Spot and Runway Departure Advisor (SARDA)

Yoon Jung
NASA Ames Research Center
September 16, 2013
Topography of Airport and Surface Management

- 8 major airports – over $2B of excess fuel consumption over 2010 – 2030
- JFK – 15,000 hours of taxi delays per year
- BOS – 6,570 hours of taxi delays per year

Surface traffic management complicated by:
- Uncertainties
- Lack of common situational awareness and coordination
- First-come, first served operations
Intelligent Scheduling is the Key to Efficient Surface Management

SARDA is the NASA’s approach for solving this problem.

- Optimizes at a system level by minimizing overall delay
- Plans at a detailed trajectory level for aircraft movement (gate, ramp, taxiways, and runways)
- Uses a fast algorithm suited to real-time operations
- Accounts for departures and arrivals
- Connects the airport tower, en route facility, and the airlines
- Adaptable to other airports with different configurations
SARDA Concept

- Reduce taxi delay
- Reduce fuel consumption and emissions/noise
- Increase predictability

- Runway sequence & time

Tower

FAA/Airport

Ramp

Gate push-back Management

Aircraft

9/16/13
SARDA Scheduler Methodology

Tower (FAA)
- Runway Time Predictor
- Runway Scheduler
- Spot Time Calculator

Stage 1

Data Exchange

Ramp (Airlines)
- Ramp Management System
- Push-back Time Predictor
- Push-back Time Calculator

Stage 2

Stage 3

- Push-back times (scheduled/ready/actual)
- Airline constraints (e.g., priority)
- Target spot times

Handles uncertainties by frequent updates and freezing sequence for spot release and takeoffs/crossings

9/16/13
Recent Results
SARDA HITL Simulation

- Two major simulations for DFW (2010, 2012)
- DFW experienced controllers
- Data collected on performance and controllers workload
Taxiing Delay for Departures
(Actual taxi time – Unimpeded Taxi Time)

- Observed reduction in taxiing delay statistically significant
- Reduction in mean as well as variance
- Reduction in variability and increase in predictability

9/16/13
Overall Delay
(Actual Takeoff Time – Scheduled Takeoff Time)

- SARDA resulted in statistically significant reduction in overall delay (p \sim 0.02)
- Overall system delay reduced by an average of 1 minute per aircraft
• Observed reduction in fuel consumption: 23% average reduction in medium traffic and 33% average reduction in heavy
• SARDA reduces variability in fuel consumption
SARDA for CLT Ramp Operations
Charlotte Airport Field Testing (2015)

Source: US Airways

9/16/13
Ramp Sector Controller Workstation
(Illustration Purpose Only)
US Airways-NASA Collaboration

• Goal - To develop and test a prototype DST for US Airways CLT ramp controllers for efficiency enhancement

• HITL simulations in three phases:
 – Phase 1: Building/testing core functions
 – Phase 2: Benchmark test
 – Phase 3: Follow-on tests

• Target dates:
 – Oct 2013 Completion of first HITL simulation
 – Aug 2014 Completion of benchmark test
 – Oct 2014 Completion of system integration at US Airways ramp tower
 – Sept 2015 Completion of field tests
Collaboration with DLR and NLR
NASA-DLR Collaboration

• NASA’s expertise
 – Surface decision support tool (e.g., SARDA)
 – Fast-time simulation and human-in-the-loop simulation capabilities
 – Flight deck based research on taxi conformance and trajectory-based surface operations

• DLR’s expertise
 – Research prototype of taxi management (e.g., Taxi Routing of Aircraft: Creation and Controlling (TRACC))
 – Arrival/departure management tools (AMAN/DMAN) and coordination

• Collaboration tasks
 – Compare surface management concepts between DLR and NASA
 – Develop a common integrated surface concept of operations
 – Evaluate DLR and NASA surface tools/algorithms in the other’s environment:
 • DLR models a US airport for testing TRACC
 • NASA models a German airport for testing NASA surface algorithm

9/16/13

Ground Controller Advisories by SARDA (Dallas/Ft. Worth Airport)

TRACC (Hamburg): a taxi route of a departure aircraft shown with speed advisories
NASA-NLR Collaboration

• Goal: Integrate NLR’s taxiway movement conflict detection technology with SARDA for a selected US Airport and conduct a HITL at NASA’s FFC.
• NASA technology – SARDA and high-fidelity HITL simulation
• NLR technology – Virtual Block Control (VBC) and Separation Bubbles (SBT)
• Collaboration tasks
 – Model a US Airport in NLR’s simulation environment and implement VBC in low visibility condition
 – Integrate NLR’s SBT in NASA’s Surface Management System (SMS)
 – Conduct HITL simulations at FFC and shadow mode tests
Questions?