Design Evolution of Hot Isostatic Press Cans for NTP Cermet Fuel Fabrication

NASA Advanced Exploration System (AES) Project

N. Mireles, J. Broadway, R. Hickman
NASA Marshall Space Flight Center
omar.r.mireles@nasa.gov

NETS
26 February 2014
NTP fuels under development
- W-60vol%UO₂ CERMET
- W coated UO₂ spherical kernels
- W coolant channel, perimeter, face clad
- Inherent stability of W clad in hot H₂ minimize fuel erosion and fission product release during NTP operation

HIP Manufacture Advantages
- Near net-shape
- Full scale
- High density
- Existing industrial base
Problem & Objective

• Fuel Element Constraints
 - Fully encapsulated fuel kernels
 - Long length
 - Numerous coolant channels
 - Integral claddings
 - Limited to refractory alloys (Nb, Ta, Mo)
 - Powder metallurgical constraints

• Develop a sub-scale and full-scale HIP cans that can be used to fabricate NTP fuel elements for process development and fuel element evaluation.
Consolidation

- **Powder Characteristics**
 - Appropriate coarse, medium and fine grain distribution
 - Green packing density drives shrinkage/dimensional tolerance

- **Sinter Temperature**
 - 80% of powder melting temperature

- **Pressure**
 - >15 ksi for consolidation onset

- **Atmosphere**
 - Compatible with can: argon

- **Time**
 - T/P ramp rates and hold times influence microstructure

Ternary phase diagram

- Initial situation
- Orientation of particles
- Development of contact
- Contact growth
- Grain boundary development
- Pore healing and grain growth

Consolidation process

- Early Stage
- Middle Stage
- Late Stage

- Grain boundary
- Grain
- Porosity

- Solid
- Liquid
- Porous
HIP Can Design

- **Design features**
 - Complex hexagonal can/mandrel geometry
 - 19-61 channels
 - 50-100 cm length
 - Perimeter clad
 - Coolant channel & face clad

- **Design constraints**
 - 10-20% shrinkage
 - Channels must not bow or twist
 - Sufficient flow area for viable powder fill
HIP Can Manufacture

- **CNC milling**
 - Specialized techniques for Nb
 - Time consuming
 - Expensive (time and materials)

- **Water jet machining**
 - Iterative development process
 - Non-specialized techniques
 - Significant time reduction
 - Sufficient dimensional tolerance
 - Minimal material waste
 - Minor milling required

- **CNC sheet metal break**
 - Axial tolerance difficult to achieve
 - Tolerance variation proportional to length
Integral Clad

• Coolant channel clad
 – Vacuum plasma spray (VPS)
 – W onto Mo mandrel rods
 – Thickness uniformity and adhesion
 – Completed through a Phase I SBIR by Plasma Processing Inc. (PPI)

• Perimeter Clad
 – Electro (EL)-form
 – W onto a graphite mandrel
 – High density and hermiticity
 – Developed under same PPI effort
Can Assembly

- Can wall welded
- Mandrel rods stacked between spacer grids
- Enclose mandrel in wall
- Can top welded to can
- Vacuum leak check
Fill & Close-Out

- Can surface cleaned
- Can weighed and measured
- Can vibratory filled in a glove box
- Filled can weighed
- Can evacuated
- Fill tube crimped
- Seam weld and fill tube excess cut

61 channel near full scale HIP can: filled and closed out
HIP Operations

- HIP can placed in can jig
- Jig placed in HIP furnace
- HIP schedule initiated
- Remove jig
- Weigh and measure can
Results

• 2013 HIP Trials
 – Circular 7 channel W-ZrO₂
 – Hex 61 channel, near full length W-ZrO₂: Fail
 – Circular slug W-dUO₂ x 2
 – Hex 7 channel W-dUO₂
 – Hex 61 channel, full length W-ZrO₂: Fail

• Failure Analysis
 – Wall cracking observed at can base
 – Significant reduction in ductility of HIP can coupons when compared to control samples
 – SEM/EDS revealed significant C embrittlement
 – Nb can interaction with graphite jig or furnace
Conclusions

- HIP is viable for NTP fuel cermet fabrication
- Fundamental mechanisms are well understood
- Difficulty to meet NTP engine requirements proportional to length
- Design optimization highly iterative
- Significant opportunity for process and design improvement
Recommendations for Future Work

• Develop mitigation strategy to prevent Nb-C interaction
 – Mandrel coating?
 – Sacrificial getter foil?

• 19 channel Rover/NERVA geometry
 – Develop HIP can design
 – Fabricate prototype
 – Fabricate fuel element

• Optimize can designs
 – Finalize can geometry based on nominal green powder packing density
 – Establish fuel dimensional tolerance and NDE requirements

• Investigate methods for W can fabrication
 – Water jet of W sheet
 – VPS?
 – EL-forming?
 – Additive Manufacture?
 – Dip & HIP?
Acknowledgements

• The authors would like to thank Daniel Cavender, Brad Anders, Dave Vermillion and Jim Martin of NASA MSFC; Scott Odell of Plasma Processes Inc.

• Funding was provided by the “Advanced Exploration Systems – Nuclear Cryogenic Propulsion Stage” project.

• The opinions expressed in this presentation are those of the author and do not necessarily reflect the views of NASA or any NASA Project.