Identifying Hail Signatures in Satellite Imagery from the 9-10 August 2011 Severe Weather Event

Rachel L. Dryden¹, Andrew L. Molthan², Tony A. Cole³, and Jordan R. Bell³
¹NASA SPoRT Intern, Summer 2013 / Park University, Parkville, MO, ²NASA/Marshall Space Flight Center, Huntsville, Alabama
³University of Alabama in Huntsville, Huntsville, Alabama

INTRODUCTION
Severe hail causes property damage, livestock fatalities, and crop failure. However, detailed storm surveys of hail damage conducted by the National Weather Service (NWS) are not required. Current gaps also exist between Storm Prediction Center (SPC) hail damage estimates and crop insurance payouts. NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument can be used to support NWS damage assessments, particularly to crops during the growing season. The 9-10 August 2011 severe weather event across western Nebraska and western Kansas offers a case study for investigating hail damage signatures by examining changes in Normalized Difference Vegetation Index (NDVI) derived from MODIS imagery. By analyzing hail damage swaths in satellite imagery, potential economic losses due to crop damage can be quantified and further improve the estimation of weather impacts on agriculture without significantly increasing manpower requirements.

CASE STUDY RADAR IMAGERY
![Radar Image 1](image1.png)
![Radar Image 2](image2.png)

CROP DAMAGE RESULTS
![Crop Damage Graph](image3.png)

MESH DATA & STORM REPORTS
![Mesh Data](image4.png)

NDVI DERIVED PRODUCTS
![NDVI Graph](image5.png)

CONCLUSIONS
- Hail scars are identifiable in MODIS satellite imagery based on NDVI change, which was predominantly negative.
- Hail damage spatially correlates with SPC hail reports and MESH.
- This study developed a proxy for quantifying crop loss at varying thresholds to address the gap between SPC damage estimates and insurance payouts.

FUTURE WORK
- The damage assessment proxy created in this study could be automated across various time scales and potentially show severe weather patterns in relation to recent climate trends.
- Once automated, this damage assessment could be used to quantify hail damage losses over larger spatial and temporal scales.

ACKNOWLEDGEMENTS
Author grate special thanks to mentors Andrew Molthan, Jason Burks, and Gary Jedlovec; internship coordinators Tina Atchley and Mona Miller; Tony Cole, Jordan Bell, and Paul Lemieux.