Mass loss of Larsen B tributary glaciers (Antarctic Peninsula) unabated since 2002

Etienne Berthier,¹ Ted A. Scambos,² and Christopher A. Shuman³

Received 20 March 2012; revised 31 May 2012; accepted 3 June 2012; published 10 July 2012.

[1] Ice mass loss continues at a high rate among the large glacier tributaries of the Larsen B Ice Shelf following its disintegration in 2002. We evaluate recent mass loss by mapping elevation changes between 2006 and 2010/11 using differencing of digital elevation models (DEMs). The measurement accuracy of these elevation changes is confirmed by a ‘null test’, subtracting DEMs acquired within a few weeks. The overall 2006–2010/11 mass loss rate (9.0 ± 2.1 Gt a⁻¹) is similar to the 2001/02–2006 rate (8.8 ± 1.6 Gt a⁻¹), derived using DEM differencing and laser altimetry. This unchanged overall loss masks a varying pattern of thinning and ice loss for individual glacier basins. On Crane Glacier, the thinning pulse, initially greatest near the calving front, is now broadening and migrating upstream. The largest losses are now observed for the Hektoria/Green glacier basin, having increased by 33% since 2006. Our method has enabled us to resolve large residual uncertainties in the Larsen B sector and confirm its state of ongoing rapid mass loss.

1. Introduction

[2] It is now well-demonstrated that the larger, deeper tributary glaciers of the Larsen A and B ice shelves have dramatically accelerated, retreated and thinned in response to the disintegration events of 1995 and 2002 [De Angelis and Skvarca, 2003; Pritchard et al., 2009; Rignot et al., 2004; Rott et al., 2002, 2011; Scambos et al., 2004; Shuman et al., 2011]. Although the collapse of a floating ice shelf has no direct impact on sea level, the increased ice discharge from grounded tributary glaciers does contribute significant mass to the ocean. However, there are still large and unexplained discrepancies (range: 4–22 Gt a⁻¹) between the ice losses inferred for the larger tributary glaciers that fed the Larsen B ice shelf (hereafter referred to as the northern Larsen B tributary glaciers, NLBTG, comprising the Hektoria-Green-Evans glacier system, Jorum and Punchbowl glaciers, Crane Glacier, and Mapple, Melville, and Pequod glaciers; see Figure 1) using different assessment methods [Rignot et al., 2004; Rott et al., 2011; Shuman et al., 2011]. Nearly a decade after the ice shelf collapsed, reconciling estimates of the NLBTG mass imbalance contribution is essential.

[3] Three methods are presently available to measure the changes in the mass of an ice sheet, or a portion of it: space gravimetry; the mass budget method (MBM); and the geodetic method (GM). Space gravimetry from the Gravity Recovery and Climate Experiment (GRACE) is currently not able to resolve mass losses occurring at a length scale of a few tens of kilometers, the typical size of the NLBTG basins, and thus has been applied broadly to the Antarctic Peninsula north of 70°S (Graham Land) where a steady decrease in mass is observed since 2002 (−32 ± 6 Gt a⁻¹ [Ivins et al., 2011]; −28.6 Gt a⁻¹ [Chen et al., 2009]). The MBM consists of comparing the input (net accumulation) to the output (ice flux through a cross-sectional gate at, or close to, the grounding line). One determination using MBM for all basins between Hektoria and Crane glaciers (Figure 1), indicated mass losses of 21.9 ± 6.6 Gt a⁻¹ in 2003 [Rignot et al., 2004] (30% uncertainty from Rignot [2006]). Recently, the same technique was applied to the same glaciers by another group using velocity fields measured in 2008/2009 in comparison with velocities from 1995–1999 [Rott et al., 2011]. Despite small changes in surface velocities since 2003 overall, they reported mass losses of 4.1 ± 1.6 Gt a⁻¹, a factor of 5 lower than the previous MBM study.

[4] A geodetic estimate of the regional mass loss can be obtained by the differencing of digital elevation models (DEMs) acquired a few years apart. Differencing of DEMs acquired prior to the Larsen B ice shelf disintegration in November 2001 (extended to the upper part of Crane Glacier with a DEM acquired in November 2002) with one acquired in November 2006, yields a distinctly different estimate of the NLBTG mass loss, 8.8 ± 1.6 Gt a⁻¹ [Shuman et al., 2011].

[5] The causes of the differences between the three published NLBTG loss estimates are not understood yet. Likely factors are (i) different time periods surveyed combined with non-steady mass loss response, (ii) uncertainties in net accumulation for the MBM, (iii) unknown bed topography close to the grounding line for most glaciers, (iv) unaccounted surface drawdown at MBM flux gates, (v) errors in the DEMs for the GM; and (vi) grounding line migration for the GM and the MBM. Both the MBM estimates discussed above and our GM study use 900 kg/m³ as density for converting volume to mass. Using this density (instead of that for pure ice, 917 kg/m³) in the Larsen B sector is justified by the fact that the elevation changes are nearly entirely dynamically-driven, and that the entire column of ice (pure ice, firm, and snow) is being lost by calving at the ice fronts. By our
estimate about 80% of the losses occur on fast flowing glacier trunks below 500 m a.s.l.

In this study, we use new 2010 and 2011 satellite DEMs to infer the mass loss of NLBTG between 2006 and 2010/11. These updated mass losses are then compared to 2001/02 – 2006 losses to determine how NLBTG losses have evolved over time since the break up and, thus, to partly address issue (i). In addition, satellite DEMs acquired within a few weeks in late 2006 are compared to better constrain the uncertainties associated with the GM (issue v). A basin-by-basin comparison is also performed to identify the glaciers for which the discrepancies between MBM and GM estimates are largest and help to target future data acquisition to reconcile estimates of the NLBTG mass imbalance (issue iii).

Our elevation changes time series from DEMs (augmented with airborne and satellite laser altimetry) helps to address issue (iv). Grounding line migration since early 2002 has probably been rapid, with the ice fronts quickly retreating past their 1990s position [Shuman et al., 2011]. Satellite imagery suggests the present ice fronts are partially floating, complicating flux gate assessments [Zgur et al., 2007; Rott et al., 2011].

3. Null Tests: Accuracy of the Mass Loss From Sequential DEMs

We analyze three DEMs acquired within a short time span in late 2006 (Table S1) to assess the accuracy of the ASTER/SPOT5 and SPOT5/SPOT5 basin-wide elevation changes. The assumption of insignificant elevation change is valid between the SPOT5 and ASTER DEMs as they were acquired only 16 minutes apart on 25 November 2006. This assumption is not as appropriate between the 25 November...
2006 and the 31 December 2006 SPOT5 DEMs, with 36 days elapsed. The rates of elevation changes measured during 2001/02–2006 [Shuman et al., 2011, Table 2] are used to estimate 36-day elevation changes within each major basin. Based on this, the maximum change is 0.7 m for Evans Glacier and the smallest is for Jorum Glacier at 0.2 m.

Basin-wide mean DEM differences (Table 1) provide null test errors for the GM applied to the NLBTG. [9] For individual drainage basins, the errors are larger for ASTER/SPOT5 than for SPOT5/SPOT5. This is expected given the higher image resolution and the better orbit knowledge for the SPOT5 sensor so that SPOT5 DEMs are about a factor of two more precise than ASTER DEMs [Berthier et al., 2010, Table S5]. The basin-wide elevation difference in the ASTER/SPOT5 comparison reaches 5.0 m for Crane Glacier. This result confirms the $\pm 5 \text{ m}$ elevation error used previously [Shuman et al., 2011]. In contrast, the basin-wide elevation difference is always less than 2 m for SPOT5/SPOT5 differences. When the mean elevation difference is computed for all NLBTG basins, errors are 2.4 m for ASTER/SPOT5 and 1.0 m for SPOT5/SPOT5.

[10] In the following assessments of volume and mass change, a $\pm 2 \text{ m}$ (respectively, $\pm 5 \text{ m}$) uncertainty is used when two SPOT5 (respectively, ASTER and SPOT5) DEMs are subtracted. Our null tests indicate that these uncertainties are reasonable at the individual basin scale, and are conservative for elevation differences averaged over all NLBTG.

4. Elevation Changes and Mass Loss in 2006–2010/11

[11] Recent elevation changes for NLBTG are measured by subtracting two SPOT5 DEMs (31 December 2006 and 14 March 2011) for a 2633 km² area in the west and a SPOT5 (25 November 2006) DEM and an ASTER (15 December 2010) DEM for a 906 km² area in the east (Figure 1). The rates of elevation changes during 2006–2010/11 are compared to those reported in Shuman et al. [2011] during 2001/02–2006 (Figures 2 and 3 and Table 2).

[12] Between the two epochs, the maximum mean annual thinning rate considerably diminished for Crane Glacier from over 35 m yr^{-1} to 18 m yr^{-1}. We note that the peak elevation loss during 2001/02–2006 was likely influenced by a subglacial lake drainage event that occurred between September 2004 and September 2005 in the lower Crane Glacier [Scambos et al., 2011], but a region of $>20 \text{ m yr}^{-1}$ loss extended over a far larger area than the inferred lake extent in the lower glacier trunk. During 2006–2010/11, thinning has propagated further upstream, and the 10 m yr^{-1} thinning rate contour has moved from 500 m a.s.l. to 700 m a.s.l. between the two assessments. An upstream migration of thinning is also observed for Hektoria and Green glaciers with the upper extent of the 10 m yr^{-1} thinning contour moving from 350 to 500 m a.s.l. between the two epochs. For the latter two glaciers, the peak thinning rates are higher during 2006–2010/11.

![Figure 2](image-url)
considerably since 2002, with both retreats and advances [Shuman et al., 2011]. This makes these glaciers the main contributors to the regional losses (Table 2), ahead of Crane Glacier where net mass loss and ice front position (since ~2006) have remained nearly unchanged.

[14] South of the major NLBTG glaciers, elevation changes of Mapple, Melville and Pequod glaciers are small despite the fact that they have been less constrained since the Larsen B ice shelf disintegration. In our earlier study, we noted that these glaciers have shallower seabed bathymetric troughs in front of them, and likely had less of their longitudinal resistive stresses derived from the former ice shelf [Shuman et al., 2011; Zgur et al., 2007].

5. Discussion

[15] The null test in Section 3 demonstrates that for all NLBTG (~3000 km²), area-average elevation changes can be measured with an accuracy of ±1 m (using two SPOT5 DEMs) and ±2.5 m (using one ASTER and one SPOT5 DEM). These null test errors can be compared to the standard errors, often applied in differential DEMs studies [e.g., Nuth and Kääb, 2011]. The standard errors are computed from the standard deviation of the DEMs (typically ±10 m for SPOT5 and ±15 m for ASTER) after accounting for the number of independent samples. For all NLBTG basins, and assuming autocorrelation lengths of 200 m [Howat et al., 2008] / 500 m [Berthier et al., 2010] / 1000 m [Nuth et al., 2007], standard errors of, respectively ±0.7 m / ±1 m / ±1.5 m are derived for the ASTER/SPOT5 comparison. Those standard errors are all lower than our null test error (±2.5 m), probably due to spatially-varying vertical biases in the DEMs [Nuth and Kääb, 2011] that cannot be accounted for by a single shift measured on (assumed) stable regions. Modeling these complex vertical biases in the DEMs using ICESat laser altimetry data was attempted. This is not discussed here because ICESat data are too scarce in our study region to further refine the error bars calculated in the null test. Such a strategy of DEM adjustment using precise external data would be certainly useful in glaciated areas where stable ground is effectively absent, where the density of altimetry data is higher (e.g., closer to 86° latitude for ICESat) and where the altimetry surveys are performed close-in-time to the DEMs.

[16] Geodetic mass losses upstream of the pre-collapse grounding line [Rack and Rott, 2004] are virtually unchanged since 2002 for the grounded NLBTG (8.8 ± 1.6 Gt a⁻¹ for 2001/02–2006 and 9.0 ± 2.1 Gt a⁻¹ for 2006–2010/11, Table 2). This finding is in agreement with limited changes in velocities for most glaciers between 2003 and 2008/2009 [Rott et al., 2011], despite some shorter term flow variability for Crane [Rignot, 2006; Scambos et al., 2011] and Hektoria [Rignot, 2006; Rott et al., 2011] glaciers. The consistency of the mass loss through time between 2002 and 2010/11 is also independently supported by the regional GRACE time series [Jvins et al., 2011] and by a continuous elastic uplift of the solid earth since 2002 at the Palmer GPS station, ~100 km west of NLBTG [Thomas et al., 2011]. Our analyses reveal an evolving pattern of elevation changes, with a wave of glacier thinning that has broadened and migrated rapidly upstream over time.

[17] Our GM mass loss estimates for NLBTG lie between the losses inferred by the two earlier studies using the MBM,
suggested that losses are overestimated by 12.9 ± 6.9 Gt a⁻¹ in Rignot et al. [2004] and underestimated by 4.7 ± 2.6 Gt a⁻¹ in Rott et al. [2011]. Quantifying and understanding these large discrepancies is important because these methods (MBM and GM) are employed to determine the mass balance of glaciers in the Peninsula, a region which alone contribute about one fourth of the continent-wide mass imbalance [e.g., Rignot et al., 2008]. It is also crucial to provide realistic scenarios of mass losses following ice shelf collapse to test the ability of ice flow models to simulate them. We note that the GM method requires far fewer assumptions than the MBM in the Larsen B region, with well-constrained differential DEM errors (section 3). Both bed topography and surface mass balance are poorly known for the NLBTG. For Crane Glacier only, bed topography at the present grounding line can be inferred by extrapolating upstream, bathymetry data collected in 2006 [Rott et al., 2011; Zgur et al., 2007]. The authors of the preceding MBM-based studies had, by necessity, to assume the glaciers to be in equilibrium before the Larsen B ice shelf collapse and computed the pre-collapse ice discharge from a model estimate of net accumulation over the catchment basins. However, recent assessments of surface mass balance (net accumulation) for Antarctica [Lenaerts et al., 2012], and a review of some field measurements for the region reported in Rott et al. [2011], as well as field evidence from ongoing monitoring by one of us (TAS) indicate that the effective net accumulation (~1900 kg m⁻² a⁻¹) used by Rignot et al. [2004] was too large. A strong accumulation gradient exists across the NLBTG area, with progressively decreasing snow input east of the Antarctic Peninsula divide. Measured accumulation rates as part of an ongoing study (LARISSA: Larsen Ice Shelf System Antarctica) reach 2000 to 3000 kg m⁻² a⁻¹ at the divide [Zagorodnov et al., 2012], but are <300 kg m⁻² a⁻¹ near 450 m a.s.l. on the nearby Flask and Leppard glacier outlets. Applying the basin-wide mean net accumulation value indicated by Rott et al. [2011], 1087 kg m⁻¹ a⁻¹, would adjust the mass imbalance reported by Rignot et al. [2004] to 57% of the value reported, or ~12.2 Gt a⁻¹ for the NLBTG region (if the accumulation correction ratio holds for the entire area).

We partially reconcile our net imbalance estimate on Crane Glacier with the value reported by Rott et al. [2011] by considering the velocity variations observed over the past decade [Scambos et al., 2011]. A sequence of visible and near-infrared satellite images shows more than one acceleration period, and in particular ice flow speed in late 2006 was 1.3 times the level in late 2008 (the time of the Rott et al. measurement). Further slowing occurred on Crane Glacier between 2008 and 2009 [Rott et al., 2011; Scambos et al., 2011]. Thus, our geodetic method, which integrates over a 5-year period, may be expected to show a higher value than a shorter-term assessment during a single period of slower flow speed.

[19] During the two epochs studied here, Hektoria and Green glaciers have been the major contributors to the regional mass loss (over 60% of total loss during 2006–2010/11). This is also where the largest discrepancies in the MBM estimates are observed in our study area. The data most needed to reconcile estimates of the mass loss in the Larsen B embayment are bed topography profiles from ice-penetrating radars for the Hektoria and Green glaciers.

6. Conclusion
[20] At 8.9 Gt a⁻¹, our 2002–2011 NLBTG mass loss estimate represents about one third of the overall loss observed with GRACE in the Graham Land of the Antarctic Peninsula [Chen et al., 2009; Ivins et al., 2011]. An implication is that rapid ice loss and surface lowering are occurring elsewhere in the northern Antarctic Peninsula as indicated by other studies [Glasser et al., 2011; Pritchard and Vaughan, 2007; Pritchard et al., 2009]. Our results suggest that differential DEM analysis would provide similar insights on the mass balance for all of Graham Land and similar glaciated regions with mostly unknown ice thickness and spatially varying surface mass balance.

[21] We have re-assessed the glaciers of the Larsen B embayment where variations in published mass balance assessments are largest (up to 300%) and suggest that poorly constrained bedrock topography and net accumulation are the reasons for this range, primarily affecting the MBM method. Our differential DEM analysis shows continuing steady net losses from the Larsen B embayment glaciers overall but with accelerating losses for the northern Hektoria/Green basin.

Table 2. Basin-by-Basin Mass Changes (Gt a⁻¹) From Different Studies in the Larsen B Embayment

<table>
<thead>
<tr>
<th></th>
<th>Rignot et al. [2004]</th>
<th>Rott et al. [2011]</th>
<th>Shuman et al. [2011]</th>
<th>This Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year / Epoch</td>
<td>Mass Budget</td>
<td>Mass Budget</td>
<td>Geodetic</td>
<td>Geodetic</td>
</tr>
<tr>
<td>2003 Hektoria-Green</td>
<td>–16.7 ± 5.0</td>
<td>–1.7 ± 0.6c</td>
<td>–4.2 ± 0.7</td>
<td>–5.6 ± 0.8</td>
</tr>
<tr>
<td>2008 Evans</td>
<td>–0.3 ± 0.1</td>
<td>–1.7 ± 0.3</td>
<td>–0.8 ± 0.2a</td>
<td></td>
</tr>
<tr>
<td>Punchbowl-Jorum</td>
<td>–1.5 ± 0.5</td>
<td>–0.3 ± 0.2</td>
<td>–0.6 ± 0.3</td>
<td>–0.4 ± 0.3</td>
</tr>
<tr>
<td>Crane</td>
<td>–3.8 ± 1.1</td>
<td>–1.8 ± 0.6</td>
<td>–2.3 ± 0.3</td>
<td>–2.4 ± 0.5</td>
</tr>
<tr>
<td>MMP</td>
<td>0.2 ± 0.1</td>
<td>0.2 ± 0.1</td>
<td>0.2 ± 0.3</td>
<td></td>
</tr>
<tr>
<td>All Glaciers</td>
<td>–21.9 ± 6.6</td>
<td>–4.3 ± 1.6</td>
<td>–8.8 ± 1.6b</td>
<td>–9.0 ± 2.1</td>
</tr>
</tbody>
</table>

Notes:
- aNumbers slightly differ from Shuman et al., 2011 because here ice losses are assumed to entirely occur after the March 2002 break-up. Areas of grounded ice that calved are not added to the total to enable appropriate comparison to the MBM.
- The lower uncertainties in 2001–2006 (compared to 2006–2010/11) are due to a smaller area surveyed: only regions below 1000 m a.s.l. are considered. Exclusion of regions at high elevations is justified by their lack of significant elevation changes in the earlier period [Shuman et al., 2011].
- This large decrease in mass loss after 2006 is uncertain because the lower part of Evans Glacier was poorly sampled in 2006.
Acknowledgments. We thank G. Durand, B. Kulessa and four anonymous referees for their comments on earlier versions of the paper. EB acknowledges support from CNES (TOSCA and ISIS proposals), PNTS, and ANR-09-SYSC-001. TAS acknowledges support from NSF-OPP, ANT-0732921, and NASA NNX10AR76G grants. CAS was supported by and ANR-09-SYSC-001. TAS acknowledges support from NSF-OPP, EB acknowledges support from CNES (TOSCA and ISIS proposals), PNTS, and Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets, Nature, 461(7266), 971–975, doi:10.1038/nature08471.

