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NASA EBC and CMC System Development  
− Emphasize temperature capability, performance and long-term durability 
• Highly loaded EBC-CMCs 
• 2700-3000°F (1482-1650°C) turbine and CMC combustor coatings 
• 2700°F (1482°C) EBC bond coat technology for supporting next generation 

– Recession: <5 mg/cm2 per 1000 h 
– Coating and component strength requirements: 15-30 ksi, or 100- 207 MPa 

2400°F (1316°C) Gen I and Gen II  SiC/SiC 
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Step increase in the material’s temperature capability 

3000°F SiC/SiC CMC airfoil 
and combustor 
technologies 

2700°F SiC/SiC thin turbine 
EBC systems for CMC 

airfoils 

2800ºF 
combustor 
TBC 

2500ºF 
Turbine TBC 2700°F (1482°C) Gen III  SiC/SiC CMCs  
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Outline 

• Environmental barrier coating (EBC) system development: needs and 
challenges 
 

• Advanced bond coat development approaches, NASA HfO2-Si bond coat 
systems 

– Focused on oxidation resistance, high temperature strength, 
toughness and creep properties 

 
• Advanced Rare Earth – Silicon based 2700°F+ capable bond coat 

developments 
– Development approaches 
– Oxidation resistance 
– Furnace and thermomecahnical durability 

 
• Summary
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Use Temperature of Environmental Barrier Coatings Limited 
by Interface Reactions 

—  Significant interfacial pores and eutectic phases formation due to the water vapor 
attack and Si diffusion at 1300°C 

—  Heat flux condition further limit the use tempertatures 

Si bond coat after 1350°C, 50 hr 
furnace test in air; 1” dia plasma 
sprayed EBC button specimen 

Hot pressed BSAS+Si  button 
specimen  after 1350°C, 50 hr 

furnace test in air 

MulliteBSAS

Si

SEM images Interface reactions at 1300°C; total 200 hot hours 
BaO-Al2O3-SiO2 ternary phase diagram 

Si bond coat 

Interface Si bond coat melting of 
selected coating systems, under laser 
heat flux tests, 1” dia button specimen 
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NASA EBC and CMC System Development 

─ Current EBCs limited in their temperature capability, water vapor stability and 
long-term durability, especially for advanced high pressure, high bypass turbine 
engines 
 

─ Advanced EBCs also require high strength and toughness 
• Resistance to heat-flux, high pressure  combustion environment, creep-fatigue loading 

interactions 
• Bond coat cyclic oxidation resistance  

 
─ EBCs need improved erosion, impact and calcium-magnesium-alumino-silicate 

(CMAS) resistance and interface stability 
• Critical to reduce the EBC system Si/SiO2 reactivity and their concentration tolerance 

 
─ EBC-CMC systems need advanced and affordable processing 

• Using existing infrastructure and alternative coating production processing systems, 
including Plasma Spray, EB-PVD and Directed Vapor EB-PVD, and/or emerging Plasma 
Spray - Physical Vapor Deposition 

• Affordable and safe, suitable for various engine components 
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Degradation Mechanisms for Si Bond Coat 
—  Silicon bond coat melts at 1410°C (melting point) 
—  Fast oxidation rates (forming SiO2) and high volatility at high temperature 
—  Low toughness at room temperature (0.8-0.9 MPa m1/2; Brittle to Ductile Transition 

Temperature about 750°C) 
—  Low strength and high creep rates at high temperatures, leading to coating 

delamination 
—  Interface reactions leading to low melting phases 

• A more significant issue when sand deposit Calcium- Magnesium –Alumino-Siliacte (CMAS) 
is present 

—  Si and SiO2 volatility at high temperature (with and without moisture) 
 
 

Brittle to Ductile transition in polycrystalline Si 
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Design Requirements for 2700°F Bond Coat Systems 

7 

—  High melting point and thermal stability 
—  Develop slow growing, adherent protective scales 

• High strength and low thermal expansion coefficient scales, and minimum element 
depletion in the bond coat due to the scale formation essential 

—  Provide oxidation and environment protection for SiC/SiC CMC substrate 
• Oxidation resistance in all operating temperature range, up to 1600°C, no pesting 

—  High creep strength and excellent fatigue resistance 
• High resistance to impact, erosion, and CMAS, and environment induced degradations 

—  Excellent bond strengths (important to provide strong bond for the EBC to the 
substrate!) 

—  Thermal expansion coefficient matching to the CMC substrate  
—  Thermal chemical and thermal mechanical compatibility with EBC and CMC 
—  Improved bond coat – CMC interface architecture and integration 
—  Ensure low oxygen activity at the bond coat – CMC interfaces 

• Preferably kinetics controlled and dynamic bond coat systems for durability  
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Advanced High Temperature and 2700°F+ Bond Coat 
Development 

̶ Development approach:  
• Advanced compositions ensuring high strength, high stability, high 

toughness 
• Bond coat systems for prime reliant EBCs; capable of self-healing 

High strength, high 
stability reinforced 

composites: HfO2-Si 
and a series of Oxide-

Si systems

HfO2-Si based and 
minor alloyed systems 
for improved strength 

and stability

Advanced 2700°F 
bond coat systems: 

RE-Si based systems 

Advanced 2700°F bond 
coat systems: RE-Si based 
Systems, grain boundary 

engineering designs and/or 
composite systems -  

HfO2-Si systems Advanced 2700°F+ Bond Coat systems 

Other systems 

Other systems 
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HfO2-Si Bond Coats for Improved Temperature Capability, and 
High Temperature Strength 

Hf-Si-O system 

─ A relatively low cost bond coat system, and APS and EB-PVD processing capable 
─ Excellent oxidation resistance, also ensuring low oxygen activities at the EBC-CMC interface 
─ Upper use temperature 1400°C and can be up to 1482°C 
─ SiO2-HfSiO4-HfO2 phase system at very high temperature 
─ Thermal expansion coefficient ~ 5.5 x10-6 /K 
─ Rare earth metal or other dopants added for improved stability 
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HfO2-Si Bond Coats for Improved Temperature Capability, and 
High Temperature Strength 

─ A relatively low cost bond coat system, and APS and EB-PVD processing capable 
─ Excellent oxidation resistance, also ensuring low oxygen activities at the EBC-CMC interface 
─ Upper use temperature 1400°C and can be up to 1482°C 
─ SiO2-HfSiO4-HfO2 phase system at very high temperature 
─ Thermal expansion coefficient ~ 5.5 x10-6 /K 
─ Rare earth metal or other dopants added for improved stability 

 

HfO2-Si and alloyed  EBC bond coats using 
EB-PVD processing: achieving higher 

temperature capability 

Plasma sprayed HfO2-Si 
EBC bond coat 
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Experimental: Mechanical Specimen Configurations 

Specimen width = 4 mm 

50 mm 

40 mm 

5mm 

20 mm 

—  Flexural specimens with dimensions 4x5x50 mm, machined from hot-pressed air 
plasma spray (APS) HfO2-Si powders (billets size 75mmx50mmx10mm); test 
spans 20 and 40 mm 
•  Using ASTM standards 1161 and 1211 
• Si concentration range from 25 to 70wt% in the HfO2-Si systems 

—  The non-notched bar specimens used for strength, and creep testing 
—  Single edge V-notched beam (SEVNB) specimens used for toughness tests 
—  Test temperature range room temperature, 1200 up to 1500°C 
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Experimental: Oxidation and Durability Tests 

—  Test specimens with dimensions 25 mm diameter disc  specimens for  
 oxidation, laser heat flux and furnace cyclic test (FCT) 
—  Test specimens with dimensions 152x12.7 mm dog-bone, and 76x12.7mm for  
 tensile creep rupture and fatigue tests 
 
 
 • Tests were conducted including  

o Thermogravimetric analysis (TGA) 
o FCT test 
o Laser + steam/CMAS water vapor cyclic test 
o Thermomechnical creep and fatigue  
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Oxidation Resistance of HfO2-Si 
─ TGA weight change measurements in flowing O2 
─ Parabolic oxidation kinetics generally observed 
─ Solid-state reaction is also involved with the systems, and more complex behavior 

at 1400 and 1500°C 
─ Excellent oxidation resistance and improved oxidation resistance  through APS 

plasma spray powder processing optimization 
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High Strength EBC and Bond Coat Composition Development  

– Bond coats and bond coat constituents designed with high strength  to achieve 
the ultimate coating durability, compared with EBCs’ strengths 

– HfO2-Si based systems showed high strength and high toughness 
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High Toughness HfO2-Si Bond Coat Composition 
Development 

– HfO2-Si Bond coats showed high toughness 
• Toughness >4-5  MPa m1/2 achieved 
• Emphasis on improving the lower temperature toughness  
• Annealing effects on improved lower temperature toughness being studied  

15 

0

1

2

3

4

5

0 200 400 600 800 1000 1200 1400 1600

As processed
1300°C 20hr annealed
Si

Fr
ac

tu
re

 to
ug

hn
es

s, 
M

Pa
 m

1/
2

Temperature, °C

May expect further increase 
from anealing

Strength drop due to 
creep strength decrease



National Aeronautics and Space Administration 

www.nasa.gov 

– The composites coatings have improved creep strength, and creep resistance at 
high temperatures 

– Increased HfO2-HfSiO4 contents improve high temperature strength and creep 
resistance 

16 

Effects of Compositions on HfO2-Si Strength and 
Creep Rates 
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HfO2-Si/Ytterbium Silicate EBC System Furnace Cyclic 
Durability Test at 1500°C 

– Coating processed using Triplex Pro plasma spray processing, not necessarily 
fully optimized 

– Long-term furnace cyclic durability tested 1500°C for 500 hr in air 
– EBC with HfO2-Si bond coat adherent (no any spallation) after testing 
– Excellent oxidation resistance in protecting SiC/SiC 
– SiO2 loss in ytterbium silicate EBC (some area became ytterbia), and in the 

HfO2-Si bond coat  
– Some HfO2 containing scales may be stable 

HfO2 containing 
scales  

17 
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Advanced 2700°F+ Bond Coats (Beyond HfO2-Si) 

18 

̶ Development approach:  
• Advanced compositions ensuring high strength, high stability, high toughness 
• Bond coat systems for prime reliant EBCs; capable of self-healing 

High strength, high 
stability reinforced 

composites: HfO2-Si 
and a series of Oxide-

Si systems

HfO2-Si based and 
minor alloyed systems 

systems 

Advanced 2700°F 
bond coat systems: 

RE-Si based systems 

Advanced 2700°F bond 
coat systems: RE-Si 

based Systems, grain 
boundary engineering 

designs and/or composite 
systems -  

Multicomponent RESi systems 
Studied Zr, Hf, Ta, N, Al Dopants 

RESi systems 
HfO2-RE-Si systems 
HfO2-RE-Al-Si systems 

HfO2-Si systems Advanced 2700°F+ Bond Coat systems 
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– Ytterbium, Yttrium and Gadolinium – Silicon or  Silicide systems 
 

• Controlled silicon compositions and oxygen activities to achieve good thermal 
expansion match with SiC/SiC CMCs and EBCs, and high melting points and stability 
 

• Focusing on multicomponent high temperature based systems to ensure high 
temperature capability, oxidation resistance and durability 
 

• Emphasizing chemically and mechanically compatibility with SiC/SiC CMCs and 
various environmental barrier coatings, no free-standing silicon phases in composition 
designs 
 

• Low temperature oxidation resistance and pesting issues are also addressed in the 
developments 

 
 

2700°F+ Advanced EBC Bond Coat Developments: Rare 
Earth Silicon Systems and Effect of Dopants  

19 
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NASA Advanced 2700°F Silicide Based Bond Coats – System 
Processing for Various Component Applications 

– Advanced systems developed with high Technology Readiness Levels (TRL) 
– Composition ranges studied mostly from 50 – 80 atomic% silicon 

• PVD-CVD processing, for composition downselects - also helping potentially develop a low cost CVD 
or laser CVD approach 

• Compositions initially downselected for selected EB-PVD and APS coating composition processing 
• Viable EB-PVD and APS systems downselected and tested; development new PVD-CVD approaches 

 

YSi YbGdYSi GdYSi 
ZrSi+Y YbGdYSi GdYSi 
ZrSi+Y YbGdYSi GdYSi 
ZrSi+Ta YbGdYSi GdYSi 
ZrSi+Ta YbGdSi GdYSi-X 
HfSi + Si YbGdSi GdYSi-X 

HfSi + YSi YbGdSi 

HfSi+Ysi+Si YbGdSi 
YbSi  YbGdSi 

HfSi + YbSi  
YbSi 

GdYbSi(Hf)   

YYbGdSi(Hf) YbYSi 
YbHfSi 
YbHfSi 

YbHfSi 
YbHfSi 

YbHfSi 
YbSi 

HfO2-Si; 
REHfSi 

 

YSi+RESilicate 
YSi+Hf-RESilicate 

9869 Hf-RESilicate 
 
 

Used in ERA 
components as 
part of bond coat 
system 

 
 

10157 Hf-RE-Al-Silicate 
 
 
 
 
 
 
 
 
 

Used also in ERA 
components 
Used in ERA 
components as 
part of bond coat 
system 
 
 
 
 
 

PVD-CVD EB-PVD APS Laser/CVD/PVD 
REHfSi 
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Rare Earth Silicon Systems and Multi-Dopants for Stability  

YbSix (no additional dopant)  
Exposed to 1100°C for 20 h 

 
Undoped material: shows separation of 

Si-rich/silica-rich phase 

(Y,Hf)Six  
1100°C for 20 h 

When dopant included: The Si-rich/silica-rich 
phases converted to more stable HfO2 - 

Hafnium silicate, and yttrium silicate 
containing phases 

– Silicon-rich phase separations can limit high temperature stability 
– Further thermal stability and mechanical strength can be improved by: 

• Composition controls (e.g. optimize silicon contents and addition of dopants) 
• Multi-dopant composition designs for reduced Si/SiO2 activity 

21 
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Oxidation Kinetics of RE-Si Based EBC Systems 
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– Thermogravimetric analysis (TGA) performed at 1500°C in flowing dry oxygen 
– Bond coat fully coated SiC/SiC (CVI) specimens 
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Oxidation Resistance of Doped Rare Earth 
Silicide - Effect of Stoichiometry 
(oxidation vs. atomic percent Si) 

– Thermogravimetric analysis (TGA) in dry O2 at 
1500°C 

– “Protective” scale of rare earth di-silicate formed 
(10-15 micrometers) 
 

SiC 

RESi(O) 

RE2Si2O7-x 

Multicomponent doped RE Silicide 
system after 100 hr exposure at 1500°C 
in O2

Transition region 
between Si-rich 
and silicate regions 

40 �m 

23 
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Furnace Cycle Test Results of Selected RESi and ZrSi + Dopant 
Bond Coats 

- Testing in Air at 1500°C, 1 hr cycles 
– Multi-component systems showed excellent furnace cyclic durability at 1500°C 

24 
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High Stability and CMAS Resistance  Observed from the Rare 
Earth Silicon High Melting Point Coating Compositions 

– Demonstrated CMAS resistance 
of RESi at 1500°C, 100 hr 

Area A 

Area B 
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- Selected EBC system processed by EB-PVD and plasma Spray:  Doped RE Si 
(+Hf) Bond Coat + advanced multi-component EBC Top Coat on woven SiC/SiC 
CVI-SMI CMC 

- Creep testing conducted with 15 ksi load and laser thermal gradient 

26 

Processing Advancements and Improvements  
for RE Si Bond Coats in EBC Systems 

EBC System after 100 hr creep testing with 2700°F coating 
surface temperature and 2500°F CMC back temperature 

RE(Hf) silicate 
EBC Top Coat 

RESi Composite Bond Coat 
System:  Striations indicate 
EB-PVD layers with 
compositional variations 
 
Excellent compatibility  

Bond coat remains generally well-
adhered to CMC substrate after the 
CMC failure, except some top bond 
coat composition segregation or 
processing defective regions   
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Fatigue Tests of Advanced Bond Coats and EBC Systems 

Tested, SA Tyrannohex with bond coat only 

Tested, SA Tyrannohex with EBC system 188 

• Uncoated CMCs, Bond coat/CMC and EBC/Bond Coat/CMC systems tested flexural fatigue 
tests with 15 Ksi loading 

• Heating provided by steady-state laser 
• Strength and Fatigue cycles tested 
• Fatigue tests at 3 Hz, 2600-2700°F, stress ratio 0.05, surface tension-tension cycles 

SiO2 

Achieved long-term fatigue lives 
(near 500 hr) with EBC at 2700°F 

Tested specimen cross-sections 
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Summary 
• Advanced HfO2-Si and Rare Earth - Silicon based bond coat 

compositions developed 
• The coatings showed excellent oxidation resistance and protection 

for CMCs 
• HfO2-Si showed excellent strength, fracture toughness, its upper 

use temperature may be limited to 1400°C due to higher silica 
activity, in particular in the CMAS environments 

• The initial silicon content range of the Rare Earth-Silicon coatings 
was down-selected, multicomponent systems designed for further 
improved stability 

• The rare earth – silicon based coatings showed 1500°C operating 
temperature viability and durability on SiC/SiC ceramic matrix 
composites 

• The rare earth – silicon based coatings compositions will be down-
selected; and further processing optimization planned 
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Use Temperature of Environmental Barrier Coatings Limited 
by Interface Reactions - Continued 

—   Various advanced EBC/mullite/mullite+BSAS/Si coating systems heat flux tested 
—   Accelerated spallation under heat flux tests observed 
—   Significantly reduced cyclic durability due to bond coat melting 
 
  

Interface Si bond coat melting of 
selected coating systems, under 
laser heat flux tests, 1” dia button 

specimen 

Effect of interface temperatures on heat flux cyclic life 
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X-ray Phase Studies of Hot Pressed HfO2-Si systems  
─  X-ray phase showed HfO2-HfSiO4 some with silica phase near surface 

 

Sample:  HfO2-Si 1200°C, 50 hr 
 
Chemical Formula Compound Name Crystal System Ref. Code SemiQuant [%] 
Hf O2 Hafnium Oxide Monoclinic 04-006-7680 27 
Hf ( Si O4 ) Hafnium Silicate Tetragonal 04-008-6813 7 
Si Silicon Cubic 04-006-2527 66 

 
 
Sample: HFO2-Si 1300°C, 100 hr 
 
Chemical Formula Compound Name Crystal System Ref. Code SemiQuant [%] 
Si Silicon Cubic 04-006-2527 46 
Hf O2 Hafnium Oxide Monoclinic 04-006-7680 23 
Hf ( Si O4 ) Hafnium Silicate Tetragonal 04-008-6813 15 
Si O2 Silicon Oxide Tetragonal 04-012-1126 16 
 
 
Sample:  HfO2-Si 1400°C, 50 hr 
 
Chemical Formula Compound Name Crystal System Ref. Code SemiQuant [%] 
Si Silicon Cubic 04-006-2527 47 
Hf O2 Hafnium Oxide Monoclinic 04-006-7680 20 
Hf ( Si O4 ) Hafnium Silicate Tetragonal 04-008-6813 11 
Si O2 Silicon Oxide Tetragonal 04-012-1126 22 

 

HfSiO4 

HfO2 

Si 

Polished specimen microstructure  
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Advanced APS HfO2-Si Processing Optimizations 
– Design of Experiments (DoE) to help achieve improved density and phase 

distributions – Processing performed using Triplex Pro, at Sulzer Metco
 

32 

Spray parameters optimized 
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Effects of Compositions on Strength and 
Creep Rates - Continued 

– The composites coatings have high strength, and improved creep resistance at 
high temperatures 

– Increased HfO2-HfSiO4 contents improve high temperature strength and creep 
resistance 

-  AE 10218 is HfO2-30wt%Si composite APS powder pressed specimens. 
- AE 10349 is HfO2-70wt%Si composite APS powders 
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Creep Behavior of HfO2-Si Bond Coat – Stress Dependence 
– Creep rate stress dependence studied 
– Stress exponents determined to be 2.6 
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HfO2-Si EBC Durability Studies at Up to 1500°C 
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– APS and EB-PVD processing optimizations; long-term durability tested at  1400 – 
1500°C
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Tested 250h 
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HfO2-Si Bond Coat 1400°C Thermal Gradient CMAS Tests 

– High concentration SiO2 region may have lower CMAS resistance 

36 

CMAS region 
SiO2 


