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Introduction

� Current aero-engine performance requirements necessitate light-weight 
materials that meet high-temperature strength and environmental durability 
requirements

� Melt-infiltrated (MI) SiC fiber-reinforced SiC ceramic matrix composites 
(CMCs) are a leading class of candidate materials. 

� Environmental barrier coatings (EBCs) are applied to CMC substrates to 
protect Si-based components from rapid surface recession in high temp. H2O 
containing environments. 

� In many applications, EBC-CMC engine components will be subjected to 
multi-dimensional thermal gradients and complex stresses.
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Motivation

� Desire for a simple NDE technique(s) to evaluate damage development in 
EBC-CMC systems during testing in thermal gradient environments

� Room-temperature (RT) tensile testing has successfully shown electrical 
resistance (ER) measurements as a damage monitoring technique for CMCs

� It is therefore advantageous to investigate ER response as a condition 
monitoring technique for testing under simulated, high-temperature, engine 
environments

� This study is aimed at investigating the electrical response of candidate 
materials under high-temperature thermal gradients in air:

1. Application of thermal loads

2. Damage Accumulation

3. Time-dependent effects
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High Heat Flux Laser-based tensile loading

� Asymmetrical heating by a 3.5kW CO2 high heat flux laser generates multi-axial 
(thru thickness and longitudinal) thermal gradients

� Thru thickness thermal gradients can be increased by the addition of active 
backside air-cooling

� The front and backside temperatures of the heated region are monitored by 
optical pyrometers

� The specimen is held by ceramic grip inserts in a screw driven test machine 
(Instron 5569)
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Modal Acoustic Emission (AE) - briefly

�The fracture energy of solids is 
released as elastic stress 
waves, and these waves can 
be captured through the use of 
wide-band acoustic sensors 

�Accumulated acoustic energy 
has been shown to be directly 
related to transverse crack 
density [Morscher 2004]
� i.e. as damage accumulates, 

so does the energy sensed 
by the acoustic sensors

�Modal AE is therefore used to 
characterize stress dependent 
crack accumulation
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High Temperature ER Measurement and Setup

�Electrical Resistance 
measured by four-point probe 
method (micro-Ohmmeter, 
Agilent Model E34420A; 10 
mA constant current)
� For high temperature 
testing, the ER
measurements are taken 
from the gripped areas
� When implemented, AE
sensors are attached ±40mm 
from center (event location is 
determined and only events 
in the gage are used in AE 
analysis)
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High heat flux laser-based tensile loading

� Materials produced by Si Melt Infiltration (MI) 
process

� Fiber Architecture: Hi-Nicalon Type-S (HNS), 
0/90 2D woven, SiC/BN/SiC

� APS EBC multi-layer system : 
� HfO2 + Si bond coat (76 μm), YbSi1.5 (76 μm), 

YbSi (127 μm), Hf-RE silicate (203 μm)
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ER change is normalized 
from the at-temperature, 

zero-load value

High temp. thermal 
gradient sample failed 
at low stress, outside 
of gage section

TEBC sur = 1500°C

TCMC back = 1310°C

ER appears to be quite sensitive to damage 
onset and accumulation as well. The response 

appears to slightly lag the AE curve.

Though the high temperature thermal gradient 
sample failed early, the AE shows behavior 
similar to room temperature (RT). We can 
assume similar stress dependent matrix 

cracking behavior. 



Began 
Loading

ZMI-1

TCMC sur = 1140°C
TCMC back = 994°C
Stress = 69 MPa
Rupture Time = 83 hr

Note: Specimen failed 
outside gage region

High heat flux laser-based tensile creep
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� Materials produced by Si Melt Infiltration (MI) process

� Fiber Architecture: ZMI fiber, 0/90 2D woven, SiC/BN/SiC

� Uncoated

ER response during heat-up shows 
dependence of electrical resistivity to 

temperature.

Minor change in ER during loading suggests little 
damage to specimen. However, the ER does 

seem to be sensitive to time-dependent effects 
(even more so than the strain measurement).

ER ~16% change over 83hr rupture time.



High heat flux laser-based tensile creep
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� Materials produced by Si Melt Infiltration (MI) process

� Fiber Architecture: ZMI fiber, 0/90 2D woven, SiC/BN/SiC

� Uncoated

ZMI-2

Began 
Loading

Laser Fault during heat up caused rapid cool down. 
Rig could not maintain zero load-hold condition. 

“Load-spike” to sample generated damage resulting 

in permanent increase in ER at RT (~100%)

Pre-stressed specimen showed ~45% ER 
increase upon loading, with an addition ~55% 
increase over the 127hr stress rupture time.

TCMC sur = 1092°C
TCMC back = 1032°C
Stress = 69 MPa
Rupture Time = 127 hr



TEBC sur = 1271°C
TCMC back = 989°C
Stress = 69 MPa
Run-out = 526 hr

ZMI-3

High heat flux laser-based tensile creep
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� Materials produced by Si Melt Infiltration (MI) process

� Fiber Architecture: ZMI fiber, 0/90 2D woven, SiC/BN/SiC

� EBPVD EBC multi-layer system : 
� HfO2+Si bond coat, Yb2Si2O7 (127 µm) + Hf-RE silicate (254 µm)

Post-creep retained 
strength = 114 MPaEBC-CMC Sample survived 

complete 500+hr creep test. 

Like the first example minor ER change during 
loading, however ER appears to capture damage 

accumulation of post-creep fast-fracture test.



1 mm

Loading direction

1 mm

Post-test damage assessment

� Recall all test performed at constant stress of 69 MPa

� RT AE data of specimens from the same panel show 
microcracking initiation at ~35MPa and rapid crack 
accumulation beginning around 75 MPa 

� Can compare crack density/morphology via post tested 
optical microscopy
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( 2.5 cracks/mm)

The other samples 
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large scale coating 
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Thermal-Electrical Modeling 
(undamaged CMC)

� Recall that ER measurements are taken from the gripped ends of the 
specimen.

� Therefore, experimental ER data vs. temperature measures the total 
resistance of the specimen under a thermal gradient 

� i.e. not directly give us discrete values of ER vs. T 

� A specimen could however be described as a series of temperature 
dependent resistors. This circuit could then used to calculate the total 
resistance of a undamaged CMC specimen.
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Heat Transfer Analysis

� A steady-state 1D heat transfer 
model was developed to 
determine the longitudinal 
thermal gradient from heated 
zone to ER electrode:

� Radiation and convection 
losses on specimen face

� Constant thermal conductivity
� Constant cross-section
� Constant temperature in laser-

heated region (has been 
verified experimentally through 
thermography)

� T(0) = Theated region

� Temp. distribution solved 
numerically using damped 
Newton iteration technique
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Thermal-Electrical Modeling

� The previously modeled temperature distribution can then be populated with 
experimental resistivity data (20-900°C)  measured using the commercially 
available ZEM3 unit.
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determine temperature 
dependent resistivity



Thermal-Electrical Model Experimental Verification

� A ZMI fiber reinforced CMC tensile 
bar was laser heated under zero 
stress conditions with no applied 
cooling air

� The ZEM3 data for this material was 
used to calculate the total resistance 
of the specimen based on the 
temperature profile generate from 
the heat transfer analysis

� This was then compared to 
experimental data with good 
agreement

� This allows us to model the total 
thermal-electric response of the 
specimen and compare it with the 
data measured during testing from 
the grip section
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Early ER-Damage Model
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� Current room temp. ER model (Baker, Maillet, Morscher, 
Appleby) under development

� Based on brittle composite cracking/fiber-sliding 
micromechanics model

� From known stress based crack density (from AE), the 
composite is modeled as a series circuit of 3 types of 
resistors

� Rδ is a sliding contact resistance at the fiber/matrix 
interface; proposed as a function of radial stress on the 
fiber and interfacial shear stress τ

� Added complexity of high temperature thermal gradient 
testing

� Temperature dependence of electrical 
resistance of constituents: fiber, matrix and 
interphase

� Thru thickness thermal stress gradient induced 
by asymmetric heating

� Addition of EBC coating



Conclusions

� Convoluted Electrical Response of EBC/CMC’s
� Thermal, Mechanical, Environmental and Time-Dependent

� ER able to assess temperature changes  

� ER sensitive to damage onset and accumulation
� Deviation from AE curve suggests ER sensitivity to fiber sliding effects as well as 

crack density
� Proved to be useful in identifying damage from excessive thermal stresses caused 

during laser malfunction (not evident directly from load data)
� Proved helpful for overall health monitoring and material inspection

� ER increase during creep caused by time-dependent deformation and 
environmental effects under constant stress condition

� More sensitive to material condition than strain measurement alone

� Need to further investigate EBC contribution and effects
� e.g. benefit of stable EBC to increased high temperature stress-rupture life
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Current and Future Work

� Carefully crafted “proof of concept” testing and more sophisticated 
models are still required to fully understand the nature of electric 
response.

� Further development of thermal-electric model to include through thickness 
thermal gradient 

� Use of thermal-electric model and high-temperature experimental data to 
separate contributions of constituents (fiber, matrix, coating) to ER 

� Use thermal-electric constituent data to further develop ER damage model

� Current Testing focusing on EBC cracking/delamination detection using AE 
monitoring possible EBC contribution to ER response shows promise; however 
further testing required.
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Thank You
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