AWIPS II Application Development, a SPoRT Perspective

Jason E. Burks
NASA Marshall Space Flight Center / Earth Science Office, Huntsville, Alabama

Matthew Smith
University of Alabama in Huntsville, Huntsville, AL / NASA Short-term Prediction Research and Transition (SPoRT) Center, Huntsville, Alabama

Kevin M. McGrath
Jacobs Technology, Inc. / NASA Short-term Prediction Research and Transition (SPoRT) Center, Huntsville, Alabama

30th Environmental Information Processing Technologies Conference
94th AMS Annual Meeting (2014) in Atlanta, GA
Session: “AWIPS II System Update”

Transitioning unique data and research technologies to operations
SPoRT AWIPS II Development

- Plug-in development
- Data ingest
- EPDT
SPoRT

• Short-term Prediction Research and Transition Center
• NASA / MSFC Huntsville, AL
• Paradigm: Problems → Solutions
 ▪ NASA/NOAA Data and Technology
 ▪ Operational NWS Short-term Forecasts
 ▪ Use Native Decision Support System
 ▪ Feedback Loop with Forecasters for Improvement

• 2003
 ▪ 9 WFOs primarily in Southern Region

• 2014
 ▪ 28 WFOs in 5 NWS Regions; 5 National Centers
SPoRT Features

• Lightning Mapping Array
• Lightning Tracking Tool
• Convective Initiation (UAHCl)
Lightning Mapping Array

Total lightning data from Lightning Mapping Arrays (LMAs) is 3-Dimensional, unable to be brought into AWIPS I - except as model data. We expect to make use of future AWIPS II 3D capabilities.

LMA data is generated as ASCII, but we write as unique NetCDF – requiring a new EDEX plug-in.

- Plugin is currently in testing at several NWS Offices
- Base-lined in near future
Lightning Tracking Tool

Total lightning *jumps* are at times related to severe weather. Forecasters need to quickly track several storms separately, tracking their intensity

- Track multiple cells
- Variable radii
- Adjustable storm tracking
- Color-coded chart for each data layer
- Extrapolation for new data (frames)

- Adjustments after Hazardous Weather Testbed (HWT) feedback
- ORPG testing April, 2014
- Base-lined in near future

Transitioning unique data and research technologies to operations
Convective Initiation

GOES-based data set generated at UAHuntsville for short-term forecasts of convection.

Ingested using the grib2 plugin.
Experimental Products Development Team
GOES-R EPDT

- SPoRT (in-house) EPDT formed to focus on creating advanced display capabilities for NASA research data in AWIPS II environment
 - non-standard software (plug-ins) for data ingest and display
 - tool development for data fusion to obtain maximum information content
 - AWIPS II architecture flexible and can support external plug-in and tool development
 - need to develop expertise to facilitate this

- Some specialized AWIPS II plug-ins have been developed, tested, implemented with SPoRT collaborative partners

- Identified need within GOES-R PG team to better integrate GOES-R proxy products into AWIPS II environment

- Developed GOES-R PG EPDT AWIPS II concept document
 - refined and then endorsed by NWS/OST Systems Engineering Center (SEC) Development Branch
 - Implemented Fall 2012
Experimental Products Development Team
GOES-R EPDT

Goal:
• Bring together staff from NASA, NOAA’s CIs, and NWS to develop a critical mass of technical expertise (outside of Raytheon’s AWIPS II development team) which would focus on the development, demonstration, and transition of new plug-ins and tools to address the near-term needs of the GOES-R PG community

Objectives:
• create a community environment to develop and share knowledge and expertise in the AWIPS Development Environment (ADE)
• generate non-standard AWIPS II plug-ins for the ingest, analysis, and display of GOES-R proxy data in AWIPS II and associated tools which better display GOES-R data and allow for the fusion of the new data with legacy AWIPS data streams
• based on this experience, provide feedback to NWS and Raytheon on the external development process, including governance of locally developed AWIPS II software
Experimental Products Development Team
GOES-R EPDT

• Hands-on team to learn by doing
• Limited in size to facilitate small group learning and development activities – develop into a “train the trainer” team
• One representative (each) from:
 • NWS Regions
 • NOAA Cooperative Institutes (and SPoRT)
 • MDL and GSD
 • Raytheon
 • NWS SEC
 • GOES-R PG AWIPS II developer

• Organizational leads asked to nominate team member with appropriate qualifications
• **Team Lead:** Jason Burks (*NASA scientist and decision support system expert*), formerly HUN WFO ITO
• **Advisor:** Ed Mandel (*NWS/OST SEC Development Branch Chief*)
• Bimonthly conference calls/ WebEx sessions
• Biannual workshops at SPoRT AWIPS2 Development Facility
• NWS and NASA have agreed to share costs associated with this team (travel and resources)
EPDT Spring 2013 meeting

- Conference calls leading up to meeting.
- March 12th- 14th, 2013
- “Hands-on” Learning
- Topics covering Plug-in development from EDEX to CAVE.
- Exercises
- 14 attendees
- Feedback indicated a very successful meeting.
- Training was recorded and provided back to NWS
EPDT Fall 2013 Meeting

• Sept 24 - 26, 2013
• Code Sprint format
• EPDT subgroups worked on projects
 – Moving Meteogram
 – RGB Recipe
 – mPing ingest and display
 – Mini-EDEX
• Significant progress and furthered learning
Group B

• Group has been selected
 – 15 attendees
 – Groups involved include:
 • NWS SEC, NWS OH, NWS MDL, SSEC, CIRA, CIMMS/NSSL, NOAA GSD

• Meeting planned for March, 2014
• Conference calls have begun
• Spring Meeting planned with learning similar to Spring 2013 meeting for Group A
Future EPDT

• Second learning workshop as follow-on to training for Group A
• Merge Group A and Group B conference calls after Spring Meeting
• Code Sprint in Fall 2014 for:
 – Group A
 – Group B
Questions