
Fuzzy Model-Based Pitch Stabilization and Wing Vibration Suppression
of Flexible Aircraft*

Mohammad A. Ayoubi1, Sean Shan-Min Swei2, and Nhan T. Nguyen3

Abstract— This paper presents a fuzzy nonlinear controller to
regulate the longitudinal dynamics of an aircraft and suppress
the bending and torsional vibrations of its flexible wings.
The fuzzy controller utilizes full-state feedback with input
constraint. First, the Takagi-Sugeno fuzzy linear model is
developed which approximates the coupled aeroelastic aircraft
model. Then, based on the fuzzy linear model, a fuzzy controller
is developed to utilize a full-state feedback and stabilize the
system while it satisfies the control input constraint. Linear
matrix inequality (LMI) techniques are employed to solve the
fuzzy control problem. Finally, the performance of the proposed
controller is demonstrated on the NASA Generic Transport
Model (GTM).

I. INTRODUCTION

Elastically shaped aircraft is a concept whereby highly

flexible aerodynamic surfaces are elastically shaped in-flight

by actively controlling the wing wash-out twist and wing

bending deflection in order to change the local angle of attack

in such a manner that can result in lower fuel burn by drag

reduction during cruise. An earlier research study conducted

by NASA has proven that overall aerodynamic efficiency can

be improved by active control of wing aeroelasticity in-flight.

As a result, the novel concept of Variable Camber Continuous

Trailing Edge Flap (VCCTEF) system is proposed [1], [2].

Two sets of control actuators are employed in order to

actuate the VCCTEF. The light-weight shaped memory alloy

(SMA) is adapted for controlling the shape of the first two

chordwise sections of the three-section VCCTEF. The third

section is controlled by the electric drive motor (EDM) and

provides the needed active wing shaping control in-flight. A

preliminary static analysis has shown the potential efficacy of

the VCCTEF system. In this paper, the NASA GTM platform

configured with VCCTEF system is considered, see Figures

1 and 2.

The main challenge imposed by the control of coupled

aeroelastic aircraft is the presence of low frequency flexible

modes, which may lie within the range of aircraft rigid-

body dynamics. An integrated modeling and control ap-

proach was studied in [3], in which an optimal covariance

control algorithm was implemented with the goal to suppress
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the excessive wing vibrations. To extend the approach to

full flight envelop, a covarinace control law needs to be

developed at each flight condition and then gain scheduled

for implementation. In [4], control of flexible wing aircraft,

Body Freedom Flutter (BFF), using H∞ and linear parameter

varying (LPV) control design techniques was presented. The

gain scheduling LPV plant representation was formulated in

such a way that the quadratic stability problem is solvable

when the corresponding parametric LMI has a feasible

solution. In this paper, we propose to utilize fuzzy based

modeling approach, from which a fuzzy control law can be

derived.

Since the introduction of the Takagi-Sugeno (T-S) fuzzy

model by Takagi and Sugeno [5] in 1985, there has been

a tremendous progress on this type of fuzzy systems. The

T-S model-based fuzzy system is based on using a set

of fuzzy rules to describe a global nonlinear system in

terms of a set of local linear models which are smoothly

connected by fuzzy membership functions. The basic idea is

to design a state feedback controller for each local model

and then to construct a globally asymptotic stable controller

from the local controllers. This technique is called Parallel

Distributed Compensation or PDC and was introduced by

Wang et. al. [6], [7]. An open-loop stability analysis of T-

S fuzzy systems was first presented by Tanaka and Sugeno

[8] in 1990. The stability of the global controller can be

proven by formulating Lyapunov stability theory via linear

matrix inequalities (LMIs). T-S fuzzy systems and PDC were

expanded by generalization of linear control system theory.

The work was expanded to developing T-S fuzzy observers

and regulators [9], robust control [10], [11], optimal control

[11], [12], [13] constraints on the input and output [14], and

T-S control of nonlinear time-delayed systems [15]. Some

performance criteria such as disturbance rejection [14], decay

rate [16], and pole placement [17] have been incorporated in

T-S fuzzy systems.

In the last two decades, a number of researchers have

considered T-S fuzzy control for attitude stabilization of rigid

spacecraft with input constraints. For instance, Park et al.

[13] proposed an optimal T-S fuzzy system based on the

inverse optimal approach with input constraints [18]. Zhang

et al. proposed a T-S fuzzy model with output feedback

[19], decay rate [20], and H∞ control [21], for a rigid

spacecraft. Butler et al. [22] introduced a T-S fuzzy model-

based PDC flight control for controlling a damaged rigid

aircraft. Recently, Ayoubi and Sendi [23] presented a T-S

fuzzy model controller with optimal H∞ robustness perfor-

mance to stabilize the position and attitude, and attenuate the



vibration in the flexible appendage of a spacecraft during a

slew maneuver. In this paper, we propose a T-S model-based

fuzzy control for angle-of-attack and pitch rate stabilization

and vibration suppression in a flexible aircraft with control

input constraint. The controller design problem is formulated

in terms of linear matrix inequalities (LMIs). Though the

resulting stabilizing T-S fuzzy controller is nonlinear, its

structure is simple hence easy to implement.
This paper is organized as follows: In Section II, we briefly

review the longitudinal equation of motion of a flexible

aircraft in the state-space form. The first part of section III

presents the concept of T-S modeling via local approximation

in fuzzy partition space and the second part of Section III

overviews the Tagagi-Sugeno fuzzy control or PDC control

technique. Section IV presents the open-loop and closed-

loop simulations and shows the performance of the proposed

fuzzy controller. Finally, concluding remarks and suggestions

for future works are made in Section V. Throughout this

paper, we use bold and lower case letters to denote the vector

quantities.

Fig. 1. NASA Generic Transport Model

Fig. 2. The concept and structure of VCCTEF.

II. AIRCRAFT LONGITUDINAL MODEL

Figure 1 shows NASA GTM which is used in this study.

The aircraft has 23 control surfaces including 11 VCCTE

flaps, 11 slats, and one elevator. As described earlier, only

the third section of VCCTEF is used for wing shape control.

The equations of motion for coupled aircraft longitudinal

rigid-body dynamics with flexible aeroelastic wing modes

at cruise conditions can be described in the following state-

space form,

ẋ = Ax+Bu (1)

or[
ẋa
ẋe

]
︸ ︷︷ ︸

ẋ

=

[
Aaa Aae
Aea Aee

]
︸ ︷︷ ︸

A

[
xa
xe

]
︸ ︷︷ ︸

x

+

[
Baa Bae
Bea Bee

]
︸ ︷︷ ︸

B

[
δa
δ f

]
︸ ︷︷ ︸

u

where xa = [α,q]T denotes the longitudinal rigid-body state

vector; α is the angle of attack and q the pitch rate, xe
consists of displacement and velocity of aeroelastic wing at

generalized coordinates, δa denotes the elevator deflection,

and δ f denotes the slat and VCCTEF 3rd segment deflection

vector. The matrices Aaa and Aee contain aircraft rigid-

body and aeroelastic characteristics, whereas Aae and Aea
correspond to aeroelastic coupling and aircraft rigid-body

coupling, respectively. Similarly, Bae and Bea represent cou-

pling effect between the control surface and slat/VCCTEF.

Note that the dimension of overall system depends on the

number of aeroelastic modes included in the problem setup.

In this study, we consider 20 bending modes and 20 torsional

modes, hence x ∈ R
82×1, u ∈ R

23×1, A ∈ R
82×82, and B ∈

R
82×23.The detail derivations and physical interpretations of

Eq. (1) can be found in Nguyen et al. [24]. A number of

aircraft cruise models at varying airspeed can be generated,

which are in the form of Eq. (1), and a novel vibration

suppression control concept will be developed by utilizing

the Takagi-Sugeno fuzzy modeling approach.

III. TAKAGI-SUGENO FUZZY MODELING AND CONTROL

A. Takagi-Sugeno Fuzzy Modeling

There are three methods to build a T-S fuzzy model

approximation: 1) Sector nonlinearity, 2) local approximation

in fuzzy partition spaces or simply “local approximation”,

and 3) the combination of sector nonlinearity and local

approximation. In this study, we use the second method,

“local approximation”. The main idea behind this approach

is to approximate a nonlinear system by choosing an

appropriate parameter in the system and approximating the

nonlinear system around the selected parameter values (or

premise variables), building membership functions in the

universe of discourse of each premise variable, and creating

model rules corresponding to each point. If there are p
premise variables, s(t) = [s1(t),s2(t), . . . ,sp(t)], then the

number of model rules, r, is 2p.

Model Rule i:
IF s1(t) is about μi1(s1), · · · , sp(t) is about μip(sp).
THEN {

ẋ(t) = Aix(t)+Biu(t)
y(t) =Cix(t) ; (i = 1,2, . . . ,r) (2)



where μi j(s j) is the fuzzy membership function correspond-

ing to s j. The firing strength of each rule can be determined

using T −norm product as follows,

wi(s(t)) =
p

∏
j=1

μi j(s(t)) (3)

and the fuzzy basis functions are determined from

hi(s(t)) =
wi(s(t))

∑r
i=1 wi(s(t))

, ∀ t ≥ 0. (4)

After combining all the rules of T-S models, the overall

system can be approximated as{
ẋ(t) = ∑r

i=1 hi{Aix(t)+Biu(t)}
y(t) = ∑r

i=1 hiCix(t)
(5)

B. Parallel Distributed Compensation Control

The Parallel Distributed Compensation (PDC) control

technique which was introduced by Wang et al. [6] is

based on the Takagi-Sugeno fuzzy model approximation. We

design a full state-feedback control law for each model rule.

Therefore, each control rule has the same premise variables,

i.e. “IF” statement, but different consequent, i.e. “THEN”

statement. The general structure of each control rule is as

follows:

Control Rule i:
IF s1(t) is about μi1(s1), · · · , sp(t) is about μip(sp).
THEN

ui(t) =−Fix(t) , i = 1,2, . . . ,r, (6)

where Fi is the feedback gain matrix for ith T-S fuzzy model.

The overall control input with fuzzy basis functions becomes

u(t) =−
r

∑
i=1

wi(s(t))Fix(t)
∑r

j=1 w j(s(t))
=−

r

∑
i=1

hiFix(t) (7)

We use the following theorems to formulate the T-S model-

based fuzzy control problem in the form of linear matrix

inequalities (LMIs). The first two theorems are used to

include the input control constraint into the design process.

Theorem 1: Assume the initial condition x(0) is known.

The constraint ||u(t)||2 ≤ ρ is enforced at all times if the

following LMIs hold [16]:[
I x(0)T

x(0) X

]
≥ 0 (8)

and [
X MT

i
Mi ρ2I

]
≥ 0 (9)

where X = XT > 0 and Mi = FiX .

Theorem 2: Assume that ||x(0)|| ≤ β where x(0) is un-

known but the upper bound β > 0 is known. Then the

condition

X ≥ β 2I (10)

is equivalent to the following LMI [16][
I x(0)T

x(0) X

]
≥ 0 . (11)

Theorem 3: The equilibrium point of the T-S fuzzy

system given by Eq. (5) with the feedback control law

given by Eq. (6) is globally asymptotically stable if there

are matrices X and Mi which satisfy the following LMIs [16][
X (XAT

i −MT
i BT

i )
(AiX −BiMi) X

]
> 0 (12)

and[
X

(AiX+A jX−BiMj−B jMi
2

)T(AiX+A jX−BiMj−B jMi
2

)
X

]
≥ 0

(13)

where i, j = 1,2, . . . ,r and i < j such that hi ∩h j �= /0.

Therefore, the problem of stabilizing T-S fuzzy model using

full-state feedback with control input constraint, and inde-

pendent of initial conditions, is equivalent to solving the

system of convex LMIs given by Eqs. (9)–(10) and (12)–

(13). The solution of this set of LMIs, i.e. X and Mi, will be

used to find the feedback gain matrix Fi = MiX−1. We can

reformulate this problem as the convex optimization problem

as follows:

Given: Ai, Bi; (i = 1,2, . . . ,r), and β
Minimize: ρ2

Subject to: Eqs. (9)–(10) and (12)–(13)

The control objective is to design a stabilizing fuzzy

controller to control the angle of attack and pitch rate, and

suppress the wing vibration. Note that the control inputs are

norm bounded. In the next section, we show the performance

of the T-S fuzzy model approximation and PDC controller

on NASA GTM.

IV. NUMERICAL SIMULATION

In this section, we first develop a T-S fuzzy model (TSFM)

for NASA GTM and compare the open-loop response of the

proposed TSFM with an arbitrary initial condition. Then, we

present a PDC controller and the performance of the closed-

loop system. Finally, we investigate the performance of the

controller in the presence of uncertainties.

A. Open Loop Response

The local approximation method is employed to develop

TSFM. We choose Mach number as a premise variable and

consider two flight speeds at M = 0.5 and M = 0.8, and

we define the simplest form of membership function, which

is triangular, to fuzzify the Mach number. The membership

functions corresponding to two flight speeds are shown in

Fig. 3.

We simulate the open loop response of the TSFM when

M = 0.7, α(0) = 1 deg, and q(0) = 0.1 rad/s. We assume all

other initial conditions are zero. The open-loop response of

TSFM for angle of attack and pitch rate are shown in Fig.

4.

Similarly, the bending and torsional deflections at the

flexible wing-tip are shown in Fig. 5. It can be seen from

the plots that the TSFM closely follows the GTM.
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Fig. 3. Mach number membership functions.
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Fig. 4. The open-loop response of angle of attack and pitch rate at M = 0.7.
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Fig. 5. The open-loop response of bending and torsional deflections of the
wing-tip at M = 0.7.

B. Closed-Loop Response

We use CVX, a package for specifying and solving convex

programs [25], [26] to find the lower bound of control inputs

subject to Eqs. (9)–(10) and (12)–(13). The obtained fuzzy

control law is used to simulate the behavior of TSFM and

GTM at M = 0.7 with the same initial conditions which

is used in the open-loop analysis. The time history of the

aircraft angle of attack and pitch rate are shown in Fig. 6.

The time history of the bending and torsional deflections

of the wing-tip are plotted in Fig. 7. The plots show that

the angle of attack and pitch rates are stabilized and the

wing-tip vibration suppressed around 3 seconds. The open

and closed-loop responses of both models, TSFM and GTM,

are examined at M=0.5, 0.6, 0.8, and 0.88, but for the sake

of brevity, the results are omitted here. We noticed that the

proposed fuzzy controller could stabilize the unstable aircraft

at M = 0.88.
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Fig. 6. The closed-loop response of the angle of attack and pitch rate at
M = 0.7.
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Fig. 7. The closed-loop response of bending and torsional deflections of
the wing-tip at M = 0.7.

The maximum control deflections of each control surface

are plotted in Fig. 8. It can be seen that the control system

uses the outer control surfaces (close to the wing-tip) for

attitude stabilization and vibration attenuation.
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C. Controller Robustness Test

We examine the robustness of the proposed fuzzy model-

based controller due to uncertainties in the system matrix,

A, and in the input matrix, B, of the GTM model. Figure

9 shows the time responses of the angle of attack and

pitch rate of the closed-loop system in the presence of

input uncertainty. The time responses of the bending and

torsional motion at the wing-tip are shown in Fig. 10. The

simulation results show that a good closed-loop performance

is maintained when input uncertainty satisfies ΔB
B ≤ 0.5.
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Fig. 9. The closed-loop response of the angle of attack and pitch rate at
M = 0.7 in the presence of input uncertainty.

Figure 11 shows the time response of the angle of attack

and pitch rate of the closed-loop system due to uncertainty in

the Arr part of the A matrix, which corresponds to the rigid-

body aircraft dynamics; see Eq.(1). The time responses of

the bending and torsional motion of the wing-tip are shown

in Fig. 12. As expected, in this case only the performance of

rigid-body dynamics degrades as uncertainty increases. We

also notice that the performance of the fuzzy controller is

poor in the presence of any uncertainty in the Are, Aer, which

represent the coupling between the rigid-body dynamics and

flexible wing, and Aee which represents the flexible wing

model.
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Fig. 10. The closed-loop response of bending and torsional deflections of
the wing-tip at M = 0.7 in the presence of input uncertainty.
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Fig. 11. The closed-loop response of the angle of attack and pitch rate at
M = 0.7 in the presence of system uncertainty.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a preliminary model-

based fuzzy controller which can effectively stabilize an air-

craft with flexible wings. We assume all the states are avail-

able for feedback and consider the input control constraint.

To achieve the control objective subject to input constraint,

we have utilized the convex optimization techniques based

on the LMIs. Simulation results indicate that the accuracy

of the T-S fuzzy model and performance of the T-S fuzzy

controller are satisfactory even when the aircraft is unstable.

Though the proposed stabilizing controller is nonlinear, but

its structure is simple and easy to implement. Future topics
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Fig. 12. The closed-loop response of bending and torsional deflections of
the wing-tip at M = 0.7 in the presence of system uncertainty.

for research and improvement in this direction could be con-

sidering the output-feedback with fuzzy observer, external

disturbances such as wind-gust, structured uncertainty in the

T-S fuzzy model, actuator rate limit, and time-delay in the

control system.
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