Robotic Transfer and Interfaces for External ISS Payloads

3rd Annual ISS Research and Development Conference
June, 2014

Phillip Callen
Software, Robotics, and Simulation Division
Engineering Directorate
NASA/JSC
External payloads will be interacting with ISS robotic systems in one way or another.

Robots on ISS provide a lot of flexibility, but that also brings increased options and complexity that must be taken into account.

The purpose of this presentation is to provide an overview of the robotic systems and the options available.

Agenda
- Robotic Systems
- Transport
- Payload Locations
- Payload Interfaces
- Robotic Forums (How To Get Started)
ISS Robotic Systems

Space Station Remote Manipulator System (SSRMS)

Special Purpose Dexterous Manipulator (SPDM)

EVA Crewman (for scale)

JEM Remote Manipulator System (JEM RMS)

Mobile Base System (MBS)
On Mobile Transporter (MT)
ISS Robots
JEM RMS
SSRMS

Canadarm 2
Space Station Remote Manipulator System
SPDM Component Overview

1. Two ORU/Tool Changeout Mechanisms (OTCMs)
2. Two arms
3. Power & Data Grapple Fixture (PDGF)
4. Two Electronics Platforms
5. Two Camera/Light/Pan-Tilt Assemblies (CLPAs);
6. Body Roll Joint
7. Tool Holder Assembly (THA)
 a) 2 Robot Micro Conical Tools (RMCTs)
 b) Socket Extension Tool (SET)
 c) Robotic Offset Tool (ROST)
8. Enhanced ORU Temporary Platform (EOTP) with 2 PFRAMs and 3 Stanchion sets
9. SPDM Latching End Effector (LEE) with Camera/Light Assembly (CLA)
ORU Tool Change-out Mechanism (OTCM)
SSRMS with SPDM
Transportation – How To Get To ISS And Why It Matters

Internally and Externally Launched Payload Capable

- SpaceX Dragon

Exposed Pallet (EP)

- JAXA HTV

Payload must use JEM Airlock to get external and then installation via robotics

Internally Launched Payload Capability Only

- Orbital Cygnus

Direct installation to ISS location via robotics

- ESA ATV
Externally Launched Payloads Removal From Launch Vehicle

SSRMS/SPDM Preparing To Enter Dragon Trunk For Payload Extraction

SSRMS Extracting HTV Exposed Pallet (EP)
EP Installed on JEM EF

Payloads will be removed from EP and installed on ISS (either JEM EF or ELCs)
JEM Airlock Usage

• For payloads that plan to launch internally, but then go external, the only robotic option is to go through the JEM Airlock

• There are three primary JEM Airlock interfaces for SPDM ops
 – Capture type – requires a specific slide table interface on the payload
 – Bolt-fixed type (Direct Mount) – payload carrier bolts directly to the slide table which would necessitate a robotically-actuated payload release interface between the payload and the carrier
 – JEM ORU Transfer Interface (JOTI) – does not require any specific payload interfaces which allows it to accommodate hardware not specifically designed to utilize the native JEM Airlock interfaces
JEM Airlock Envelope
(with JOTI installed for reference)
JEM ORU Transfer Interface (JOTI)

- Slide Table Active Mechanism (existing)
 - Provides Motion Control
- Open Cell Foam
- Contingency Mechanism
- JEM Slide Table (existing)
- Active End
- Hard Stop
- Fixed End
- Floor
- Payload constrained by JOTI walls (in airlock envelope)
- CLPA in JOTI
Payload Interfaces

Robotic Interfaces for Transport

JEM RMS Interfaces
Flight Releasable Grapple Fixture

SPDM Interfaces
H-fixture
Micro-square
Micro-Conical

SSRMS Interfaces
Flight Releasable Grapple Fixture
Latchable Grapple Fixture
Power and Video Grapple Fixture

Interfaces for Launch or ISS Location

FRAM, JEM EFU, Payload Unique
External Payload Locations
Where You Go Determines Type Of ISS Interface

External Workstations (9) on the Russian Service Module
JEM Payload Sites

Payload interface to JEM EF is the EFU

Robotic interface to Payload is FRGF

Experiment Logistics Module
Pressurized Section (ELM–PS)
Airlock
Remote Manipulator System (JEMRMS)
Pressurized Module (PM)
Exposed Facility (EF)
Inter-orbit Communication System (ICS)

Experiment Logistics Module –Exposed Section (ELM–ES)
Gripper Interface Concept
(not existing capability)

Gripper Attach Options Provides Extensive Location Options
• Handrails
• Micro Fixture
• WIF Socket

Payload would need to provide power and data (wi-fi)
Interfaces for Launch or ISS Location

Flight Releasable Attachment Mechanism (FRAM).

The payload and the Active FRAM interface are both attached to and separated by an adapter plate. There are different sizes of adapter plates that can be used:

- Large Adapter Plate Assembly (LAPA)
- Medium Adapter Plate Assembly (MAPA)
- Small Adapter Plate Assembly (SAPA)
- Light-Weight Adapter Plate Assembly (LWAPA)

Compatible with Dragon Trunk, HTV EP and ELCs
For payloads that require a direct interface with the SSRMS (or POA or SPDM LEE), there are a few different interfaces to be aware of:

- Flight Releasable Grapple Fixture (FRGF)
 - Simplest grapple fixture – only allows for grapple

- Latchable Grapple Fixture (LGF)
 - Allows for grapple and latching
 - Intended to be used for longer-term stowage on the POA (greater than 3 weeks)

- Power and Video Grapple Fixture (PVGF)
 - Allows for grapple, latching, and access to data, video, and power
 - Connectors for data/video/power integrated into the fixture

- Power and Data Grapple Fixture (PDGF)
 - Allows for grapple, latching, and access to data, video, and power
 - Connectors for data/video/power integrated into the fixture
 - Only fixture that is an On-orbit Replaceable Unit (ORU)
SSRMS Interface Hardware

FRGF

LEE

LGF

PDGF

PVGF (grapple shaft not shown)
SPDM Interface Hardware

• For payloads that require a direct interface with the SPDM, there are a few different interfaces to be aware of:
 – H-fixture – allows for direct grasp by SPDM ORU Tool Changeout Mechanism (OTCM)
 • Typically used on heavier payloads or where a “beefed up” interface is required (assumes attachment structure can withstand the higher loads)
 • Allows for use of an umbilical connector and/or a co-located bolt
 • Requires enough space to accommodate the SPDM OTCM
 – Micro-fixture (also known as a Micro-square) – allows for direct grasp by SPDM OTCM
 • This is the “standard” grasp fixture
 – MMF found on FRAMs is a version of this fixture
 • Allows for use of an umbilical connector and/or a co-located bolt
 • Requires enough space to accommodate the SPDM OTCM
 – Micro-Conical Fitting (MCF) – allows for grasp by Robot Micro-Conical Tool (RMCT)
 • Used when there is not enough space for the SPDM OTCM to access the fixture, but requires the SPDM to acquire a tool (RMCT) which has operational overhead associated with it
 • Allows for use of a co-located bolt, but not an umbilical connector
 – Modified Truncated Cone (MTC) Target
 • Co-located with the grasp fixture and used to line up SPDM OTCM/RMCT for grasping
 – Other target types are listed in documentation, but this is the standard target type
 • Requires enough space to allow unobstructed viewing during approach
 – Umbilical Connector
 • Provides access to power, data, and video connections through the SPDM OTCM
 • Cannot be used in conjunction with an MCF
Interface Hardware (cont.)

- **H-Fixture**
- **Micro-fixture**
- **Micro-Conical Fitting (MCF)**
- **User Umbilical Connector**
- **Modified Truncated Cone (MTC) Target**
- **Robot Micro-Conical Tool (RMCT)**
SPDM Interface Hardware

Grasp fixture selection criteria

<table>
<thead>
<tr>
<th>Discriminators</th>
<th>H-fixture</th>
<th>MSF</th>
<th>MMSF</th>
<th>MCF</th>
<th>MMCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>— Grasp Fixture has clearance to be grasped directly by OTCM (no tool needed)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Payload needs access to power, data, &/or video resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Maximum interfacing moments are expected to exceed 125 ft-lbs</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Payload needs collocated bolted w/ locking mechanism</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Must use RMCT because OTCM cannot access grasp fixture due to restrictive location</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>— Must use ROST because OTCM cannot access grasp fixture bolt due to restrictive location</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Question: Which robot (SSRMS or SPDM) do you use?
Answer: Primarily driven by mass handling requirements

- Envelope, CG, Inertia, Mass for SPDM operations
 - SSP 41167, MSS Segment Spec Tables IV and XXXVIII
 - SSP 57003, Attached Payload IRD, Table 3.7.4.2-1

Table 3.7.4.2-1 Payload Parameters for Dexterous Operations

<table>
<thead>
<tr>
<th>Maximum Mass (4) lbm (kg)</th>
<th>Maximum Inertia (^1) lbm-ft(^2) (kg-m(^2))</th>
<th>Maximum CG Offset (^2) in (m)</th>
<th>Maximum Dimension ft (m)</th>
<th>Minimum Freq (^3) (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1320 (600)</td>
<td>1186 (50) 1186 (50) 1186 (50)</td>
<td>19.7 (0.5) 9.8 (0.25) 9.8 (0.25)</td>
<td>5.25 (1.6) 5.25 (1.6) 5.25 (1.6)</td>
<td>8</td>
</tr>
</tbody>
</table>

Notes:
1. Moments of inertia are expressed about the attached payload integrated assembly CG in the payload principal axes.
2. Center of gravity offset is defined as the vector from the attached payload integrated assembly center of gravity to the origin of the coordinate system associated with the SDGE.
3. Minimum attached payload integrated assembly frequency, assuming that the grasp fixture is held rigid.
Payload Examples of Robotic Interfaces

Robotic Refueling Mission (RRM) is a FRAM based payload (on SPDM EOTP for transport)

RRM uses SPDM as part of the payload to perform refueling tasks. RRM built unique tools for the SPDM

Since the individual components are intended to be changed out robotically, the payload to FRAM I/F must be robotically compatible

SPDM to payload I/F – Micro Fixture
Robotics Forums
(How To Get Started)

• DRIT – Dexterous Robotics Integration Team
 – Mondays, 2:00 PM Central
 – Co-chairs: OM7 and CSA

• EBIT – Extraction and Berthing Integration Team
 – Wednesdays, 1:00 PM Central
 – Co-chairs: OM7 and CSA

• MSS SEWG – MSS System Engineering Working Group
 – Every other Tuesday (generally alternating with the MIP), 8:30 AM Central
 – Co-chairs: ER3 and CSA

• MSWG – MSS Software Working Group
 – Every other Thursday, 1:00 PM Central
 – Co-chairs: OD and CSA
 – http://iss-www.jsc.nasa.gov/nwo/avionics/ip/home/web/MeetingInformation.shtml

• MIP – MSS Integration Panel
 – Every other Tuesday (generally alternating with the MSS SEWG), 8:30 AM Central
 – Co-chairs: OM7 and CSA
Robotics Forums

• Why go to the DRIT?
 – Review of SPDM-related analysis (MAGIK, CSA, etc.)
 • **For example, fixture location and manifest location**
 – Requests for or exchange of SPDM-related information
 – Review SPDM-related requirements exceptions
 – Review of SPDM-related schedules
 – Track the need for other subsystem analyses prior to performing dexterous ops
 – Primary participants: OM7, CSA, ER3, MOD Robotics

• Why go to the EBIT?
 – Review of SSRMS-related analysis (MAGIK, CSA, etc.)
 • **For example, fixture location and manifest location**
 – Requests for or exchange of SSRMS-related information
 • **Grapple fixture substrate loads for example**
 – Review SSRMS-related requirements exceptions
 – Review of SSRMS-related schedules
 – Primary participants: OM7, CSA, ER3, MOD Robotics
Robotics Forums

• Why go to the MSS SEWG?
 – Technical discussions of system-wide topics
 – MSS requirements technical discussions
 – Primary participants: ER3, CSA, OM7, MOD Robotics, Safety, Crew Office

• Why go to MSWG?
 – Payload data or commanding through the MSS
 – Primary participants: ISS Software & Avionics (OD), CSA, OM7, ER3, MOD Robotics, Safety, Crew Office

• Why go to the MIP?
 – “Front door” to the ISS Program for robotics-related topics
 – Introduce new payloads to NASA and CSA robotics community
 – Requests for information that could not be provided through the DRIT or EBIT
 – Review of MSS schedules
 – Review of MSS changes
 – Primary participants: OM7, CSA, ER3, MOD Robotics, Safety, Crew Office, ISS Software & Avionics (OD)
Robotics POCs

- The robotics community (ER3, OM7, CSA, and MDA) is here to help. This slide has all the robotics POCs. CSA and MDA are the technical authority on the MSS and are engaged via the various robotics forums as shown on the previous slides.

- **ER3 – Robotics System Management and Engineering Support**
 - **MSS System Manager** – Larry Grissom (281-483-9525, larry.w.grissom@nasa.gov)
 - **Deputy MSS System Manager and SSRMS Subsystem Manager** – Glenn Jorgensen (281-244-6565, glenn.jorgensen-1@nasa.gov)
 - **SPDM Subsystem Manager and SPDM Requirements lead** – Michael Wright (281-483-4798, michael.d.wright@nasa.gov)
 - **SSRMS Requirements lead** – Kendrick Cheatham (281-244-6744, kendrick.cheatham-1@nasa.gov)

- **OM7 – Robotics System Engineering and Integration**
 - **Manager, Robotics Integration Office** – Michael Berdich (281-244-7957, michael.a.berdich@nasa.gov)
 - **Robotics System Integration Lead** – David Read (281-244-2212, david.read-1@nasa.gov)
 - **JEM Airlock Integration Lead** – Chris Wade (281-244-2812, christopher.d.wade@nasa.gov)
 - **Software Integration Lead** – Deep Patel (281-244-8269, deep-patel-1@nasa.gov)
Conclusion

• Robotic systems are available to support payload installation, operations, and removal.
• Robotic systems provide a lot of flexibility and options for payload users in order to meet their objectives.
• However, that flexibility also means there is additional complexity in the trade space for what options and services to utilize so working early with the robotics community is strongly encouraged.
Backup
Deployable payloads utilize Cyclops, NRCSD, or JSSOD (all nominally use JEMRMS) to interface to the Airlock table.