Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)

Charles Engler
NASA Goddard Space Flight Center

Claef Hakun, Willie Barber
NASA Goddard Space Flight Center

John Canham
ATK Space Systems

42nd Aerospace Mechanisms Symposium
May 15, 2014
Overview: ExoMars Mission Overview

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch Date</td>
<td>2018</td>
</tr>
<tr>
<td>Launch Vehicle</td>
<td>Proton</td>
</tr>
<tr>
<td>Mission Cruise Duration</td>
<td>10 months</td>
</tr>
<tr>
<td>Operation Duration</td>
<td>180 sols (~6months)</td>
</tr>
<tr>
<td>Nominal Science</td>
<td>~80 sample analyses</td>
</tr>
<tr>
<td>Rover Mass</td>
<td>300 kg</td>
</tr>
<tr>
<td>Rover Mobility Range</td>
<td>Several km</td>
</tr>
<tr>
<td>Planetary Protection</td>
<td>Class IV</td>
</tr>
<tr>
<td>Power System</td>
<td>Solar Panels</td>
</tr>
</tbody>
</table>

- Managed by ESA
- Instrument Payload being built by Thales Alenia Space – Italia (TAS-I)
• MOMA is a Mass Spectrometer designed to look for a wide range of organic molecules on Mars
• Led by the PI in Gottingen Germany
 – Includes partners from United States, Italy, Germany
• GSFC is delivering a portion of MOMA designated: MOMA-MS
 – Includes the Mass Spectrometer, plumbing and supporting Electronic boxes.
Overview- Aperture Valve placement within MS

Functional purpose:

Provides a path to the ion trap that can be opened or closed on-demand.

Transfers ions formed from laser desorption from Mars ambient (7 Torr) into the ion trap via a conductance limiting capillary (Ion Tubes)

Provides a seal to the mass spectrometer during mass measurements.
MOMA Aperture Valve

Driving Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure leak rate</td>
<td>10E-3 cc/sec He</td>
</tr>
<tr>
<td>Operational cycle life</td>
<td>125,000 cycles</td>
</tr>
<tr>
<td>Operational temperature</td>
<td>-20°C to 50°C</td>
</tr>
<tr>
<td>Valve open/close time</td>
<td><50ms</td>
</tr>
<tr>
<td>Mass</td>
<td>90 grams</td>
</tr>
<tr>
<td>Failure Mode</td>
<td>Fail closed</td>
</tr>
<tr>
<td>Power</td>
<td>5 watts peak</td>
</tr>
<tr>
<td>Material limitations</td>
<td>Non-magnetic</td>
</tr>
</tbody>
</table>
Issue: PVD Coatings on titanium base material

Advantages of PVD coatings
• TiN and DLC exhibit desirable combination of low coefficient of friction and high micro-hardness >80Rc - above the hardness of tool steel.
• Thin coating (0.0001”) produces negligible change in part dimension.

Problems discovered during early breadboard design
• Delamination of TiN coating within the bore of the valve body.
• Multi-layer PVD coatings such as TiN over DLC produced poor adhesion.

Lessons learned
• The PVD process used to apply TiN onto internal cavities and bore holes does not produce acceptable adhesion of the TiN film
• Consider having the vendor provide a witness sample prior to coating parts.
Issue: Solenoid thermal control in near vacuum

Problems discovered during initial vacuum chamber testing
• Thermal isolation of the valve from the test chamber at 7 torr caused the solenoid to overheat.
• Non-metal solenoid parts warped from excessive heat causing solenoid failure.

Lesson learned
• Thermal strap was necessary to avoid solenoid failure.
• Thermal heat sink was incorporated into ETU and Flight valve designs.

Solenoid thermal control
• Operating profile generates .27W average which must be dissipated.
• Size thermal strap for hot case then cold case to verify the valve does not become too cold.
Issue: Mechanical assembly using Small fasteners

Problems discovered during vibration and life testing
• Estimating proper preload of #1, #2 size fasteners was not exact.
• Threaded solenoid lost preload during repeated open /close cycles of the valve.

Lesson learned
• Arathane 5753 A/B applied to threads eliminated loss of fastener preload.
• Locking Helicoils were successfully used when Arathane was prohibited.

Sine vibration test 20g, (5-100 Hz.) 2 min.
Incorporation of lessons learned

• All threaded features are secured with locking helicoils.
• PVD coatings (TiN and DLC) eliminated in favor of CRES alloy steels.
• Thermal strap was engineered into valve design.
• Plastic solenoid components eliminated in favor of metal parts.
Salient features of ETU /Flight Aperture Valve

- Efficient sealing feature accomplished using check-ball type design.
- Compact footprint 96mm x 24mm x 20mm (L x W x H). @ 102g.
- Sealing capability > 1E-6 cc/sec He.
- High reliability >280,000 cycles.
Conclusions - Lessons Learned

Coatings
• The PVD process used to apply TiN onto internal cavities and bore holes does not produce acceptable adhesion of the TiN film
• Consider having the vendor provide a witness sample prior to coating parts.

Thermal control
• Thermal control was necessary to avoid solenoid failure at 7 torr atmosphere.
• Thermal heat sink was incorporated into ETU and Flight valve designs.

Mechanical fasteners
• Arathane 5753 A/B applied to threads eliminated loss of fastener preload.
• Locking Helicoils were successfully used when Arathane was prohibited.