P162 Expansion of the Real-Time SPORT-Land Information System for NOAA/National Weather Service Situational Awareness and Local Modeling Applications

Jonathan L. Case; ENSCO, Inc./NASA Short-term Prediction Research and Transition (SPoRT) Center; Huntsville, AL, and
Knmastero D. White; NOAA/NWS Huntsville Weather Forecast Office, Huntsville, AL

American Meteorological Society 94th annual meeting; Atlanta, GA, 20th Conf. on Weather Analysis and Forecasting / 22nd Conf. on Numerical Weather Prediction

Poster Session 2; 4 February 2014

Background

SPoRT runs the NASA Land Information System (LIS) in real-time to support modelers and decision-makers at NOAA/National Weather Service (NWS) weather forecast offices (WFOs).

- Current domain covers the Southeastern half of the Continental U.S. (CONUS) due to limitations in the Stage IV precipitation grids driving the Noah land surface model (LSM) integration in LIS.
- This past year, SPoRT added a new real-time run over a full CONUS domain.
- Enables expansion of US applications to NOAA/NWS partners outside Southern Region.
- Sets stage for future soil moisture data assimilation activities.

Posture objectives

- Provide summary of real-time activities at SPoRT.
- Compare/contrast real-time LIS over SE U.S. with full CONUS-LIS.
- Map out future direction of LIS applications.

Modeling System and Capabilities

NASA Land Information System (LIS)

- High-performance land surface modeling & data assimilation framework.
- Can run a variety of LSMs (Noah, SIEM, Catchment, etc.).
- Supports several static databases for land use and soil classification.
- Able to run up to global domains at 1-km grid spacing.
- Land surface data assimilation:
 - Ensemble Kalman Filter (EnKF) or Direct Insertion (DI).
 - Soil moisture, soil temperature, snow fraction/Snow/FVSN.
- Optimization and Uncertainty Estimation (Srozavetz et al. 2013, J. Hydromet).

Development of LIS Training Module for Situational Awareness Applications

SPoRT-US for Drought Monitoring

- Example from 17 September 2013 over southwestern U.S.: heavy rainfall and flooding occurred in New Mexico during mid-September.
- Dense monitoring of integrated soil moisture, soil-water variation in drought classification.

SPoRT-US for Assessing Flood Potential

- Contracting extensive soil moisture conditions likely played a strong role in the different outcomes.
- Dense monitoring of integrated soil moisture, soil-water variation in drought classification.

Current Applications of SPoRT-LIS

- Initializing LSM fields in local modeling applications (i.e., WRF model):
- Supported option in the WSO/UCD Resource Center’s Environmental Modeling System (EMS; http://wso.umd.edu/software/vertisens).
- LIS GRIB output files uploaded to ftp server in real-time.
- EMS users over SE U.S. can initialize with LIS LSM fields in place of coarser-resolution, large-scale model fields.

Situational Awareness

- Drought Monitoring:
- Enables assessing flood potential.
- LIS data ingested and displayed in AWIPS II at NWS Huntsville, AL.
- Refer to training examples below.

Vegetation Stress during Growing Season

- University of Alabama – Huntsville acquires SPoRT-US and MODIS vegetation products.
- Manages in-house crop-stress model over SE U.S.
- Distributes reports to end-users.

Comparison Between SE U.S. and CONUS SPoRT-LIS Configurations

Table 1. Summary of configuration details for the real-time SPoRT-LIS runs over the Southeastern U.S. domain and new CONUS domain.

<table>
<thead>
<tr>
<th>Configuration detail</th>
<th>SE U.S. Domain</th>
<th>CONUS Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land surface model</td>
<td>Noah</td>
<td>LISv7</td>
</tr>
<tr>
<td>Grid resolution</td>
<td>100-km resolution</td>
<td>2-km resolution</td>
</tr>
<tr>
<td>Grid dimensions</td>
<td>100-km resolution</td>
<td>2-km resolution</td>
</tr>
<tr>
<td>Soil moisture database</td>
<td>STICS</td>
<td>MODIS3</td>
</tr>
<tr>
<td>Green vegetation</td>
<td>Daily MODIS</td>
<td>Daily MODIS</td>
</tr>
<tr>
<td>History report interval</td>
<td>6 Years</td>
<td>6 Years</td>
</tr>
</tbody>
</table>

Current CONUS domain with Stage IV

| New full CONUS domain with MRMS |

Sample Results / Comparison between SE U.S. LIS and CONUS LIS

<table>
<thead>
<tr>
<th>CONUS LIS (MRMS)</th>
<th>SEUS LIS (StageIV)</th>
<th>DHR (CONUS – SEUS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 Sep 2013</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Issues Documented with MRMS Precipitation Dataset

- Similar patterns in soil moisture to radar coverage gaps in Western U.S.
- Most soils within radar coverage: dry soils in radar coverage gaps.
- MRMS product very dependent on available soil moisture data.

Beam blockage due to terrain / physical impediments

- Not just concerns in Rocky Mountains.
- Columbus, MS radar: Rapidly growing trees have blocked beam over time or certain azimuths.
- Pattern particularly discernable in integrated soil moisture fields.
- LIS is a good tool to identify problems in QPF down through long time integrations.

Edge of radar networks and non-overlapping radars

- Especially a problem in Central N. Mexico.
- Recommend that end-users do not utilize CONUS-LIS output in these problem regions.
- Better blending of precipitation forcing and/or soil data assimilation needed to improve spatial continuity.

Periodic drop-outs of regional tiles (fixed Oct 2013)

- Numerous drop-outs in late Summer / Autumn 2013.
- Instead of precip assigned as missing, entire regional tile was filled with "0" values.
- Lead to artificial problems in soil moisture in portions of domain where active precipitation occurs at the boundary.
- Points with no input data assigned "0" (fixed Feb 2013).

Poster References

Future Direction

- Upgrade to LISv7 and utilize LIS Validation Toolkit.
- Validate LIS against soil moisture observations and field campaign data.
- Assimilate satellite-based soil moisture from SMODS and SNAP.

Table of contents

- Expansion of the Real-Time SPORT-Land Information System for NOAA/NWS
- Situational Awareness and Local Modeling Applications
- Background
 - SPoRT runs the NASA Land Information System (LIS) in real-time to support modelers and decision-makers at NOAA/National Weather Service (NWS) weather forecast offices (WFOs).
 - Current domain covers the Southeastern half of the Continental U.S. (CONUS) due to limitations in the Stage IV precipitation grids driving the Noah land surface model (LSM) integration in LIS.
 - This past year, SPoRT added a new real-time run over a full CONUS domain.
 - Enables expansion of US applications to NOAA/NWS partners outside Southern Region.
 - Sets stage for future soil moisture data assimilation activities.
- Posture objectives
 - Provide summary of real-time activities at SPoRT.
 - Compare/contrast real-time LIS over SE U.S. with full CONUS-LIS.
 - Map out future direction of LIS applications.
- Modeling System and Capabilities
 - NASA Land Information System (LIS)
 - High-performance land surface modeling & data assimilation framework.
 - Can run a variety of LSMs (Noah, SIEM, Catchment, etc.).
 - Supports several static databases for land use and soil classification.
 - Able to run up to global domains at 1-km grid spacing.
 - Land surface data assimilation:
 - Ensemble Kalman Filter (EnKF) or Direct Insertion (DI).
 - Soil moisture, soil temperature, snow fraction/Snow/FVSN.
 - Optimization and Uncertainty Estimation (Srozavetz et al. 2013, J. Hydromet).
 - Development of LIS Training Module for Situational Awareness Applications
 - SPoRT-US for Drought Monitoring
 - Example from 17 September 2013 over southwestern U.S.: heavy rainfall and flooding occurred in New Mexico during mid-September.
 - Dense monitoring of integrated soil moisture, soil-water variation in drought classification.
 - SPoRT-US for Assessing Flood Potential
 - Contracting extensive soil moisture conditions likely played a strong role in the different outcomes.
 - Dense monitoring of integrated soil moisture, soil-water variation in drought classification.
- Current Applications of SPoRT-LIS
 - Initializing LSM fields in local modeling applications (i.e., WRF model):
 - Supported option in the WSO/UCD Resource Center’s Environmental Modeling System (EMS; http://wso.umd.edu/software/vertisens).
 - LIS GRIB output files uploaded to ftp server in real-time.
 - EMS users over SE U.S. can initialize with LIS LSM fields in place of coarser-resolution, large-scale model fields.
 - Situational Awareness
 - Drought Monitoring:
 - Enables assessing flood potential.
 - LIS data ingested and displayed in AWIPS II at NWS Huntsville, AL.
 - Refer to training examples below.
 - Vegetation Stress during Growing Season
 - University of Alabama – Huntsville acquires SPoRT-US and MODIS vegetation products.
 - Manages in-house crop-stress model over SE U.S.
 - Distributes reports to end-users.
 - Comparison Between SE U.S. and CONUS SPoRT-LIS Configurations
 - Table 1. Summary of configuration details for the real-time SPoRT-LIS runs over the Southeastern U.S. domain and new CONUS domain.
 - Current SE U.S. CONUS domain with Stage IV
 - New full CONUS domain with MRMS
 - Sample Results / Comparison between SE U.S. LIS and CONUS LIS
 - Issues Documented with MRMS Precipitation Dataset
 - Beam blockage due to terrain / physical impediments
 - Edge of radar networks and non-overlapping radars
 - Periodic drop-outs of regional tiles (fixed Oct 2013)
 - Poster References
 - Future Direction
- Conclusion
 - Expansion of the Real-Time SPORT-Land Information System for NOAA/National Weather Service Situational Awareness and Local Modeling Applications
 - Background
 - Current Applications of SPoRT-LIS
 - Situational Awareness
 - Vegetation Stress during Growing Season
 - Comparison Between SE U.S. and CONUS SPoRT-LIS Configurations
 - Sample Results / Comparison between SE U.S. LIS and CONUS LIS
 - Issues Documented with MRMS Precipitation Dataset
 - Future Direction