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•  The	   NASA/USAID	   SERVIR	   AST	   is	   focused	   on	   providing	  
enhanced	  products,	  outlooks	  and	  projecAons	  	  (e.g.):	  	  

•  Agricultural	  modeling	  
•  Hydrologic	  modeling,	  
•  Air	  quality	  and	  landslide	  risk,	  	  among	  other	  

•  Tailored	  for	  several	  hub	  regions	  	  
•  East	  Africa	  
•  Mesoamerica	  
•  Hindu	  Kush-‐Himalayan	  	  

• Providing	   assessment	   of	   seasonal	   and	   climate	   model	  
forecasts	   for	   these	   regions	   and	   development	   of	   scenarios	  
for	  impact	  modeling	  

• Requires	   downscaling	   in	   8me	   and	   space	   (daily,	  
~10km)	  

•  (Wed) Poster 516, Climate Scenarios for the NASA/
USAID SERVIR Project: Challenges for Multiple Planning 
Horizons	  

Motivation – NASA SERVIR Applied Science Team 

East Africa is a focus area of 
several efforts. There is a need 
for early warning of potential 
hazards for planning. 



Motivation – East African Rainfall Variability 

Equatorial East Africa (5S-5N) 
•  Two rainy seasons 

•  MAM “long” rains 
•  OND  “short” rains 
 

•  Interannual variability of  
seasonal rainfalls appears to be 
more coherent for short rains 
rather than long rains 

 
•  Peaks in interannual variability 

are strongest over Uganda, 
Kenya, and southern Somalia. 

Most studies of interannual variability have focused on seasonal mean variability. 
 
•  What can we learn about the characteristics of  subseasonal variability in relation 

to seasonal mean variability?  
 
•  Can we appeal to machine learning approaches for providing a framework to 

examine patterns of  subseasonal variability other than statistics of  daily weather?  
 



Approach - Datasets 

CHIRPS – Rainfall 
•  ~5km resolution 
•  Merged IR/Model/Station 
•  1981 – Near Real Time (NRT) 
 

 Climate indices 
•  Wheeler-Hendon MJO Index 

MERRA – Weather/Climate 
Composites 
•  1/3 x 2/3 resolution 
•  1979 – NRT 
•  U,V – 850mb, 250mb 
•  Omega – 500mb 
•  Moisture convergence 
 

Primary Domain – East Africa 

•  5S – 5N , 32.5E – 47.5E 

•  25 stations (~2.5° apart) 

•  Coastal lowlands and interior 
highlands 

•  Focus on short rains (SOND) 

 



Approach – Hidden Markov Modeling 
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•  Directed graphical model that 
expresses the probability density of  
a sequence of  observed variables 
(Rt) as the result of  a Markov 
sequence of  unobserved or latent 
states (Zt) 

•  Links to machine learning 
•  Clustering: identification of  

potential hidden structures 
from observations 

•  Classification: assignment of  
sequence of  vectors to a most 
likely sequence of  hidden 
states (Viterbi algorithm) 

HMM Model Training 

•  Use MVNHMM Toolbox (S. Kirshner) 

•  4 states chosen for this analysis 

•  Use of  Conditional Independence model 

•  Only marginal improvement found 
by taking into account within-state 
dependence 

•  Interstation correlations reduced 
significantly by conditioning on states 
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Rainfall occurrence and wet-day 
intensity covary strongly over the 
SOND period typically peaking in 
late October. 

Distribution of  Daily Rainfall 

1)  Infrequent 

2)  Intense 

3)  Short duration 

Subseasonal Variability – Traditional View 
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Subseasonal Variability – HMM View 

Transition Probabilities (4 states): 

•  Very likely to remain in a particular state 
(persistence) 

•  Very unlikely to go from State 2 to State 0 
directly (<3%) 

•  Non-stationary over the SOND period 

•  Hidden capture an 
underlying evolution of  
rainfall variability within 
the short rains period. 

 

3  à 2 à 1 à 0  
 

 



HMM States – Composite Meteorology 
Composites of  850mb winds, moisture convergence, and rainfall frequency 

•  Progression from State 3 à 1 : Similar to ITCZ progression but State 2 (the 
“wet” mode) does not show in monthly averages. 

•  No analog for State 0 (“dry” mode) in monthly averages either. 

•  Rainfall anomalies correspond strongly with anomalous moisture convergence 



•  Interannual seasonal rainfall anomalies are significantly correlated with 
interannual variations in the number of  days in each HMM state. 

 

•  This is particularly strong (0.85) for the number of  days in the “wet” state (2) 
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Connections to MJO Variability 

•  “Wet” state (2) is most likely to be 
found occurs during MJO Phase 1 
& 2 

•  “Dry” state (0) is most likely to be 
found occurs during MJO Phase 6 
& 7 

•  MJO composites show very similar 
circulation anomalies to those 
found in compositing HMM states 
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Connections to ENSO & IOZM Variability 

Composites of  seasonal anomalies for years with a high fraction of  “wet” state 

•  Large-scale SST and circulation anomalies 

Ø  El-Niño warming, east Indian cooling, west Indian warming 

Ø  Anomalous subsidence over Maritime continent, ascent over west Indian 

Ø  Anomalous westerlies over the Indian ocean 

 

Reduced Walker cell over Indian sector à Increased moisture convergence and 
rainfall over equatorial East Africa 

0

0
0 0 0 0

00

0

0 0

0

0

0
0

00
0

0

0

0

0

0

0

0

0

00
0

0

0

0

0

0
0

0
0

0
0

0

0

0

0
0

0
0

0

0−0.1

−0.1

−0.1

−0.1

−0.1−0.1

−0.1 −0.1

−0.1

−0.1

−0.1

−0.1

−0.1

−0.1

−0.1

−0.1
−0.1

−0.1

−0.1−0.1

−0.1

−0.2

−0.2
−0.2

−0.2

−0.2

−0.2
−0.2

−0.2

−0.2
−0.2 −0.3

−0.3

−0.3

−0.3

−0.3−0.3

−0.3 −0.4−0.4−0.5−0.6−0.7
1 1

0.9
0.9

0.80.8
0.7

0.7
0.6

0.6

0.6

0.5

0.5

0.5

0.4

0.4

0.4

0.4

0.3 0.3

0.3

0.3

0.3

0.3

0.3

0.3
0.3

0.3

0.2

0.2

0.2
0.2

0.2

0.2

0.2
0.2

0.2

0.2

0.2

0.2

0.2

0.2

 

 

850mb Vector, Omega500 (shaded,hPa/day), SST (contour), Upper Quartile NDAYS
HMM2
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Summary 
•  Hidden Markov models can be used to investigate structure of subseasonal 

variability. 

•  East African short rain variability has connections to large-scale tropical variability 

•  MJO – Intraseasonal variations connected with appearance of  “wet” and “dry” 
states 

•  ENSO/IOZM SST  and circulation anomalies are apparent during years of  
anomalous residence time in the subseasonal “wet” state. 

•  Similar results found in previous studies, but 

•  We can interpret this with respect to variations of subseasonal wet and dry 
modes. 

•  Reveal underlying connections between MJO/IOZM/ENSO with respect to East 
African rainfall 



Extras - 1 
•  Monthly averages (left) capture the 

large-scale seasonal progression of  
rainfall during the short rains 
season. 

•  However, there is no strong peak in 
anomalies over the equatorial East 
Africa regions at this monthly scale 

•  The HMM states appear to capture 
the two poles of  the ITCZ 
progression (States 1 & 3) 

•  The HMM also captures two more 
regionally localized modes over 
EEA (a “wet” (2) mode and a “dry” 
mode(0) ) 



Extras - 2 
•  Increases in in the frequency of  MJO State 1 are correlated with increases in 

the number of  days in the HMM wet state. 

•  During MJO State 1, the west Indian ocean is typically warm while the east 
Indian ocean is cold (w.r.t. to the SOND mean). 

•  This SST pattern is also prevalent with what is considered the IOZM and also 
has been shown to have some connections with remote forcing by ENSO.  

•  In response (?, perhaps “coexistence”) to the anomalous SST gradient, 
anomalous pressure graidents are observed as is an anomalous low-level 
westerly circulation that weakens the Walker circulation and reduces the 
climatology export of  moisture away from EEA. 
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850mb Vector, MSLP (shaded), SST (contour), MJO State 1
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