in the Boyer–Lindquist coordinate basis with
components μ or in the local frame with components μ̂ with
e
μ̂

(t̂)
= [1, 0, 0, 0]. The spatial basis vectors in the fluid frame e

μ

(î)
are constructed via a method similar to Beckwith et al. (2008),
including a slight modification to ensure the right-handedness of
the basis such that e(ẑ) is in the −θ direction. For completeness,
we reproduce those definitions here:

C0 = uφ/ut , (12a)

C1 = ur

ut + C0uφ
, (12b)

C2 = gtt + 2C0g
tφ + C2

0g
φφ

grr
, (12c)

C3 = ut + C1C2u
r + C0u

φ , (12d)

N1 =
√

gttC
2
0 − 2gtφC0 + gφφ , (12e)

N2 =
√

gttC2
1 + 2gtφC2

1C0 + grr + gφφC2
0C

2
1 , (12f)

N3 =
√

(uθ )2
(
gtt + 2gtφC0 + grrC2

1C
2
2 + gφφC2

0

)
+ gθθC2

3 ,

(12g)

and

e
μ

(x̂) =
[
− 1

N2
(gttC1 + gtφC0C1),

grr

N2
, 0,

− 1

N2
(gtφC1 + gφφC0C1)

]
, (13a)

e
μ

(ŷ) =
[
−C0

N1
, 0, 0,

1

N1

]
, (13b)

e
μ

(ẑ) =
[

1

N3
(gttuθ + gtφC0u

θ ),
grrC1C2u

θ

N3
,

− gθθC3

N3
,

1

N3
(gtφuθ + gφφC0u

θ )

]
. (13c)

From this tetrad basis, any other tetrad in the fluid frame can
be constructed from a simple rotation of the spatial basis vectors.
We take as our preferred basis (now labeled with e(μ̄)) one in
which e(z̄) is normal to the photosphere surface. Whether we are
using simulation data or an analytic model for the disk surface,
the photosphere is described by a two-dimensional surface
on the top and bottom of the disk: Θtop(r, φ) and Θbot(r, φ).
From these functions, we can construct at each point in the

photosphere two vectors tangent to the disk surface through the
following process. We start with the coordinate-based vectors

drμ =
[

0, Δr,
∂Θ
∂r

Δr, 0

]
(14a)

and

dφμ =
[

0, 0,
∂Θ
∂φ

Δφ, Δφ

]
, (14b)

where Δr and Δφ are the differential sizes of the fluid cell in
question.4 Next, we subtract off the components parallel to e(t̂):

dr′ = dr − (dr · e(t̂))e(t̂) (15a)

and

dφ′ = dφ − (dφ · e(t̂))e(t̂) . (15b)

When dr′ and dφ′ are projected onto the fluid frame, they
will have only spatial components and will be tangent to the
photosphere. In this basis, we can easily construct the normal
vector by taking the three-vector cross product:

dzk̂ = εk̂

îĵ
dr ′î dφ′ĵ . (16)

This procedure has the added advantage of giving the proper
area of the photosphere patch subtended by the vectors dr′
and dφ′ by dA = |dz|. This formula for dA will be helpful
for determining the amplitude of emitted flux from each patch
of the disk, since the emission function is typically defined in
the local fluid frame. Because dr′ and dφ′ are not generally
orthogonal, we also define the dx and dy tangent vectors by
dx = dr′, dyt̂ = 0, and

dyk̂ = εk̂

îĵ
dzîdxĵ . (17)

To complete the tetrad, we simply need to normalize the
differential basis vectors. Returning to the coordinate basis, we
have:

e
μ

(t̄) = e
μ

(t̂)
= uμ (18a)

e
μ

(x̄) = dxμ/(gαβdxαdxβ )1/2 (18b)

e
μ

(ȳ) = ±dyμ/(gαβdyαdyβ)1/2 (18c)

e
μ

(z̄) = ±dzμ/(gαβdzαdzβ)1/2 . (18d)

The ± in the definitions for e(ȳ) and e(z̄) are chosen for the top
(+) and bottom (−) photosphere surfaces so that the spatial basis
vectors are oriented in a right-hand fashion and to ensure that e(z̄)
points away from the disk body. In Figure 2, we show how these
tetrad basis vectors are oriented on the photosphere surface.

4 For example, the ThinHR simulation uses Δr/r = 0.004 and Δφ = π/128.
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2.3. Coronal Tetrads

In addition to launching photons from the disk surface,
we often want the option of including seeds from within the
corona, due to thermal bremsstrahlung, cyclo-synchrotron, or
other radiation processes. Analogous with the comoving surface
element defined above for disk emission, for coronal emission
we need to define a volume element and associated tetrad at each
point in the simulation space. Like the tetrads defined above,
the time axis is defined along the local fluid four-velocity uμ.
However, unlike the surface tetrads, the volume tetrads have
no preferred orientation,5 so we can simply use the spatial
coordinate vectors projected onto the space orthogonal to uμ:

drμ = [0, Δr, 0, 0] , (19a)

dθμ = [0, 0, Δθ, 0] , (19b)

dφμ = [0, 0, 0, Δφ] , (19c)

dr′ = dr − (dr · e(t̂)) , (20a)

dθ ′ = dθ − (dθ · e(t̂)) , (20b)

dφ′ = dφ − (dφ · e(t̂)) . (20c)

The proper volume element subtended by these vectors is given
by the three-vector triple product in the local fluid frame. While
there is no real preferred orientation for the spatial axes, we still
need to go through the process of defining some orthonormal
basis to project the above vectors and thereby calculate vector
products. In practice, we set e(x̂) along the dr′ direction:

dxμ = dr ′μ, (21a)

then set the y-axis roughly along the φ coordinate direction

dyk̂ = εk̂

îĵ
dx

′ î dθ ĵ (21b)

and the z-axis normal to both:

dzk̂ = εk̂

îĵ
dx

′ î dyĵ . (21c)

As above for the photosphere tetrads, the final step is to
normalize all the basis vectors:

e
μ

(t̄) = e
μ

(t̂)
= uμ (22a)

e
μ

(x̄) = dxμ/(gαβdxαdxβ )1/2 (22b)

e
μ

(ȳ) = dyμ/(gαβdyαdyβ )1/2 (22c)

e
μ

(z̄) = dzμ/(gαβdzαdzβ)1/2 . (22d)

Unlike the photosphere case, since there is no “top” or “bottom”
in the corona, we need not be concerned about the orientation
of the e(z̄) vector and simply require a right-handed (x, y, z)
convention.

5 For some specialized emission models, such as optically thin synchrotron, it
may be convenient to choose a special orientation, e.g., with the e(z) basis
rotated to lie along the local magnetic field vector.

3. RAY-TRACING

3.1. Geodesics

The ray-tracing portion of Pandurata integrates the geodesic
trajectories of photons in the Kerr metric. From the tetrad frames
defined in the previous section, the initial direction of a photon
is selected from an isotropic distribution in the emitting fluid
frame (limited to a hemisphere in the case of an optically thick
photosphere surface).

The geodesic integrator is the same as that described in
Schnittman & Bertschinger (2004), based on a Hamiltonian
approach. Because the Kerr metric is stationary, the momentum
conjugate to the time coordinate t is conserved and corresponds
to the (negative) specific energy of a particle (m2 = 1) or
photon (m2 = 0). We can replace the affine parameter with
the coordinate time and write the Hamiltonian as

H (xi, pi) ≡ −p0 = g0ipi

g00
+

[
gijpipj + m2

−g00
+

(
g0ipi

g00

)2
]1/2

,

(23)
with equations of motion

dxi

dt
= ∂H1

∂pi

, (24a)

dpi

dt
= −∂H1

∂xi
. (24b)

In Boyer–Lindquist coordinates, the Hamiltonian can be
written thus:

H (r, θ, φ, pr, pθ , pφ)

= ωpφ + α

(
Δ
ρ2

p2
r +

1

ρ2
p2

θ +
1

� 2
p2

φ + m2

)1/2

, (25)

using the same notation defined above in Equations (3a)–(3e).
Because the metric and thus the Hamiltonian, is axisymmet-
ric, pφ is also an integral of the motion. We are thus left
with five coupled first-order ordinary differential equations for
(r, θ, φ, pr, pθ ). The third integral of motion, Carter’s constant
(Carter 1968) is

Q ≡ p2
θ + cos2 θ

[
a2(m2 − p2

0

)
+ p2

φ/ sin2 θ
]

(26)

and is used as an independent check of the accuracy of the
numerical integration.

For the numerical integration of geodesics, we use a fifth-
order Cash–Karp algorithm with an adaptive step size (Press
et al. 1992). In Figure 3, we show the accuracy of the integrator
by plotting the average deviation in the Carter constant for a
selection of photons around a black hole with a/M = 0.99, as
a function of step segments. We typically set the tolerance at
10−8 per step, which we find allows sufficient sampling of the
fluid variables near the black hole. Because of the frequent table
look-ups required when using simulation data, there is little to
be gained by using more advanced integration techniques such
as Bulirsch–Stoer or the semi-analytic approaches of Rauch &
Blandford (1994) or Dexter & Agol (2009) that calculate the
geodesic endpoint in a single integral evaluation and are more
appropriate for vacuum transport.
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Figure 3. Convergence of the geodesic integrator, as determined by the accuracy
of the conserved quantity Q. As expected, we find fifth-order convergence for
the Cash–Karp adaptive time step integrator.

3.2. Polarization

Pandurata is also capable of polarized transport along
geodesics. The polarization vector is a space-like vector normal
to the photon direction. For a photon with wavevector k, the
polarization vector f is constrained by f · f = 1 and f · k = 0
(Connors et al. 1980). The vector f is parallel transported
along the geodesic path: ∇kf = 0, but instead of explicitly
solving the parallel transport equation, we can take advantage
of the complex-valued Walker-Penrose constant κwp (Walker &
Penrose 1970; Connors & Stark 1977).

After solving for the wavevector kμ along the geodesic path,
κwp is given at any point by

κwp = [(ktf r − krf t ) + a sin2 θ (krf φ − kφf r )

− i[(r2 + a2)(kφf θ − f φkθ ) − a(ktf θ − kθf t )] sin θ ]

× (r − ia cos θ ) . (27)

Combined with the normalization factors f · f = 1 and f · k = 0,
we have four linear equations for the four components of f μ.
Because k is a null vector, we can always redefine f by a multiple
of k: f′ = f + λk and thus write the polarization vector as

f μ = [
0, cos ψei

1 + sin ψei
2

]
(28)

for some space-like basis vectors e1 and e2 normal to k.
The degree of polarization δ � 1 is invariant along the ray

path. When interacting with a distant detector or scattering off
an electron in the fluid frame, it is convenient to employ the
classical Stokes parameters I, Q, and U. In the (e1, e2) basis, we
can write

X = Q/I = δ cos 2ψ , (29a)

Y = U/I = δ sin 2ψ . (29b)

One of the main advantages of this approach is that the Stokes
parameters for each photon can simply be added at the detector,
quite useful in a Monte Carlo calculation. Furthermore, I (ν),
Q(ν), and U (ν) can all be written in units of spectral density,
which is the standard observable for many real detectors.

For photons emitted at an angle θem to the normal of a
scattering-dominated surface, we use the results of Chan-
drasekhar (1960) to obtain the initial polarization amplitude
(ranging from δ(θem = 0◦) = 0 up to δ(θem = 90◦) = 0.12) and
direction (parallel to the disk surface).

3.3. Photon Packets

Because the geodesic photon trajectories are independent of
photon energy, we can significantly improve the efficiency of the
Monte Carlo calculation by tracking large numbers of photons
simultaneously covering a range of energies. We call these
computational entities “photon packets,” which are analogous
to the “superphotons” of Dolence et al. (2009), except for the
fact that theirs are monoenergetic and ours are broadband. We
also assign a single polarization angle and degree to the entire
photon packet. This is an approximation that works well for
vacuum transport and coherent scattering, but will break down
when including scattering at high energies hν � mec

2 as the
electron cross section becomes more energy-dependent.

Each photon packet is weighted by a number of geometric
emission factors. For example, a photon packet emitted from a
small patch of optically thick, scattering-dominated accretion
disk would have a spectrum of

F em
ν = 1

f 4
Bν(f Teff)

1

ut
flimb(θem) cos θem dAdΩ , (30)

where Fν is a function that has units of spectral luminos-
ity [erg s−1 Hz−1]. Here, f is the same hardening function
introduced above in Equation (4), cos θem is a geometric fac-
tor for emission from an optically thick surface, flimb is a limb-
darkening function given by Chandrasekhar (1960), dA is the
proper area of the emission region (see Equation (16) above),
and dΩ = 2π/Nph is the proper solid angle of a hemisphere
sampled evenly by Nph photon packets. Lastly, 1/ut = dτ/dt is
a relativistic correction factor to convert from time in the emis-
sion frame to that in the coordinate or distant observer frame.

In order to account for the spectral redshift, we store both F
and ν at a set of discrete points. When transforming from the
emitter to observer frames, F is invariant (units of s−1 and Hz−1

cancel),6 while ν transforms as follows. If the photon packet is
emitted in a frame with fluid four-velocity uμ(em) and photon
four-momentum kμ(em) and observed in a frame with uν(obs)
and kν(obs), then we can write the redshifted frequencies as

ν(obs) = ν(em)
uν(obs)kν(obs)

uμ(em)kμ(em)
. (31)

Whenever the photon packet scatters off the disk or an electron in
the corona, the frequencies νi are updated and the old “observed”
frame becomes the new “emitted” frame. When the photon
packet reaches an observer at infinity, uν(obs) = [1, 0, 0, 0]
and the well-known redshift relation is reproduced.

For this distant observer, the angle of polarization ψ is
measured by projecting f onto the (e1, e2) = (eφ,−eθ ) basis. For
an observer oriented with the black hole spin axis projected in the
vertical direction, ψ = 0 corresponds to horizontal polarization
(Schnittman & Krolik 2009, 2010). Given ψ , δ, and Fν , the
spectral luminosity form of the Stokes parameters are simply

Q̃ν = Fνδ cos 2ψ , (32a)

Ũν = Fνδ sin 2ψ , (32b)

6 For a discrete function Fi, the number of photons emitted per
coordinate-frame second between νi and νi + dνi is Fi dνi/(hνi ), where h is
Planck’s constant and νi are measured in the local emission frame. Because νi

and dνi transform the same under Lorentz transformations, Fi is invariant.

6



The Astrophysical Journal, 777:11 (17pp), 2013 November 1 Schnittman & Krolik

where Q̃ and Ũ are related to the Stokes parameters Q and U
by a factor of (F/I ). After summing over a large number of
photon packets, we then invert Equation (32) and return to the
δ(ν), ψ(ν) representation.

3.4. Emission and Absorption

Along each geodesic path, we can also include local emis-
sion and absorption processes such as bremsstrahlung or syn-
chrotron. This is the predominant method for generating light
curves and spectra in codes that shoot photons backward from
a distant observer (Broderick & Blandford 2004; Schnittman &
Bertschinger 2004; Schnittman et al. 2006; Noble et al. 2007,
2009; Dexter & Agol 2009). In the fluid frame, the radiation
transport equation is given by

dIν

ds
= jν − ανIν , (33)

where ds is the differential path length and Iν , jν , and αν are the
spectral intensity, emissivity, and absorption coefficient of the
local fluid, respectively. The absorption coefficient is related to
the opacity κν through the density ρ: αν = ρκν . Defining the
optical depth τν through

dτν ≡ ανds, (34)

the transfer equation can be written as

dIν

dτν

= Sν − Iν, (35)

where the source function is defined as Sν ≡ jν/αν .
Both Iν and Sν have the same properties under Lorentz

transformations, namely Iν/ν
3 and Sν/ν

3 are both invariant.
Other invariant terms are the optical depth τν , ναν , and jν/ν

2

(Rybicki & Lightman 2004). Thus, if we can solve the non-
relativistic radiative transfer equation (Equation (33)) in the
local fluid frame, then in any other inertial frame (e.g., the
ZAMO tetrad), the special relativistic version can be written

dIν

ds
=

( ν

ν ′
)2

j ′
ν −

(
ν ′

ν

)
α′

νIν. (36)

Here, the fluid frame (where jν and αν are defined) is the primed
frame and the “lab frame” is unprimed.

The above analysis, while quite useful for special relativistic
flows in the locally flat ZAMO basis, ignores all general
relativistic effects of curved spacetime around the black hole.
To include these effects, we need only to shift the frequencies νi

from one geodesic step to the next, due solely to the gravitational
redshift, and we can treat each computational step as a new
observer relative to the previous step, as in Equation (31).

4. SCATTERING

We allow for two types of scattering in Pandurata: Compton
scattering off free electrons in the corona and scattering off
an optically thick disk (which in turn is characterized by
repeated scatterings in the relatively cool atmosphere). Because
electron scattering conserves photon number, our photon packet
approach is ideal for modeling these processes.

4.1. Coronal Scattering

The first step in the scattering process is to determine whether
a scattering event takes place at all. To do this, we transform
into a local inertial “lab” frame, generally taken to be the ZAMO
frame discussed above in Section 2.2. In this frame, the photon
moves a distance of dl2 = ηĩj̃ dxĩdxj̃ in a single geodesic
integration step dt . Then, the total optical depth to scattering
along the path is

dτ = dl κes ρlab = dl κes ρfluid
νfluid

νlab
, (37)

where the last equality comes from the invariance of ναν

(Rybicki & Lightman 2004), with the absorption coefficient
αν = κesρ for electron scattering opacity. Given dτ (typically
much less than unity), the probability of scattering is P =
1 − e−dτ .

When a photon does scatter off a free electron, we carry
out the scattering calculation in the electron’s rest frame. This
requires two coordinate transformations: from the coordinate
basis (denoted with μ super/subscripts) to a fluid-frame tetrad
(μ̄), and then a Lorentz boost from the fluid frame to the
electron’s rest frame (μ̄′). The transformation from coordinate
basis to corona fluid frame is the same as given above in
Section 2.3. In the fluid frame, the electron velocity β = v/c is
taken from an isotropic Maxwell–Juttner distribution

f (γ ) = γ 2β

θT K2(1/θT )
exp(−γ /θT ) , (38)

where γ = 1/
√

1 − β2, θT = kT /mec
2, and K2 is the modified

Bessel function. We refer the reader to Appendix B for a
description of our algorithm for generating a Monte Carlo
sample of velocities that satisfy Equation (38).

Following Misner et al. (1973), we construct a generic
Lorentz boost in the direction of the electron four-velocity
uμ̄ = [γ, γβnj̄ ]:

uμ̄ = [γ, γβnj̄ ] (|n| = 1),

Λt̄ ′
t̄
= γ,

Λt̄ ′
j̄

= Λj̄ ′

t̄
= −βγnj̄ ,

Λj̄ ′

k̄
= Λk̄′

j̄
= (γ − 1)nj̄nk̄ + δj̄ k̄ . (39)

The photon momentum in the electron frame is thus given by
pμ̄′ = Λμ̄′

μ̄pμ̄.
Without loss of generality, we can carry out one more

transformation and define the initial photon direction to lie along
the z-axis in the electron frame. The x–y plane is decomposed
into ε1 and ε2, where the initial polarization is aligned with ε1.
The scattered radiation kf makes an angle Θ with ε1 and θ with
ki , as shown in Figure 4. For unpolarized incident light, we can
define ε1 to lie in the plane of ki and kf , with Θ + θ = 90◦.

For photons polarized along ε1, the angle-dependent cross
section σ (θ ) is given by the dipole scattering formula (Rybicki
& Lightman 2004):

(
dσ

dΩ

)
pol

= r2
0 sin2 Θ = r2

0 (sin2 φ + cos2 θ cos2 φ) , (40)

7
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ε1

ε2

θ

Θ
kf

ki

Figure 4. Schematic of the scattering geometry in the electron frame. The
incoming radiation is polarized along the ε1 direction. The scattered radiation
kf makes an angle Θ with ε1 and θ with ki . When projected onto the ε1 − ε2
plane, kf makes an angle φ with ε1.

where φ is the standard azimuthal angle measured with respect
to ε1. Here, the classical electron radius r0 is given by

r0 = e2

mec2
= 2.82 × 10−13 cm. (41)

For photons scattering in the ki-ε2 plane, the cross section is
constant: dσ (Θ = π/2)/dΩ = r2

0 . For unpolarized light, we
define ε1 as lying in the scattering plane, so the angle with
respect to ε2 is π/2. Because unpolarized light is an equal
combination of ε1- and ε2-polarized photons, we can reproduce
the familiar cross section for unpolarized scattering:

(
dσ

dΩ

)
unpol

= 1

2

[(
dσ (Θ)

dΩ

)
pol

+

(
dσ (π/2)

dΩ

)
pol

]

= 1

2
r2

0 (1 + cos2 θ ) . (42)

For an arbitrary polarization degree δ, the cross section can
be written as the sum of unpolarized light with weight (1 − δ)
and purely polarized light with weight δ:

dσ

dΩ
= 1

2
r2

0 (1 − δ)(1 + cos2 θ ) + r2
0 δ(1 − sin2 θ cos2 φ)

= 1

2
r2

0 [(1 + cos2 θ ) − δ sin2 θ cos 2φ] . (43)

Given the angle-dependent cross section, we can either pick
the scattering angles (θ, φ) directly from a distribution function
derived from Equation (43) or, alternatively, we can pick the
angles from a uniform distribution and give the scattered flux
a weight based on the cross section. We compare these two
methods in Appendix C.

Once the new photon direction is determined, we need to
calculate the angle and degree of the post-scattered polarization.
Here, we follow the Rayleigh matrix method described in
Chandrasekhar (1960). We define yet another coordinate system
with ε3 parallel to ki , ε‖ in the scattering plane defined by
ki and kf and ε⊥ normal to that plane. Likewise, we define

ε’

ik

ε’
||

kf

θ

ε ||

ε

Figure 5. Definitions of polarization axes in pre- and post-scattering coordinates.
ki , kf , ε‖, and ε′

‖ are all in the same plane, while ε⊥ and ε′
⊥ are normal to that

plane.

a post-scatter frame with ε′
3 parallel to kf , ε′

⊥ = ε⊥, and
ε′

‖ in the scattering plane, but normal to kf (see Figure 5).
In this frame, the initial polarization vector can be written
fi = cos ψε‖ + sin ψε⊥ and the final polarization is ff =
cos ψ ′ε′

‖ + sin ψ ′ε′
⊥.

The standard Stokes parameters are given by the intensity I,
Q = δI cos 2ψ , U = δI sin 2ψ , and V = 0 (electron scattering
never leads to circularly polarized light). We further define

I‖ ≡ 1

2
(I + Q) = 1

2
(1 − δ)I + δI cos2 ψ (44a)

I⊥ ≡ 1

2
(I − Q) = 1

2
(1 − δ)I + δI sin2 ψ (44b)

I ≡ [I‖, I⊥, U, V ] (44c)

and the Rayleigh scattering phase matrix

R =

⎛
⎜⎝

cos2 θ 0 0 0
0 1 0 0
0 0 cos θ 0
0 0 0 cos θ

⎞
⎟⎠ . (45)

Then, the scattered Stokes parameters are given simply by
I′ = RI, I ′ = I ′

‖ + I ′
⊥, and Q′ = I ′

‖ − I ′
⊥. Note that the cross

section (Equation (43)) can be reproduced by writing

I ′ = cos2 θI‖ + I⊥ = 1

2
(1 − δ)I (1 + cos2 θ )

+ δI (cos2 θ cos2 ψ + sin2 ψ) , (46)

giving

I ′

I
= 1

2
(1 − δ)(1 + cos2 θ ) + δ(1 − sin2 θ cos2 ψ) , (47)

now with ψ taking the place of φ from Equation (43).

8
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Lastly, ff is constructed by

δ′ =
√

Q′2 + U ′2

I ′ (48a)

ψ ′ = 1

2
tan−1(U ′,Q′) (48b)

ff = cos ψ ′ε′
‖ + sin ψ ′ε′

⊥ . (48c)

At this point, the polarization vector and photon four-momentum
are transformed back into corona fluid frame, then to the
coordinate frame, and then the geodesic propagation continues
as before, until the photon packet scatters again, is absorbed by
the black hole, or reaches a distant observer.

During this scattering process, the photon packet’s array
of frequencies had to be adjusted three times: once when
transforming from the fluid frame to the electron rest frame,
once when losing energy to the electron recoil, and once
when transforming back to the fluid frame. The first and last
transformations are simple Lorentz boosts and the frequency
scales like the photon energy: ν ′/ν = pt ′/pt , with pt ′ = Λt ′

μpμ.
For the scattering losses, we need to scale the frequency bins
such that the number of photons in each bin is conserved, while
losing energy according to the Compton recoil formula:

Ef = Ei

1 + Ei

mec2 (1 − cos θ )
. (49)

Thus, the frequency scales like

ν ′

ν
=

[
1 +

hν

mec2
(1 − cos θ )

]−1

(50)

and the size of each bin scales like

dν ′

dν
=

[
1 +

hν

mec2
(1 − cos θ )

]−2

. (51)

The number of photons in each bin dNν = Fνdν/(hν) is
conserved in the scattering event, so we find that the effect
of Compton recoil on the spectral luminosity is

F ′
ν

Fν

=
[

1 +
hν

mec2
(1 − cos θ )

]
. (52)

At very high energies hν 
 mec
2, this leads to a “pile up”

of photons and large peaks in the photon packet spectrum.
In reality, this effect would be mitigated by incorporating
Klein–Nishina cross sections, which decrease with energy, yet
are incompatible with our photon packet approach that treats all
photons as identical regardless of frequency.7 In practice, we are
generally interested in problems where the characteristic photon
energies are significantly below mec

2, so the photon pile up is
rarely an issue.

While some energy is lost to Compton recoil in the electron
frame, the more typical effect is inverse Compton scattering,
where energy is transferred from the electrons to the photons.
For electrons with Lorentz factors γ in the fluid frame and

7 Relativistic corrections to the cross section are on the order of 10% at
hν = 30 keV and 50% at 350 keV. Our spectra based on Thomson cross
sections should be at least this accurate in the corresponding energy range.

low-energy photons with hν/mec
2 � γ 2 − 1, the ratio of

energies of the photons before scattering, in the rest frame of
the electron, and after scattering is roughly 1 : γ : γ 2 (Rybicki
& Lightman 2004). For coronal electrons with temperature
∼140 keV, low-energy seeds will, on average, double their
energy after every scattering event, making inverse Compton
scattering a very efficient radiative process.

4.2. Disk Scattering

At each step along the geodesic trajectory, we determine
whether or not the photon packet has crossed the photosphere
surfaces Θtop(r, φ) or Θbot(r, φ). If it has crossed this boundary,
we follow a procedure similar to that described above for coronal
scattering. First, we use the conserved quantities κwp, f · f = 1
and f · k = 0 to solve for the polarization vector f in the
coordinate frame. Then, we transform f and k into the local
fluid frame of the photosphere tetrad e(μ̄), with e(z̄) normal to the
disk surface, as in Equation (18a).

In this frame, the scattering off the disk surface is calculated
using the analytic expressions for reflection off a diffuse,
semi-infinite plane, derived by Chandrasekhar and given in
Table XXV of Chandrasekhar (1960). As in Equation (44)
above, we can write the incoming photon beam as a vector
of Stokes parameters for the flux I = [I‖, I⊥, U ] (V = 0 for
linearly-polarized light, the only relevant case for our scattering-
dominated systems). Then, the outgoing intensity is given by

I′(μ, ϕ) =
⎛
⎝I ′

‖
I ′
⊥

U ′

⎞
⎠ = 1

4μμ0
QS(μ, ϕ;μ0, ϕ0)

⎛
⎝I‖

I⊥
IU

⎞
⎠ , (53)

where (μ0, ϕ0) are the incident angles in the fluid frame and μ0 =
|kz̄|, (μ, ϕ) are the outgoing angles and Q and S are the transfer
matrices defined in Section 70.3 of Chandrasekhar (1960).
Unlike the coronal scattering case, where we use the differential
cross section (Equation (43)) to determine the post-scatter
angles, for diffuse reflection off the disk, we simply choose
a random angle (μ, ϕ) from a uniform distribution and then
weight the outgoing intensity by I ′/I from Equation (53). Thus,
any individual reflection does not conserve photon number,
but the angle-averaged process does. From I′, we are able to
reproduce δ′, ψ ′, and thus f′ and k′ as above, which are then
transformed back into the coordinate frame and continue their
geodesic propagation through the corona.

This method for diffuse reflection can be checked against
coronal scattering experiments where we scatter incoming pho-
tons off a semi-infinite plane of free electrons. We find excellent
agreement between the analytic and numerical approaches, as
shown below in Section 5.

As with the coronal scattering, high-energy photons can lose
energy to Compton recoil off the electrons in the cool disk,
leading to the reflection hump seen in many active galactic
nucleus (AGN) observations (we are able to reproduce this fea-
ture above ∼30 keV and compare with similar results calculated
in George & Fabian 1991, who calculated the reflection spec-
trum off a cold disk when irradiated with an external power-law
flux). While this process is technically angle-dependent, as a
simplification, we average over all incoming and outgoing an-
gles, as well as the number of individual scatterings typically
responsible for diffuse reflection (Nscat ≈ 3 in the Thomson
regime) and use the recoil formula

ν ′

ν
=

(
1 + 3

hν

mec2

)−1

. (54)
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Figure 6. Comparison of the observer-to-emitter and emitter-to-observer ray-
tracing paradigms for a relativistically broadened emission line. The disk
extends from Rout = 15M all the way to the horizon and the emissivity profile
scales as r−3.

(A color version of this figure is available in the online journal.)

This energy lost by the photons can then be reprocessed by
the disk and emitted at thermal energies. In future work,
when including more accurate Klein–Nishina cross sections
that decrease with energy, we expect that high-energy photons
incident on the disk will penetrate deeper into the disk, then
lose energy to Compton recoil before having to scatter back out
of the disk atmosphere. Thus, we expect Nscat will increase and
thus the energy losses would be even greater.

5. NUMERICAL TESTS

Here, we present a number of test problems to verify
Pandurata’s accuracy and reliability. We begin with vacuum
transport of geodesics from the disk to a distant observer. To test
the tetrad construction methods outlined in Section 2.2, we cal-
culate the relativistic broadening of iron lines from a thin disk
around a Kerr black hole, comparing the emitter-to-observer
and observer-to-emitter paradigms. The observer-to-emitter ap-
proach is well-known in the literature (Rauch & Blandford 1994;
Broderick & Blandford 2003, 2004). It is also relatively straight-
forward conceptually, since it does not require the use of any
tetrads or proper area calculations. One simply shoots rays back-
ward from a distant observer and integrates the geodesic path
until the ray crosses the midplane, where the fluid four-velocity
can be determined analytically as in Novikov & Thorne (1973).
This gives the redshift of the emission line as seen by the ob-
server, and the spectrum is given by the invariant Iν/ν

3.
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Figure 7. Error estimate ε as a function of photon number for a relativistically
broadened iron line, defined in Equation (55). Forty inclination bins were used.

In Figure 6, we show the shape of a relativistically broadened
emission line as viewed by observers at different inclination
angles for the spin values a/M = 0 and 0.99. In all cases,
the emissivity profile scales like I ∼ r−3 and the outer disk
is truncated at r = 15M . The disk extends all the way into
the horizon, with the fluid velocity inside the inner-most stable
circular orbit (ISCO) determined by conserving the energy and
angular momentum at the ISCO and solving for ur from the
relation uμuμ = −1. For the observer-to-emitter calculation,
we use the same ray-tracing code described in Schnittman &
Bertschinger (2004), with 107 photons evenly spaced in the
image plane for each inclination. We find excellent agreement
in all cases, validating our emitter-to-observer techniques, at
least for planar test-particle orbits.

This test, in turn, naturally leads to a simple convergence test
for our Monte Carlo code. Integrating over energy and observer
inclination angle i, we can apply the following metric to estimate
the error due to the use of a finite number of photons:

ε =
[∫

d cos i
∫

dE(Ilo(E) − Ihi(E))2
]1/2[∫

d cos i
∫

dEI 2
hi(E)

]1/2 , (55)

where Ilo(E) is the spectrum calculated at low resolution, com-
pared with the theoretically perfect spectrum Ihi(E) calculated at
high resolution. As expected for a Monte Carlo calculation, we
find that the total error scales with photon number like N−1/2, as
shown in Figure 7. This is consistent with similar spectral cal-
culations done with the Monte Carlo radiation code grmonty
(Dolence et al. 2009). Also shown in Figure 7 are the errors
ε(N ) for the observer-to-emitter approach, using a total of 40
inclinations for both cases. We note that the emitter-to-observer
method is more than a factor of two more efficient for the same
calculation. This is because we can selectively shoot more pho-
tons from the inner regions of the disk, but in the reverse method,
the photons are distributed evenly in the image plane (this uni-
form distribution is not strictly necessary; e.g., Noble et al. 2007
use an adaptive grid to improve resolution in bothros).

The next test is similar, but also includes polarization effects.
Instead of an emission line with I (r) ∼ r−3, we use the diluted
thermal spectrum for a Novikov–Thorne (NT) disk with an inner
edge at the ISCO. The emission has the polarization and limb
darkening appropriate for a scattering-dominated atmosphere
(Chandrasekhar 1960). For the observer-to-emitter approach,
in addition to utilizing the Iν/ν

3 invariance, we also parallel
transport two polarization basis vectors corresponding to the
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Figure 8. Comparison of observer-to-emitter and emitter-to-observer polarized images for a NT disk with polarization given by a scattering-dominated atmosphere.
The disk extends from an inner edge at the ISCO out to Rout = 15M . The black hole has spin a/M = 0.99 and the observer is at an inclination of i = 75◦. The
intensity color scale is logarithmic and the polarization vectors are linearly proportional to the local degree of polarization, as observed at infinity.

(A color version of this figure is available in the online journal.)
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Figure 9. Polarization degree and angle as a function of photon energy for a black hole with spin a/M = 0.99, luminosity 0.1 LEdd, and mass 10 M�. The disk extends
from the ISCO out to r = 15M . The observer-to-emitter (solid curves) and emitter-to-observer (diamonds) methods agree closely over a range of inclinations.

(A color version of this figure is available in the online journal.)
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Figure 10. Outgoing intensity and degree of polarization for radiation emitted from a scattering-dominated atmosphere, as a function of inclination, for a range of
corona optical depths. The face-on orientation is unpolarized due to symmetry.

two axes in the observer plane normal to the photon propagation
direction. Then, when the ray intersects the disk, we calculate
a local tetrad in order to determine the local angle of incidence
and thus the degree of polarization. The direction of polarization
is projected onto the parallel-transported basis vectors to give
the observed angle at infinity.

The two approaches give identical results, for a Kerr black
hole with spin a/M = 0.99, Rout = 15M , and observer
inclination angle 75◦, as shown in the images in Figure 8.
The color code is logarithmic in total intensity and covers four
orders of magnitude and the small vectors scale linearly with
the degree of polarization. For the purposes of comparison, we

have not included returning radiation here, despite the important
effect it has on the polarization signal (Agol & Krolik 2000;
Schnittman & Krolik 2009). In fact, it is precisely due to the
critical importance of returning radiation that we were forced
to employ the emitter-to-observer approach in Schnittman &
Krolik (2009, 2010).

In Figure 9, we show the observables of polarization degree
and angle as a function of energy for a range of inclination
angles, assuming an Eddington-scaled accretion rate of ṁ = 0.1
and black hole mass M = 10 M�. Again, we find excellent
agreement between the emitter-to-observer and observer-to-
emitter methods.
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Figure 11. Stokes parameters for scattering of unpolarized light off an optically thick atmosphere. See the text for a description. Compare with Figures 24 and 25 of
Chandrasekhar (1960).

10-14

10-13

10-12

10-11

10-10

10-9

10-8

E
 F

E

cos i = 0.11
T

bb
=10 eV

τ=0.50
T

e
=56 keV

cos i = 0.50

-5 -4 -3 -2 -1 0 1
log E/(m

e
c2)

-10

0

10

20

30

δ 
(%

)

-5 -4 -3 -2 -1 0 1
log E/(m

e
c2)

Figure 12. Spectra and polarization of flux from a disk and corona with a slab geometry corresponding to an AGN accretion disk, as described in the text. The solid
curves correspond to the total flux, while the dotted, dashed, dot-dashed, triple-dot-dashed, and long-dashed curves correspond to Nscat = 0, 1, 2, 3, and � 5. For
clarity, only the solid curves are shown for the polarization degree. Compare with Figure 5 of Poutanen & Svensson (1996).

Next, we move on to testing the coronal scattering algorithms.
We focus on a plane-parallel geometry with an optically thick
disk covered by a corona with variable optical depth τ and
electron temperature Te. In Figure 10, we show the effects of a
scattering atmosphere on the emergent flux and polarization as
a function of angle. The seed photons are emitted isotropically
(i.e., with a cos θ weight appropriate for an optically thick
disk) from the disk surface with zero polarization, then scatter
through a cold corona. Photons that scatter back to the disk are
reflected via the diffuse scattering formula of Equation (53).
In the limit of τ → ∞, we reproduce the limb darkening
and horizontal polarization results from Chandrasekhar (1960),
Table XXIV.

In Figure 11, we carry out a similar scattering experiment,
but with the seed photons incident from above the disk along

a single direction. Setting τ = 10, we should reproduce the
analytic diffuse reflection expressions of Chandrasekhar (1960),
shown in that paper in Figures 24 and 25 for an incident
unpolarized beam with cos θ0 = 0.8, 0.5, and ϕ0 = 0. Following
Chandrasekhar (1960), we plot the Stokes parameters I, Q, and
U as a function of reflection angle, normalized to the incident
intensity. The asterisks are the Monte Carlo calculations and the
solid curves are the analytic predictions.

On the left-hand side of each plot, we show the polarization
as a function of θ for ϕ − ϕ0 = 0◦,±180◦. The value of θ0
is designated with a vertical dashed line. Negative values of θ
correspond to photons reflected back in the general direction
of the incident photons, i.e., ϕ − ϕ0 = 0. Thus, we see a
natural peak in the intensity corresponding to backscattering
as in Equation (42). Similarly, the degree of polarization is
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Figure 13. Same as Figure 12, but for Te = 352 keV and τ = 0.05. Compare with Figure 6 of Poutanen & Svensson (1996).

maximized for 90◦ scattering and oriented in the plane of the
disk (Q > 0).

On the right-hand side of each plot, we show the Stokes
parameters for photons scattered with ϕ − ϕ0 = ±90◦. In this
case, the planar symmetry is broken and we find a non-zero
value of U. Again, the degree of polarization is maximized for
scattering angles near 90◦.

Lastly, we test the inverse Compton effects of a hot corona
by reproducing the AGN-type spectra of Poutanen & Svensson
(1996). The seed photons are again isotropic and unpolarized,
with a blackbody spectrum with Tbb = 10 eV. When reflecting
off the cold disk, we implement the Compton recoil losses of
Equation (54). Following Poutanen & Svensson (1996), we also
include atomic absorption in the disk with an extremely simple
toy model based on the photoelectric cross sections of Morrison
& McCammon (1983).

In Figure 12, the corona temperature is 56 keV with an optical
depth τ = 0.5. In Figure 13, Te = 352 keV and τ = 0.05,
corresponding to Figures 5 and 6 in Poutanen & Svensson
(1996). In the top panels, we show the observed flux at two
inclination angles cos i = 0.11, 0.5 and in the bottom panels
we show the polarization degree δ(%) = Q/I × 100. In all
panels, the solid curves correspond to the total flux, while the
dotted, dashed, dot-dashed, triple-dot-dashed, and long-dashed
curves represent subsets of the flux, binned by the number of
coronal scatterings 0, 1, 2, 3, and �5. Photon packets that return
to the disk suffer photoelectric absorption and Compton recoil
losses and are then launched again from the disk, resetting Nscat
to zero. Thus, the dotted curves in Figures 12 and 13 have
significant power around the Compton hump at 10–100 keV.
As discussed in Schnittman & Krolik (2010), more scatterings
in a sandwich corona effectively constrain the geometry and
increase the amplitude of polarization at high energies.

We find excellent agreement overall, but the spectra are
clearly dominated by Monte Carlo noise above ∼100 keV. For
these disk and coronal parameters, this corresponds to seed
photons that have already scattered on average over 25 times,
so it is very difficult to resolve any polarization signal at the few
percent level. Additionally, due to our photon packet algorithm,
we are limited to energy-independent electron cross sections, so
we should expect that the accuracy of our spectral predictions
breaks down much above 100 keV anyway.

6. CONCLUSIONS

We have presented the technical details behind the general
relativistic radiation transport code Pandurata. Its capabilities
include optically thin emission and absorption, Compton scat-
tering, polarization, spectral and timing analysis, and flexible
geometries that allow analysis of numerous accretion models
and MHD simulations. We have discussed a number of practi-
cal challenges that other teams may also face when working to
develop similar ray-tracing codes, such as the method of weights
in the scattering kernel.

This is by no means the final word on Pandurata. Its great
strength lies in its flexibility and we envision numerous up-
grades and improvements in the near future. These will include,
but not be limited to, detailed ionization balance in the disk
photosphere for improved AGN modeling. Improved spectra
accuracy for atomic absorption and emission will likely require
a more traditional mono-energetic photon packet architecture,
as done in Dolence et al. (2009). This should be quite straight-
forward to incorporate into Pandurata, and will also allow us to
include Klein–Nishina cross sections at high energies, albeit at
the loss of computational efficiency that comes with broadband
photon packets.
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Time interpolation between simulation snapshots for generat-
ing more accurate light curves will naturally allow for relativistic
effects such as Lorentz contraction and time delays for emission
close to the black hole (Noble & Krolik 2009). Future timing
applications would look at soft/hard X-ray lags from MHD
simulations, energy-dependent, quasi-periodic oscillations, and
broadband noise. The inclusion of more sophisticated emission
and absorption processes (e.g., angle-dependent synchrotron)
will allow us to model low-luminosity and radiatively inefficient
sources such as Sgr A∗ and M87. Perhaps most importantly, we
will work to close the final remaining gap between theory and
observation by incorporating Pandurata spectra into a data
analysis framework like xspec and making it publicly available
to the X-ray astronomy community.

We thank T. Kallman for helpful discussions and the anony-
mous referee for a very careful and constructive report. This
work was partially supported by a NASA Chandra postdoctoral
fellowship (J.D.S.) and NSF grants AST-0507455 and AST-
0908336 (J.H.K.).

APPENDIX A

HAMILTONIAN EQUATIONS OF MOTION

The equations of motion for the Hamiltonian H in
Boyer–Lindquist coordinates, as given in Section 3, are repeated
here for completeness:

H (r, θ, φ, pr, pθ , pφ)

= −pt = ωpφ + α

(
Δ
ρ2

p2
r +

1

ρ2
p2

θ +
1

� 2
p2

φ + m2

)1/2

and according to classical theory:

dxi

dt
= ∂H

∂pi

, (A1a)

dpi

dt
= −∂H

∂xi
. (A1b)

For convenience of notation, we define the quantity D2 as

D2(r, θ, φ, pr, pθ , pφ) = Δ
ρ2

p2
r +

1

ρ2
p2

θ +
1

� 2
p2

φ +m2 . (A2)

Then, for an arbitrary variable y ∈ (xi, pi), the partial derivative
of H can be written

∂H

∂y
= ∂

∂y
(ωpφ) +

∂α

∂y
D − 1

2

α2

pt + ωpφ

∂D2

∂y
. (A3)

The first set of Hamiltonian’s equations are straightforward to
produce:

dr

dt
= ∂H1

∂pr

= − pr

pt + ωpφ

α2Δ
ρ2

, (A4a)

dθ

dt
= ∂H1

∂pθ

= − pθ

pt + ωpφ

α2

ρ2
, (A4b)

dφ

dt
= ∂H1

∂pφ

= ω − pφ

pt + ωpφ

α2

� 2
. (A4c)

The momentum equations are a bit more involved, but there are
only two of them (for pr and pθ ; pφ is conserved):

dpr

dt
= −∂ω

∂r
pφ +

pt + ωpφ

α

∂α

∂r
+

α2

2(pt + ωpφ)

×
[

∂

∂r

(
Δ
ρ2

p2
r +

1

ρ2
p2

θ +
1

� 2
p2

φ

)]
, (A5a)

dpθ

dt
= −∂ω

∂θ
pφ +

pt + ωpφ

α

∂α

∂θ
+

α2

2(pt + ωpφ)

×
[

∂

∂θ

(
Δ
ρ2

p2
r +

1

ρ2
p2

θ +
1

� 2
p2

φ

)]
. (A5b)

The relevant spatial derivatives are as follows:

∂ω

∂r
= − ω2

2Ma

[
3r2 + a2(1 + cos2 θ ) − a4

r2
cos2 θ

]
,

(A6a)

∂ω

∂θ
= − ω2

2Ma

[(
2Ma2 − a2r − a4

r

)
sin θ cos θ

]
,

(A6b)

∂α

∂r
= 1

2α

∂α2

∂r
, (A6c)

∂α

∂θ
= 1

2α

∂α2

∂θ
, (A6d)

∂α2

∂r
= −α4

(
2M

Δρ2

)(
a4 − r4

Δ
− 2r2a2 sin2 θ

ρ2

)
, (A6e)

∂α2

∂θ
= −α4

[
4Ma2r sin θ cos θ (a2 + r2)

Δρ2

]
, (A6f)

∂

∂r

(
1

� 2

)
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� 4

[
sin2 θ

(
r +

2Ma2 sin2 θ (a2 cos2 θ − r2)

ρ4
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,

(A6g)

∂

∂θ

(
1

� 2

)
= −4 sin θ cos θ

� 4

[
2Ma2 sin2 θ

(
r2 + a2

ρ4
+

1

ρ2

)

+ (r2 + a2)

]
, (A6h)

∂

∂r

(
Δ
ρ2

)
= 2

ρ2

(
r − M − rΔ

ρ2

)
, (A6i)

∂

∂θ

(
Δ
ρ2

)
= 2

ρ4
a2Δ sin θ cos θ , (A6j)

∂

∂r

(
1

ρ2

)
= −2r

ρ4
, (A6k)

∂

∂θ

(
1

ρ2

)
= 2

ρ4
a2 sin θ cos θ . (A6l)
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APPENDIX B

MONTE CARLO SAMPLING OF THE
MAXWELL–JUTTNER DISTRIBUTION

For any normalized distribution function f (x) with x ∈
(−∞,∞), one can always define the cumulative distribution
function

cdf(x) = F (x) =
∫ x

−∞
f (x ′)dx ′ , (B1)

with F (−∞) = 0 and F (∞) = 1. Then, by selecting a uniform
random number λ ∈ [0, 1), the choice x = F−1(λ) will be
distributed according to f (x). However, in most cases, F (x)
cannot be written in closed form, so other methods are required.

One simple technique described in Press et al. (1992) is the
“rejection method,” where an auxiliary function g(x) is used,
where g(x) > f (x) everywhere and G(x) is easy to calculate.
We begin by selecting a trial x0 = G−1(λ0), then pick another
random deviate λ1. If λ1 < f (x0)/g(x0), then x0 is selected as
a representative sample of f (x); otherwise, we try again with a
new λ0. Of course, if g(x) is large enough, it is easy to ensure
that it is greater than f (x) everywhere. However, the efficiency
of this method is limited by the ratio of the areas under the two
curves f (x) and g(x), so it is desirable to pick g(x) as close to
f (x) as possible (Press et al. 1992).

For the Maxwell–Juttner distribution defined in Equa-
tion (38):

f (γ ) ∼ γ 2β exp(−γ /θT ) (B2)

we choose an auxiliary function

g(γ ) ∼ γ 2 exp(−γ /θT ) . (B3)

This gives

G(γ ) = 1 − e−γ /θT

e−1/θT

2θ2
T + 2θT γ + γ 2

2θ2
T + 2θT + 1

(B4)

for the cumulative distribution function. Inverting (B4) is not
trivial, but can be done numerically with a simple root finder. For
these choices of f (γ ) and g(γ ), we find an excellent efficiency
for this algorithm of ∼90%.

APPENDIX C

COMPARISON OF SCATTERING KERNELS

As described in Section 4, there are (at least) two different
ways to implement the scattering of polarized light off of free
electrons.

The method of weights picks a random scattering angle from
a uniform distribution of cos θ ∈ [−1, 1] and φ ∈ [0, 2π ), then
weights the scattered beam of photons by the cross section in that
direction, normalized by the average cross section to conserve
flux. By integrating Equation (43) over φ, this resembles the
classical cross section for unpolarized light:

w(θ ) = I ′

I
= 3

4
(cos2 θ + 1). (C1)

Because repeated scatters tend to increase the level of po-
larization (indeed, in the microscopic limit, every photon has
δ = 1), we will focus on the case where δ = 1, giving

w(θ, φ) = 3

2
(cos2 θ cos2 φ + sin2 φ). (C2)

For angles uniformly distributed in cos θ and φ, one can show
that the probability distribution function (pdf) for w is

P (w) = 1

3

(
1 − 2

3
w

)−1/2

(C3)

for 0 � w � 3/2 and 0 otherwise.
For multiply-scattered photons, the weight function is multi-

plicative, since the individual scattering events are uncorrelated.
For n scatters, the net weight is given by

W =
n∏

i=1

wi. (C4)

To determine the pdf P (W ), we define a new variable Z:

Z ≡ ln W =
n∑

i=1

ln wi =
n∑

i=1

zi . (C5)

For large values of n, the central limit theorem dictates that the
distribution of Z should be Gaussian:

P (Z) = 1

σz

√
2πn

exp

(
− (Z − nμz)2

2nσ 2
z

)
, (C6)

where μz and σ 2
z are the mean and variance of P (z), respectively.

From Equation (C3) and the variable transformation z = ln w,
we have

P (z) = P (w)
dw

dz
= ez

3

(
1 − 2

3
ez

)−1/2

, (C7)

with z ∈ (−∞, ln 3/2]. This gives μz = −0.208 and σ 2
z =

0.710. Now, we see that the pdf P (W ) is given by a log-normal
distribution:

P (W ) = 1

Wσz

√
2πn

exp

(
− (ln W − nμz)2

2nσ 2
z

)
. (C8)

For photons random walking through an atmosphere of
optical depth τ , from numerical experiments we find the pdf
of the number of scatters required to escape can be closely
approximated by

P (n) = n

4τ 2
exp

(
− n

2τ

)
. (C9)

Then, the net distribution P (W ) for all scatting orders is simply

P (W ; τ ) =
∫ ∞

0
dnP (n; τ ) P (W ; n). (C10)

The relative contribution to the spectrum from photons with a
weight in the range (W,W + dW ) is P (W )WdW , so we require
P (W ) to decrease faster than W−2 for large W if the calculation
is to converge. In Figure 14, we plot W 2P (W ) for a range of τ .
Our analytic results suggest that for τ � 2, any polarization
spectrum formed using this Monte Carlo weighting method
should be dominated by the rarest, highest-weight photon
packets, confirming what we have seen in trial runs with large τ .
Now, in practice, the convergence is not quite as bad as Figure 14
suggests, for two primary reasons. First, the seed photon
packets have little or no polarization, so the initial weighting
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Figure 14. Relative contribution to the total observed spectrum by photons of a
given weight, for optical depths of τ = 1, 2, 3, 5, and 10. Any calculation with
τ � 2 will not formally converge using the method of weights.

function more closely resembles Equation (C1), which leads
to a significantly tighter range in W: μunpol = −0.027 and
σ 2

unpol = 0.047 (in this unpolarized limit, the weight method
converges for all optical depths up to τ � 200). Second, for the
small-to-moderate optical depths of τ � 5, the typical number
of scatters n is still small enough that the mean value theorem
does not strictly apply, in effect cutting off the high-weight tails
in Equation (C6) and further reducing the contribution from
statistical outliers.

However, for τ � 10, the polarization of a typical photon
bundle reaches δ → 1 after just a few scatters and the large
number of total scattering events allows us to reproduce these
analytic results with numerical tests of the Monte Carlo code. In
Figure 15, we show the distribution of weights from a calculation
using unpolarized seed photons, scattering through optical
depths of τ = 2, 5, and 10. While we find that the τ = 5 case
does converge eventually, in practice we find the convergence
is so slow that another Monte Carlo method is preferable.
Furthermore, the highest weights have the fewest events and
thus also suffer from small-number statistics, potentially adding
to the “undue influence” of outliers. This can be seen in the
scatter at the high-weight end of each dataset.

Instead of picking a scattering angle at random and weighting
it by Equation (47), let us use the differential cross section
(Equation (43)) to obtain the scattering pdf:

P (θ, φ) = 3

16π
[(1 − δ)(cos2 θ + 1)

+ 2δ cos2 θ cos2 φ + 2δ sin2 φ]. (C11)

Integrating over φ, we again find the standard Thomson cross
section, which holds even for δ �= 0:

P (cos θ ) = 3

8
(cos2 θ + 1). (C12)

Writing μ ≡ cos θ for convenience, the cumulative distribution
function is given by

cdf(μ) =
∫ μ

−1
P (μ′)dμ′ = 1

8
(μ3 + 3μ + 4) (C13)

To pick an appropriate value for μ, we generate a random
number λ from a uniform distribution λ ∈ [0, 1) and invert
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Figure 15. Relative contribution to the total observed spectrum by photons of a
given weight, for optical depths of τ = 2, 5, and 10, sorted by color (red, blue,
and black). The solid lines are the analytic results and the crosses are “data”
from Monte Carlo calculations of 106 photons each.

(A color version of this figure is available in the online journal.)

Equation (C13), in effect solving for the root of the cubic:

μ3 + 3μ + 4 − 8λ = 0. (C14)

Because cdf(μ) is monotonically increasing, this equation is
guaranteed to have a single real root in the interval −1 � μ � 1.

Once μ is selected, we choose φ by the same method, now
using the pdf

P (φ;μ) = 1

2π (μ2 + 1)
[(1 − δ)(μ2 + 1)

+ 2δμ2 cos2 φ + 2δ sin2 φ], (C15)

which gives

cdf(φ;μ) = φ

2π
+

δ

4π

(
μ2 − 1

μ2 + 1

)
sin(2φ). (C16)

Again, to pick an appropriate φ given a uniform random λ, one
must invert Equation (C16) to obtain φ = cdf−1(λ). Unfortu-
nately, this is equivalent to solving Kepler’s equation, which has
no closed-form solution and must be done numerically. Fortu-
nately, this is equivalent to solving Kepler’s equation, one of the
best-studied numerical problems in astrophysics! In practice,
we use the iterative approach outlined in Murray & Dermott
(1999). While slightly more time consuming than the method of
weights, the exact cross section method has the distinct advan-
tage of converging for an arbitrary number of scatterings and
thus is the method we prefer for Pandurata.
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