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Abstract. We derive free-tropospheric NO2 volume mixing ratios (VMRs) and stratospheric column

amounts of NO2 by applying a cloud slicing technique to data from the Ozone Monitoring Instru-

ment (OMI) on the Aura satellite. In the cloud-slicing approach, the slope of the above-cloud NO2

column versus the cloud scene pressure is proportional to the NO2 VMR. In this work, we use a

sample of nearby OMI pixel data from a single orbit for the linear fit. The OMI data include cloud5

scene pressures from the rotational-Raman algorithm and above-cloud NO2 vertical column density

(VCD) (defined as the NO2 column from the cloud scene pressure to the top-of-the-atmosphere) from

a differential optical absorption spectroscopy (DOAS) algorithm. Estimates of stratospheric column

NO2 are obtained by extrapolating the linear fits to the tropopause. We compare OMI-derived NO2

VMRs with in situ aircraft profiles measured during the NASA Intercontinental Chemical Transport10

Experiment Phase B (INTEX-B) campaign in 2006. The agreement is generally within the esti-

mated uncertainties when appropriate data screening is applied. We then derive a global seasonal

climatology of free-tropospheric NO2 VMR in cloudy conditions. Enhanced NO2 in the free tro-

posphere commonly appears near polluted urban locations where NO2 produced in the boundary

layer may be transported vertically out of the boundary layer and then horizontally away from the15

source. Signatures of lightning NO2 are also shown throughout low and middle latitude regions in

summer months. A profile analysis of our cloud slicing data indicates signatures of uplifted and

transported anthropogenic NO2 in the middle troposphere as well as lightning-generated NO2 in

the upper troposphere. Comparison of the climatology with simulations from the Global Modeling

Initiative (GMI) for cloudy conditions (cloud optical thicknesses > 10) shows similarities in the20

spatial patterns of continental pollution outflow. However, there are also some differences in the sea-

sonal variation of free-tropospheric NO2 VMRs near highly populated regions and in areas affected

by lightning-generated NOx. Stratospheric column NO2 obtained from cloud slicing agrees well

with other independently-generated estimates, providing further confidence in the free-tropospheric

results.25
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1 Introduction

Tropospheric nitrogen dioxide (NO2) is mainly produced by fossil fuel combustion, biomass burn-

ing, and soil emission near the Earth’s surface and by lightning and aircraft emissions in middle and

upper troposphere. NO2 is an important tropospheric constituent, because it is both a pollutant and

climate agent. It has adverse effects on human health (Brook et al., 2007) and is one of six criteria30

pollutants designated by the US Environmental Protection Agency (EPA). It is contributes to the

formation of ozone, another EPA criteria pollutant. NO2 also has both direct and indirect radiative

effects. The direct effect results from NO2 absorption of incoming sunlight in the ultraviolet (UV)

and visible (VIS) spectral range (e.g., Solomon et al., 2007; Vasilkov et al., 2009). Because NO2 is

an ozone precursor and affects tropospheric concentrations of methane, it also has indirect short- and35

long-wave radiative effects (e.g. Fuglestvedt et al., 2008; Wild et al., 2001; Shindell et al., 2009).

NO2 has distinct absorption features in the UV/VIS (primarily at blue wavelengths) that can

be remotely sensed by satellite spectrometers using Differential Optical Absorption Spectroscopy

(DOAS) techniques. For example, tropospheric vertical column densities (VCDs) of NO2 have

been estimated using spectral radiance measurements from the Global Ozone Monitoring Experi-40

ment (GOME) (Richter and Burrows, 2002), SCanning Imaging Absorption spectroMeter for At-

mospheric CHartographY (SCIAMACHY) (Richter et al., 2005), the Ozone Monitoring Instrument

(OMI) (Boersma et al., 2008, 2011; Bucsela et al., 2006, 2008), and the Second Global Ozone Moni-

toring Experiment (GOME-2) (Munro et al., 2006). The retrieved tropospheric columns of NO2 have

been evaluated with aircraft, ground-based, and balloon measurements. For example, OMI-derived45

VCDs show moderately good agreement with aircraft measurements from the NASA Intercontinen-

tal Chemical Transport Experiment-A (INTEX-A) and -B (INTEX-B) Experiment (Bucsela et al.,

2008; Boersma et al., 2008, 2011), ground-based direct-sun DOAS measurements (Herman et al.,

2009), and multi-axis DOAS measurements (Celarier et al., 2008; Hains et al., 2010).

With their global coverage, satellite tropospheric column estimates have provided important infor-50

mation related to tropospheric NOx chemistry and transport. Satellite retrievals show decreases of

NO2 tropospheric columns over the United States in recent years (Russell et al., 2012; Duncan et al.,

2013) and Europe (Castellanos and Boersma, 2012). These reductions result from emission controls

and the economic recession. Reductions in NO2 were also observed over Beijing and the surround-

ing areas during the 2008 olympic and paralympic games (Witte et al., 2009). Lamsal et al. (2013)55

showed that OMI-derived surface NO2 concentrations are highly correlated with urban population,

but that the NO2 to population relationship is geographically dependent. Satellite measurements of

tropospheric NO2 columns have also been utilized to study sources and long range transport of NOx

in conjunction with chemical transport models (e.g., Martin et al., 2003, 2006; Zhang et al., 2007;

Beirle et al., 2004, 2011; Jaeglé et al., 2005; Frost et al., 2006; Boersma et al., 2008; Lin et al.,60

2010; Russell et al., 2010). Top-down approaches using satellite measurements provide NOx source

constraints for regional- and global- scale chemical transport models (Martin et al., 2003; Choi et
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al., 2008; Lamsal et al., 2010).

There have been only a few studies that have utilized cloudy satellite NO2 observations, and they

have primarily focused on lightning-generated NOx (e.g., Boersma et al., 2005). Cloudy data are65

typically discarded in most studies that use satellite-derived tropospheric NO2 columns, because

clouds screen the near-surface from observation. However, the screening property of clouds can be

exploited to provide unique estimates of NO2 concentrations in the free troposphere using cloud-

slicing techniques. It is otherwise difficult to separate the boundary layer portion of the NO2 column

from the free-tropospheric contribution. Cloud slicing can also be used to estimate stratospheric70

NO2 burdens. Ziemke et al. (2001, 2003, 2005, 2009) pioneered cloud slicing approaches to esti-

mate free tropospheric O3 concentrations as well as stratospheric column amounts of O3. The ozone

derived from cloud slicing has been validated by extensive comparisons with ozonesondes (Ziemke

et al., 2003) and Microwave Limb Sounder (MLS) data (Ziemke et al., 2009). Ziemke et al. (2010)

and Ziemke and Chandra (2010) subsequently derived tropospheric and stratospheric ozone clima-75

tologies, and Ziemke et al. (2010) developed the ozone El Niño-Southern Oscillation (ENSO) index

that has been compared with chemistry-climate simulations (Oman et al., 2013).

Measurements of NO2 in the free-troposphere are sparse. Aircraft in situ measurements, lidar

observations, and balloon-sonde soundings have been confined mainly to field campaigns that are

limited in spatial and temporal extents. UV/VIS limb soundings provide vertical profiles of NO2,80

but the measurements are limited to the stratosphere (Bovensmann et al., 1999).

Cloud-slicing of NO2 from satellite measurements can potentially provide additional information

about spatial and temporal variations in free tropospheric NO2 concentrations. Model studies show

that lightning NOx production contributes to free tropospheric NO2 abundances, but magnitudes

and distributions are still largely unknown; in particular, vertical distributions of lightning NOx are85

dependent upon the characteristics of the convection parameterizations in the models (Choi et al.,

2005, 2008; Allen et al., 2012; Martini et al., 2011). The NO2 lifetime in the free troposphere (up

to a week or more) allows for intercontinental transport of uplifted anthropogenic and lightning-

generated NO2 (e.g., Li et al., 2004; Wang et al., 2006; Zhang et al.,, 2008; Walker et al., 2010).

While this transport has been simulated, global NO2 observations in the free troposphere have not90

been available for extensive evaluation. In addition, knowledge of the distributions of NO2 in the

free troposphere is important for calculations of its anthropogenic radiative forcing (e.g. Fuglestvedt

et al., 2008; Wild et al., 2001; Shindell et al., 2009).

In this study, we use OMI to infer free tropospheric NO2 VMRs and stratospheric column amounts

of NO2. To derive these quantities, we use the OMI-inferred above-cloud NO2 columns and cloud95

parameters from highly cloudy scenes. We evaluate the derived OMI NO2 VMRs with available

aircraft data from the NASA INTEX-B campaign. We derive a global seasonal climatology of free

tropospheric NO2 VMRs from OMI. For reference, we show an example of a comparison with NO2

fields simulated by a chemical-transport model, the Global Modeling Initiative (GMI). We also con-
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struct coarse profiles for several regions with sufficient cloud pressure variability. Finally, we infer100

seasonal, zonal-mean stratospheric column amounts of NO2 and compare them with independent

estimates including simulations from GMI.

2 Data description

2.1 Space-based measurements from OMI

OMI is a UV/VIS grating spectrometer that flies aboard the NASA Aura spacecraft (Levelt et al.,105

2006). Aura is in a sun-synchronous orbit with a local equator crossing time of 13:35 ± 0:05 (as-

cending node). OMI provides daily global coverage with a nadir pixel size of approximately 13×24

km2 and a swath width of about 2600 km. It has separate channels for UV and VIS observations.

The OMI spectral resolutions in the VIS and UV channels are 0.63 and 0.45 nm, respectively. An

obstruction outside the instrument (known as the “row anomaly”) has reduced the swath coverage110

starting in May 2008. In order to avoid the row anomaly, we focus on OMI data obtained from

2005–2007.

2.1.1 OMI cloud scene pressure

OMI has two independent cloud retrieval algorithms. They are described in detail by Stammes

et al. (2007). Here, we provide a brief explanation of these algorithms. One algorithm uses the115

collision-induced O2-O2 absorption band near 477 nm in the VIS channel; its official product name

is OMCLDO2 (Acarreta et al., 2004; Sneep et al., 2008). The other makes use of the filling-in

effect of rotational Raman scattering (RRS) at wavelengths from 345 to 354 nm in the UV-2 channel

(OMCLDRR) (Joiner and Vasilkov, 2006; Vasilkov et al., 2008).

Both algorithms use the Mixed Lambertian Equivalent Reflectivity (MLER) model that accurately120

reproduces the observed Rayleigh scattering or atmospheric absorption in a cloudy scene (Koele-

meijer and Stammes, 1999; Ahmad et al., 2004). The MLER model utilizes the independent pixel

approximation; it treats a measured cloudy pixel radiance (Im) as a weighted sum of two indepen-

dent subpixels: clear (Iclr) and cloudy (Icld). The clear and cloudy subpixels are weighted by an

effective cloud fraction (fc), i.e.,125

Im = Iclr(Pterrain) · (1− fc)+ Icld(Pc) · fc, (1)

where Pterrain is the terrain pressure and Pc is the cloud optical centroid pressure; Pc can be con-

sidered as a reflectance-weighted pressure located inside a cloud (Vasilkov et al., 2008; Joiner et al.,

2012). This is distinct from the cloud-top pressure derived from thermal infrared measurements. To

model Icld and Iclr, clouds and the Earth’s surface are treated as Lambertian reflectors (i.e., through130

which no light is transmitted). For the clear-sky contribution, the surface LER is taken from a pre-

computed climatology that varies in space and time. The Lambertian clouds are treated as having a

5



fixed albedo of 0.8. In scenes containing transmissive clouds with an overall LER < 0.8, fc < 1; the

clear subpixel contribution (first term in the right-hand side of Eq. 1) accounts for light transmitted

through the cloud. We also note that fc is different from the geometric cloud fraction as it is designed135

to account for cloud transmission within the context of the MLER model. We have found that fc

is practically spectrally invariant over the US/VIS wavelengths considered here. In the OMCLDRR

algorithm, fc is retrieved by inverting Eq. 1 at a wavelength unaffected by RRS. Then Pc is retrieved

to be consistent with the observed amount of RRS filling-in.

We also make use of a wavelength-dependent quantity known as the cloud radiance fraction (fr),140

defined as the fraction of radiance contributed by clouds (and aerosol). Within the context of the

MLER model, fr is computed as

fr =
Icld(Pc) · fc

Im
. (2)

Cloud optical centroid pressures from OMCLDO2 and OMCLDRR are very similar, particularly

for pixels with high values of fc and fr (Joiner et al., 2012). However, there are some subtle dif-145

ferences, particularly over the Pacific where there is a high incidence of multi-layer clouds. As a

result, cloud slicing NO2 VMRs derived with the two cloud products exhibit some differences in

spatial patterns, particularly over equatorial pacific and Gulf of Mexico. In this work, we use Pc

from OMCLDRR. For reference, we show sample results that use OMCLDO2 Pc in Appendix D.

2.1.2 OMI Above-cloud column NO2150

NO2 slant column densities (SCD) are retrieved from solar backscattered radiances in the VIS chan-

nel with a spectral fitting window of 405-465 nm. These data are provided in the OMNO2A product

(Boersma et al., 2011). Fitting errors of NO2 SCDs range from 0.3–1 × 1015 cm−2. There is evi-

dence that NO2 SCDs are positively biased by ∼ 25% (Krotkov, 2013); therefore our estimates from

cloud slicing will be biased by the same amount.155

Here, we divide the OMI NO2 SCD by the geometric air mass factor (AMFgeometric) to obtain

estimates of NO2 VCDs in highly cloudy conditions. AMFgeometric is given by

AMFgeometric = sec(SZA)+ sec(VZA), (3)

where SZA and VZA are the solar and view zenith angles, respectively. AMFgeometric is appropri-

ate for use in an atmosphere where the effects of Rayleigh scattering are relatively small. This is160

generally the case for highly cloudy observations at NO2 wavelengths at moderate SZAs.

It is useful at this point to introduce the concept of cloud scene pressure (Pscene) given by

Pscene = fr ·Pc +(1− fr) ·Pterrain. (4)

The derived NO2 VCD in a cloudy pixel can be interpreted as the total column from Pscene to the top-

of-the-atmosphere (i.e., the total column above Pscene). Eq. 4 is derived by assuming that the NO2165
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profile is vertically uniform between Pterrain and Pc (Joiner et al., 2009). Because this condition will

not be met for NO2 in highly polluted regions, here we use only pixels where fr > 0.9. For these

pixels, the below-cloud contribution to the observed VCD (i.e., from the second term on the right

hand side of Eq. 4) is small and Pscene � Pc. Like Pc, Pscene is located below the physical cloud top

altitude. Henceforth we refer to the derived NO2 VCD in a cloudy scene (NO2 VCD = NO2 SCD /170

AMFgeometric) as the above-cloud NO2 VCD.

2.1.3 OMNO2B estimates of Stratospheric and Tropospheric NO2 VCDs

Stratospheric NO2 VCDs are estimated and reported in the OMNO2B product (Bucsela et al., 2013).

We use these estimates as an independent check on our derived stratospheric NO2 VCDs from cloud

slicing. The OMNO2B procedure for estimating stratospheric VCDs is explained in detail by Buc-175

sela et al. (2013). Here we provide a brief explanation of the procedure. First, an initial VCD is

obtained by dividing the NO2 SCD (Sect. 2.1.2) by a stratospheric air mass factor (i.e., the air mass

factor is calculated using radiative transfer, assuming that all NO2 is contained in the stratosphere).

Then, the stratospheric VCD is estimated for two cases: (1) In clean areas (with small amounts

of tropospheric NO2), stratospheric VCDs are obtained by subtracting GMI estimates of the tropo-180

spheric column from the initial VCD. Spatial smoothing is then applied to the resulting geographic

field; (2) Where there is substantial tropospheric NO2 pollution, the stratospheric VCDs are esti-

mated using spatial interpolation from the surrounding clean regions. Tropospheric NO2 VCDs are

then estimated by taking the differences between the total and stratospheric SCDs and converting

them to VCDs using appropriate stratospheric and tropospheric AMFs.185

2.2 NO2 in-situ measurements from NASA DC-8 aircraft during INTEX-B

We evaluate OMI NO2 cloud slicing results using INTEX-B aircraft in situ NO2 measurements.

INTEX-B was an atmospheric field campaign conducted in the spring of 2006. Its major goals

included (1) understanding transport and evolution of Asian pollution and its implications for air

quality, and (2) validating space-borne retrievals of tropospheric composition including those from190

OMI (Singh et al., 2009). INTEX-B NO2 data were obtained using the University of California at

Berkeley Laser-Induced Fluorescence instrument (TD-LIF) on the NASA DC-8 aircraft in 1 second

intervals (Thornton et al., 2000; Perring et al., 2010; Bucsela et al., 2008). At 1 Hz, the mixing ratio

observations have precisions ranging from ±23 pptv at 1000 hPa to ±46 pptv at 200 hPa at a signal

to noise ratio of 2.195

2.3 GMI model simulation

We use GMI chemical transport model simulations for comparison with our NO2 cloud slicing re-

sults. A detailed model description is provided in Duncan et al. (2007) and Strahan et al. (2007).

Here, we provide a brief explanation of the model. The model is driven by Goddard Earth Observing
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System 5 (GEOS-5) meteorological fields (Rienecker et al., 2011). The GMI spatial resolution is200

2° latitude× 2.5 ° longitude. The GMI vertical extent is from the surface to 0.01 hPa, with 72 levels;

vertical resolution ranges from ∼150 m in the boundary layer to ∼1 km in the free troposphere and

lower stratosphere. Model outputs are sampled at the local time of the Aura overpass.

The GMI chemistry combines stratospheric chemical mechanisms (Douglass et al., 2004) with

detailed tropospheric O3-NOx-hydrocarbon chemistry that has its origins in the Harvard GEOS-205

Chem model (Bey et al., 2001). In addition to chemistry, the model includes various emissions

sources, aerosol microphysics, deposition, radiation, advection, and other important chemical and

physical processes including lightning NOx production (Allen et al., 2010).

In this study, we extract GMI NO2 concentrations/burdens for four different sets of conditions

and vertical ranges (three tropospheric and one stratospheric): (1) tropospheric NO2 VMRs for210

heavily cloudy conditions (cloud optical thickness τ > 10), (2) tropospheric NO2 VMRs for all-sky

conditions, (3) lightning contribution to the tropospheric NO2 VMRs, and (4) stratospheric column

NO2. The contribution of lightning to tropospheric NO2 is obtained by subtracting a no-lightning

run from the full run with lightning for all-sky conditions. For comparison with OMI cloud slicing

tropospheric VMRs, we average the GMI NO2 VMRs over the appropriate OMI scene pressure215

range.

3 Cloud slicing technique

The cloud slicing technique takes advantage of optically thick clouds to estimate a VMR of a target

trace gas in the free troposphere between the clouds (Ziemke et al., 2001, 2003). We infer NO2

VMRs using the slope derived from linearly fitting the collocated OMI above-cloud column NO2220

to cloud scene pressures. Figure 1 illustrates a simple example of this technique (not to scale). We

require at least two nearby above-cloud NO2 VCDs for different cloud scene pressures as in Fig. 1-

(a). The two OMI measurements are shown in a pressure-VCD coordinate plane in Fig. 1-(b). NO2

VCD (VCDNO2
) between the two pressure levels P1 and P2 (P1 < P2) can be derived by integrating

the NO2 VMR (VMRNO2
) over pressure from P1 to P2, i.e.,225

VCDNO2

P2
P1 =

Rair

kBg
×

P2∫

P1

VMRNO2
(P ) dP, (5)

where Rair is the gas constant, kB is the Boltzmann constant, and g is the gravitational acceleration.

Assuming a constant mixing ratio over the range P1 to P2 in Eq. 5, the mean NO2 VMR in this

pressure interval is given by

VMRNO2
=

ΔVCD

ΔP

kBg

Rair
. (6)230

From this relationship, the NO2 VMR in the pressure range of OMI cloud measurements is pro-

portional to the fitted slope of NO2 VCD versus cloud scene pressure, as shown in Fig. 1-(c). The
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confidence interval of NO2 VMR also can be derived from the linear fit if more than two observa-

tions are available. In Fig. 1-(c), we show the pressure range of the NO2 VMR (vertical error bar) as

well as the confidence interval (horizontal error bar).235

In addition, a stratospheric column NO2 can be derived by extrapolating the linear fit to the

tropopause as shown in Fig. 1-(d). This estimate is based on the assumption that the mixing ra-

tio of NO2 remains constant from the lowest cloud pressure to the tropopause. By assuming a

uniform free tropospheric NO2 VMR, we limit the number of retrieved parameters to 2 (slope and

y-intercept, related to free-tropospheric VMR and stratospheric VCD, respectively). This simplifies240

the retrieval and its error analysis.

While the cloud slicing technique derives the free tropospheric NO2 VMR without the need for

a prescribed stratospheric column or other a priori information, it relies on several assumptions and

conditions. The method works well only with a relatively large number of nearby cloudy OMI

pixels that have a sufficient variation in cloud pressure. We also note that the derived NO2 VMR245

information is based on the assumption that NO2 is vertically and horizontally well mixed in the

given pressure range and spatial extent of the OMI pixel collections. In addition, we assume that

the stratospheric column remains constant during the time period and over the area of the OMI pixel

sample. Finally, the absolute magnitudes of the derived tropospheric mixing ratios and stratospheric

columns are only as accurate as the above-cloud NO2 VCDs. Errors in the derived cloud scene250

pressures may contribute additional uncertainty. It should also be noted that the NO2 VMRs are

derived in highly cloudy conditions. These conditions may not be representative of the general

all-sky atmosphere.

In order to ensure that appropriate data are used for cloud-slicing, we apply rigorous data filtering

criteria. This results in the use of approximately 10-15 % of the available pixel data depending on255

season and geolocation. The data selection criteria are summarized in Table 1 and discussed in detail

in Appendix A1.

Although we show a case of two adjacent OMI measurements in Fig. 1 for simplicity, we typically

use an OMI pixel collection that consists of a number of nearby measurements collected over one

OMI orbit; this minimizes the effects of random errors from both the above-cloud OMI NO2 VCD260

and Pscene. Examples are discussed in detail in Sect. 4.1. The detailed methodology used to obtain

the seasonal climatologies is explained in Appendix A2 and Section 4.2.

4 Results and discussions

4.1 Evaluation of OMI NO2 VMR with INTEX-B data

In this section, we evaluate OMI NO2 VMRs derived from cloud slicing using aircraft in situ NO2265

measurements made during INTEX-B. For individual comparisons, we use OMI pixel collections

from a single orbit that must have occurred within 2 days of an aircraft measurement. Furthermore,
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the absolute value of the difference in the time of day between the aircraft and satellite measurements

must be < 5 hours. We use relatively relaxed temporal collocation criteria (different days for OMI

and INTEX-B NO2 measurements) because most of the aircraft column measurements (from aircraft270

spirals) are made in clear conditions (Singh et al., 2009) while cloud slicing from OMI requires

highly cloudy conditions.

To meet the spatial collocation requirements, OMI pixels must be within a box of 8° latitude ×
10° longitude, centered at the location of each INTEX-B profile; we use this relatively large box to

ensure the availability of an adequate number of OMI cloudy pixels. If we have multiple OMI pixel275

collections from adjacent days for a single aircraft profile, we average the derived VMRs from all

applicable collections. Even with these relatively relaxed collocation criteria, we obtained matchups

in only a few areas.

Figure 2 shows examples of cases of reasonably good agreement (within the calculated uncertain-

ties) between OMI cloud slicing and INTEX-B NO2 VMR. For each row, the first column shows280

the collection of above-cloud NO2 columns and cloud scene pressures (light blue dots) and the fitted

slope (black line) with the date of the OMI measurement, similar to Fig. 1-(b). Here, Δt refers to the

aircraft minus OMI time differential. The second column, similar to Fig. 1-(c), shows the OMI cloud

slicing NO2 VMR marked by a square in the same color as used in the first column (light blue). The

vertical error bar represents the applicable OMI cloud scene pressure range, and the horizontal error285

bar is the 95% confidence interval of the retrieved VMR.

Also shown are the collocated INTEX-B NO2 profiles (dark blue lines) with the corresponding

standard errors of the mean (gray shaded areas) and the date of the DC-8 aircraft measurement. We

also show the average of the INTEX-B NO2 VMR over the OMI cloud scene pressure range (dark

blue square). The vertical and horizontal error bars represent the pressure range and the standard290

error of the mean for the INTEX-B measurements, respectively. This standard error of the mean

(blue horizontal error bar) is smaller than that of the profiles (gray shaded area), as more VMR

measurements are averaged. The third column shows the location of OMI pixels and INTEX-B

profiles (in the same colors as used in the first and the second columns).

The top row of Fig. 2 shows an example of NO2 observations over a populated area. The INTEX-295

B profile was measured near Houston, TX on 19 March 2006. OMI cloudy observations were made

on the same day. According to the flight report, this flight segment was affected by clouds; thus this

is one of the very few cases when cloudy aircraft measurements coincide with OMI cloud slicing

results. The INTEX-B free tropospheric NO2 profile is fairly uniform for P<880 hPa, while the pro-

file shows a sharp vertical gradient for P �900 hPa. We use only OMI pixels with Pscene < 900 hPa,300

thereby avoiding pixels affected by the sharp NO2 profile gradient. The retrieved OMI VMR agrees

moderately well with the INTEX-B profile for this case (OMI minus INTEX-B difference of ∼17

pptv or 32 %). The high bias of the OMI NO2 VMR is consistent with the OMI NO2 SCD bias

(25%) reported by Krotkov (2013).
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The bottom row in Fig. 2 shows an example for a clean oceanic region, measured over the north-305

east Pacific on 8 May 2006. The INTEX-B profile has a significantly lower average NO2 VMR, and

the profile is nearly uniform throughout the measured pressure range. There are no surface NOx

emission sources in this region, and there is no evidence of a significant elevated NO2 pollution

plume. The OMI above-cloud column NO2 has higher values than in the Houston case at 30° N in

March, presumably because the stratospheric column NO2 is higher in this Pacific case at 45° N in310

May (see Fig. 7), giving a higher baseline value to the above-cloud columns. The retrieved OMI

NO2 VMR has a large confidence interval as a result of the large scatter in the above-cloud OMI

NO2 column. Nevertheless, the obtained OMI NO2 VMR and the INTEX-B NO2 profile agree

moderately well (OMI minus INTEX-B difference ∼10 pptv or 35 %), again consistent with the

high bias of OMI NO2 SCDs as discussed above.315

Although there are several examples of relatively good agreement as shown in Fig. 2, there are also

a number of cases with significant discrepancies. There may be several reasons these differences.

Firstly, the INTEX-B NO2 profiles were obtained in relatively cloud-free conditions (except for

a few cases including the 19 March 2006 profile shown in Fig. 2). Cloud conditions may alter

NOx-O3 photochemistry; this poses an intrinsic problem for the comparison. Spatial and temporal320

variability of tropospheric NO2 also contribute to differences between aircraft and satellite data given

the relaxed collocation criteria. We show examples of discrepancies between OMI and aircraft data

in Appendix B.

Figure 3 summarizes all comparisons between OMI and INTEX-B NO2 VMRs. We analyzed

all successful collocations of INTEX-B profiles and OMI cloud slicing NO2 VMRs and produced a325

scatter diagram in the left panel of Fig. 3. The vertical error bars are the 95% confidence intervals

of OMI NO2 VMRs, and the horizontal error bars are the standard error of the mean of INTEX-B

NO2 VMRs. The INTEX-B standard error of the mean is small (� 3 pptv) as compared with the

magnitude of the NO2 VMR, except for two cases that deviate significantly from the 1:1 line (∼6

pptv) marked in red color in the left panel of Fig. 3. The locations of the INTEX-B profiles are330

presented in the right panel of the Fig 3, with high standard error cases marked in red. The left panel

using all the matchups shows significant scatter; the root mean square (RMS) of the difference is

� 44 pptv. OMI and INTEX-B VMRs do not show any correlation. However, if we remove the

INTEX-B profiles with high standard errors, OMI and INTEX-B VMRs exhibit a weak correlation

(R=0.3) and the scatter is reduced (RMS differences �36 pptv). In either case, the mean OMI335

VMR (36–39 pptv) is larger than that of the INTEX-B VMR (22–27 pptv). These differences are in

the same direction and general range (25-44%) of the suspected OMI NO2 SCD high bias (25%).

Overall, this comparison, even with its intrinsic limitations, provides some confidence in the ability

to estimate NO2 mixing ratios with OMI cloud slicing.

For comparison between OMCLDRR and OMCLDO2 results, a scattergram using OMI VMRs340

derived with OMCLDO2 cloud data is presented in Appendix D. OMCLDO2 results show similar
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magnitudes and scatter as compared with OMCLDRR. When we exclude the high standard error

cases, OMCLDO2 data result in slightly higher scatter and lower correlation versus INTEX-B.

4.2 Global Seasonal Climatology of free tropospheric NO2 VMR

We construct a seasonal climatology of OMI free tropospheric NO2 as explained in Sect. 3 and345

Appendix A2. In analyzing the global climatology, we focus on spatial and temporal variations of

the NO2 VMR rather than its absolute magnitude. In this section, we examine aspects of the OMI

free tropospheric NO2 climatology in the context of anthropogenic and lightning contributions. We

also show GMI free tropospheric NO2 VMRs for comparison.

Details regarding the construction of the climatology are provided in Appendix A2. NO2 VMRs350

are not obtained where clouds rarely form (e.g., Sahara) or where cloud pressure variability is small

(e.g., oceanic areas with persistent low clouds due to subsidence, such as off the western coasts of

South America and southern Africa). As we sample GMI output over the OMI cloud pressure range,

we do not obtain GMI NO2 VMRs where OMI NO2 VMRs and the corresponding cloud pressure

range are not reported.355

Here, we note the possible sampling biases in the NO2 climatology. Since we collect OMI mea-

surements in cloudy scenes, the climatology represents NO2 VMRs in highly cloudy conditions as

explained in Sect. 3. In addition, because NO2 VMRs are retrieved only if significant cloud pressure

variability exists, the sampled NO2 VMRs may be indicative of those found in presence of frontal

storms, where uplift of boundary layer pollution can frequently occur.360

We use the standard error as an estimate of uncertainty for the derived NO2 climatology; this

assumes that the error of the derived NO2 VMR has zero mean and that errors for individual mea-

surements are random and uncorrelated with respect to each other. While these assumptions are not

likely to strictly hold (there are indications of a bias), they may lead to reasonable uncertainties with

respect to the derived spatial and temporal patterns. We show the NO2 VMR climatology where the365

standard error <10 pptv (if VMR <20 pptv) or 50% (if VMR >20 pptv). For more details regarding

quality assurance, see Appendix C. In addition to the standard errors, we present auxiliary data to

help interpret the climatology, including the number of measurements, confidence intervals, standard

deviations, and the mean cloud scene pressures corresponding to the NO2 climatology in Fig. C1 of

Appendix C.370

Fig. 4 shows global data averaged over Jun-Aug (left column) and Dec-Feb (right column) for

2005–2007. The first row shows the OMI-derived 3-month seasonal climatology of free tropospheric

NO2 VMRs. The second row displays the GMI NO2 VMRs in cloudy (τ > 10) conditions, averaged

over the corresponding OMI cloud scene pressure range. The effect of clouds on NOx chemistry

is complex; it depends on altitude with respect to clouds. For example, NO2 photolysis rates may375

be increased above or within bright clouds, but decreased below them. In general, the GMI cloudy

VMRs are higher than those in all-sky conditions over urban regions and lower over remote and
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oceanic regions (see Fig. C2 in Appendix C). The third row shows lightning contributions to the

free tropospheric NO2 as taken from the GMI model. Note that we use a log scale for NO2 VMRs

to highlight seasonal and spatial variations. In Appendix C, we show additional NO2 fields for380

reference including GMI all-sky NO2 VMR, OMI tropospheric column NO2, and GMI tropospheric

column NO2.

Overall, the OMI VMR maps show some notable differences with respect to GMI, while the

OMI and GMI tropospheric column maps in Appendix C look very similar. Below, we examine the

potential contributions from different sources by analyzing rough vertical profiles (Sect. 4.3) as well385

as temporal/spatial variations of free tropospheric VMRs (Sect. 4.2.1 and 4.2.2). Further analysis

related to the differences between OMI and GMI free tropospheric NO2 is ongoing.

4.2.1 Anthropogenic contributions

In the northern hemisphere (NH) winter (Dec-Feb), the primary source of free tropospheric NO2 ap-

pears to be anthropogenic emissions; high free tropospheric VMRs are seen over densely populated390

regions and the lightning contribution is expected to be negligible during these months (top right

panel of Fig. 4). Over most of the highly populated areas of North America, southeast (SE) Asia,

and Europe, free tropospheric NO2 VMRs are higher in winter (Dec-Feb) as compared with sum-

mer (Jun-Aug). It is well known that boundary layer NO2 VMRs are generally higher in winter as

compared with summer owing to a longer chemical lifetime in winter; the OMI-derived tropospheric395

columns (the first row of Fig. C3 in Appendix C), that are dominated by boundary layer pollution

in heavily populated areas, also reflect higher values in winter than in summer. In contrast to NO2

VMRs from OMI, the NO2 VMRs from GMI are higher in summer as compared with winter over

southeast Asia (the second row of Fig. 4 for cloudy conditions, and Fig. C2 for all-sky conditions),

while the tropospheric column NO2 from GMI is higher in winter in this region (the second row of400

Fig. C3 in Appendix C). Examination of GMI NO2 and NO vertical profiles confirms that this is not

a simple partitioning problem of NOx.

Overall, OMI NO2 VMRs have lower values in the SH during the austral winter as compared

with the NH. This is also shown in the GMI output. It should be noted that there are not many

large population centers in the SH, particularly at high latitudes, nor as much NOx contribution from405

aircraft at high latitudes in the SH as compared with the NH. However, it should also be noted that

cloud slicing data are not available around many of the major population centers in the SH (e.g.,

Johannesburg, South Africa and Sao Paulo, Brazil) owing to a lack of optically thick clouds and/or

cloud pressure variation.

Regarding transport of anthropogenic NO2, we focus on winter months when lightning NO2 con-410

tributions are likely to be small. The OMI cloud slicing NO2 climatology shows a spatial patterns

consistent with pollution outflow from North America and Asia. For example, the persistent Asian

northeasterly outflow of NO2 via the Bering Sea resembles that of CO (e.g., Liang et al., 2004), a
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tracer of incomplete combustion emissions. The spatial extents of continental outflows are different

for the free tropospheric VMRs and tropospheric columns. This might be explained by extended415

transport at higher altitudes where the NO2 lifetime is longer.

4.2.2 Lightning contributions

A band of enhanced NO2 appears extensively during the summer in the both hemispheres (∼0–30°

and possibly higher latitudes in the NH). The low cloud scene pressures (shown in the fifth row of

Fig. C1 in Appendix C) in these regions are indicative of frequent convection. In particular, extensive420

enhancements in summertime NO2 VMRs over NH tropical and subtropical oceans, are similar to

modeled lightning NOx enhancements in previous studies (e.g., Choi et al., 2008; Allen et al., 2012;

Martini et al., 2011; Walker et al., 2010). This suggests that lightning is a major source of free

tropospheric NO2 in tropical and subtropical regions in summer. Because the SH is far less polluted

than the NH, potential NO2 enhancements due to lightning are more apparent there. Finally, we note425

that these extensive NO2 enhancements indicated by cloud slicing during summer over oceans are

not as apparent in the OMI tropospheric columns.

While the locations of these apparent lightning-enhancements of NO2 are similar in summer in

both GMI and OMI data sets, there are a few key differences to note. For example, the seasonality

of the NO2 enhancements over oceans shown by OMI is not as strongly reflected in the GMI out-430

put. In addition, there appears to be a much stronger land/ocean contrast in GMI than in the OMI

climatology.

For comparison, we also show maps of free-tropospheric NO2 climatology obtained with OM-

CLDO2 cloud data in Fig. D2 of Appendix D. The OMCLDO2 climatology shows very similar

spatial and temporal patterns as compared with that derived using OMCLDRR data presented here435

with slightly lower VMRs in general. However, the OMCLDO2 climatology does not show a strong

signature of lightning-enhanced NO2 over the tropical North Pacific in Jun-Aug as is shown in the

OMCLDRR climatology. This is discussed in more detail in Appendix D.

4.3 Profile analysis

We examine the pressure dependence of the derived VMRs over large regions (to reduce random440

errors) in order to provide a rough vertical distribution of free tropospheric NO2. We highlight two

types of areas: (1) East Asia and its outflow region to focus on anthropogenic contributions, and (2)

tropical portions of the NH and SH to examine potential lightning contributions.

Figure 5 shows NO2 profiles obtained over East Asia and its outflow region in summer 2005–

2007; in this region and season, a large number of cloudy pixels are available and cloud pressures445

exhibit enough variability to construct profiles due to the large sampling area and monsoon. This is

not the case for many other urban regions and seasons. The sampling areas are shown in blue (East

Asia) and purple (outflow) on the maps, and the corresponding profiles are presented in the same
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colors. The standard errors are also shown and are relatively small owing to the large number of

samples. We note that NO2 profile information is not obtained in the lowermost troposphere over450

East Asia; we attempt to avoid boundary layer contamination in order to preserve the assumption

of uniform NO2 VMRs over the observed cloud pressure range. We obtain a profile down to 850

hPa in the outflow region because there is little boundary layer pollution in that area.The profile of

East Asia clearly indicates the presence of uplifted anthropogenic NO2 in the middle troposphere of

600-800 hPa. In the outflow region, the NO2 VMRs are higher at P�700 hPa as compared with those455

at P> 800 hPa. This suggests that there is not a significant surface source NO2, and that uplifted

anthropogenic NO2 is transported at around ∼700 hPa or above in this region.

Figure 6 shows variations in the derived NO2 profiles in tropical regions of the NH and SH. Here,

we examine two latitudinal bands with enhanced summertime NO2 based on the spatial distributions

shown in Fig. 4. Again, owing to the large number of samples, the standard errors are relatively small460

(∼5 pptv). In summer, the NO2 VMRs increase with altitude in both hemispheres. The profile shapes

suggest that NO2 sources, presumably lightning, are located primarily in the upper troposphere

in these regions. This is consistent with aircraft measurements (e.g., Huntrieser et al., 2009) and

modeling studies (e.g., Allen et al., 2010, 2012; Martini et al., 2011) of lightning-generated NOx. In

contrast, NO2 VMR profiles are more uniform in winter, possibly owing to less frequent lightning465

activity associated with convection in the shifting Inter-Tropical Convergence Zone (ITCZ). We note

that the winter baseline NO2 VMR is higher in NH by approximately a factor of two possibly due to

more pollution sources in NH. In contrast, the summertime profiles of NO2 are very similar in the

NH and SH.

Overall, our analysis indicates a capability of the cloud slicing technique to retrieve NO2 profile470

information when provided with a relatively large sample size. Our profile results are consistent with

an anthropogenic source for the enhanced NO2 in middle to high latitudes off the coasts of highly

populated areas. They also indicate a lightning source in the summer over tropical areas, primarily

located in the upper troposphere.

4.4 Stratospheric column NO2475

We generated estimates of stratospheric NO2 columns as described in Sect. 3. As done for the

free tropospheric NO2 VMRs, the derived stratospheric columns of NO2 are averaged for 3 month

intervals using data collected from 2005–2007. Zonal means are shown as a function of latitude in

Fig. 7. We also show the estimates of stratospheric NO2 columns from OMNO2B (derived using a

completely different method as discussed in Sect. 2.1.3) and GMI. Both the OMI cloud slicing and480

OMNO2B stratospheric NO2 column estimates show similar zonal structure as compared with that

from GMI in all seasons. Note that both OMI estimates are ∼30% higher than GMI; this is consistent

with the expected high bias described in Sect 2.1.2. The overall excellent agreement between the

cloud-slicing stratospheric column and other independent estimates provides a closure check on the
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derived free tropospheric NO2 VMRs; if the cloud-slicing procedure was not performing well in485

the free troposphere, we would not obtain reasonable stratospheric column estimates. Therefore,

this exercise provides validation of both stratospheric and free tropospheric results. Estimates of

stratospheric columns from OMCLDO2 product display similar zonal structure as compared with

those from OMCLDRR (not shown).

5 Conclusions490

We have estimated free tropospheric NO2 VMRs and stratospheric NO2 columns using a cloud

slicing approach applied to OMI data from 2005 to 2007. Optically thick clouds provide excellent

sensitivity of satellite radiances to NO2 above the cloud scene pressure; they also effectively shield

satellite observations from NO2 below clouds. In order to retrieve NO2 VMRs, our approach requires

a large number of cloudy measurements with substantial cloud pressure variability.495

We conducted a detailed comparison between OMI cloud slicing free tropospheric NO2 VMRs

and INTEX-B aircraft in situ measurements. Our analysis shows that the cloud slicing technique

provides similar magnitudes as compared with in situ measurements when known satellite biases

are taken into consideration. However, individual comparisons of INTEX-B and cloud slicing NO2

VMRs do not always exhibit good agreement. Small-scale temporal and spatial variability, poor500

collocation, and fairly large OMI measurement uncertainties contribute to these discrepancies.

We generated global seasonal maps of free tropospheric NO2 VMRs as well as free tropospheric

NO2 vertical profiles over selected regions. With appropriate data filtering over a three year time

period, we obtain a sufficient number of cloudy OMI measurements to cover most of the Earth.

Confidence intervals for individual cloud slicing VMRs are fairly large; however, averaging over nine505

months (3 months × 3 years) reduces random errors and provides a reasonable estimate of the mean

values. The free-tropospheric NO2 VMR climatology shows distinct spatial and seasonal patterns;

these patterns differ from those of OMI-estimated tropospheric NO2 columns. The combination of

mapped and profile analyses indicates that spatial patterns of the OMI-derived free tropospheric NO2

are consistent with (1) uplifted anthropogenic NO2 over densely populated regions; (2) continental510

outflow of anthropogenic NO2; and (3) lightning-generated NOx, particularly in summer months at

low to middle latitudes with a source located primarily in the upper troposphere. Anthropogenic

sources appear to dominate in the winter hemisphere, especially in the northern hemisphere at high

latitudes near heavily populated regions, while lightning contributions dominate over ocean at low

to middle latitudes in summer in both hemispheres.515

GMI model simulations suggest that NO2 VMRs vary with cloud conditions by altering the pho-

tochemistry. Spatial patterns of continental outflow show general agreement between the OMI cloud

slicing climatology and GMI simulations for cloudy conditions. However, some differences, partic-

ularly with respect to lightning-generated NOx, were noted.
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We also provided estimates of NO2 stratospheric columns from the cloud slicing technique. These520

estimates agree well with those from the OMNO2B algorithm that are based on a completely inde-

pendent technique (NO2 columns over clean regions). The two OMI stratospheric NO2 estimates

display similar seasonal and latitudinal zonal mean variations. These variations are also consistent

with those produced in GMI simulations. The excellent agreement between these stratospheric col-

umn NO2 estimates provides a closure validation of the free tropospheric OMI cloud slicing results.525

Our overall analysis shows that the cloud slicing technique can provide valuable information on

the free tropospheric distribution of NO2 that is distinct from the derived tropospheric total columns.

In particular, we expect to apply this technique to future geostationary missions including the NASA

Earth Ventures Instrument (EVI) 1 selected mission Tropospheric Emissions: Monitoring of Pollu-

tion (TEMPO) over the North America (Chance et al., 2013) and the Korean Geostationary Environ-530

ment Monitoring Spectrometer (GEMS) over the Asia-Pacific region (Kim, 2012). These missions

should provide excellent cloud slicing results; they will provide improved sampling (with higher

spatial and temporal resolutions) as compared with OMI.

Appendix A

Additional details in applying the cloud slicing technique535

A1 Data Filtering Criteria

We apply the following checks to ensure that only high quality data are used in our analysis. With

these checks, approximately 10-15 % of OMI pixels are retained, depending on season and geoloca-

tion: (1) we use only pixels with fr > 0.9 to remove OMI pixels with an insufficient cloud shielding

of the boundary layer; (2) we remove data with aerosol indices > 1.0, because absorbing aerosols are540

known to produce biases in the retrieved cloud properties (Vasilkov et al., 2008); (3) we exclude data

with solar zenith angles (SZA) > 80°; the use of the geometrical AMFs may not be appropriate at

higher SZAs owing to higher amounts of Rayleigh scattering; (4) we exclude data affected by snow

and ice because UV/VIS cloud measurements cannot differentiate between snow/ice and clouds; In

the presence of snow/ice, we cannot be assured of boundary layer cloud shielding. We use a flag545

for snow- and ice-covered pixels based on the Near-real-time SSM/I EASE-grid daily global Ice and

snow concentration and Snow Extent (NISE) data set (Nolin et al., 1998) provided in OMCLDRR

product.

We also apply checks to ensure sufficient cloud variability; we only use collections with at least

30 OMI pixels, a cloud pressure standard deviation > 35 hPa, and a cloud pressure range > 200550

hPa. Finally, we employ outlier checks to remove data that fall outside the range expected from our

assumptions including a uniform mixing ratio over the appropriate pressure range and homogeneous

stratospheric column over the corresponding area; we empirically selected a threshold of 2σ from
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the linear fit for this check.

A2 Application of cloud slicing to seasonal climatology555

In order to create a global seasonal climatology of free-tropospheric NO2 VMRs, we average in-

dividual retrievals in three month segments (one for each season) using data collected over 3 years

(2005–2007). We grid the data at a spatial resolution of 6° latitude × 8° longitude.

In Fig. A1, we show two examples of how the NO2 VMRs are calculated for a single grid box.

For these examples, we use only one month in summer (June) and winter (January). The grid box560

encompasses New York City, NY, USA. In order to remove pixels affected by substantial vertical

gradients in the NO2 VMR, we use only cloudy data with Pscene < a lower boundary (Plower, gray

lines) where the mean NO2 vertical profile is relatively well mixed according GMI; specifically,

Plower is pressure above which the absolute magnitude of vertical gradient of monthly-mean NO2

VMR < 0.33 pptv/hPa. Note that Plower varies with season (as shown in Fig. A1) and geolocation565

(not shown). For reference, we also show GMI daily and monthly mean profiles.

Using an OMI pixel collection from a single orbit, we calculate the free tropospheric NO2 VMR

(small black dots), the confidence interval (horizontal bars), and the pressure range (vertical bars).

Then, we average the derived single-orbit NO2 VMRs (weighted inversely by the square of the

confidence intervals) to obtain a single representative NO2 VMR for the given time period (large570

black dots).

In Fig. A1, we have shown data from one month for simplicity. To construct a seasonal climatol-

ogy, we use the same spatial grid but a larger temporal window (3 months×3 years) to reduce the

sampling biases and random noise. For quality control of the climatology, we show data only where

the NO2 VMR standard error of the mean < 50% for NO2 VMR > 20 pptv or NO2 VMR standard575

error of the mean < 10 pptv for NO2 VMR ≤ 20 pptv. With these criteria, there are some areas with

no OMI-derived NO2 VMRs. These are mainly areas with little variability in cloud pressure or re-

gions covered with ice/snow. A similar approach is used to obtain gridded values of the stratospheric

NO2 column.

Appendix B580

Additional case studies of OMI and INTEX-B comparisons

We show additional comparisons in which OMI and INTEX-B NO2 VMR display poor agreement.

These discrepancies are presumably caused by small-scale spatial and temporal variations in NO2

VMRs, different cloud conditions that might alter the NOx photochemistry, and/or poor collocations.

Figure B1 shows a case with discrepancies likely due to the differences in the locations, times, and585

the spatial scales of the measurements. The DC-8 profile was taken over a small area near Houston
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in the morning (∼8:35 am LT), while the OMI pixel collection covers a large area over Louisiana in

the afternoon (∼1:35 pm LT) on the same day; thus the OMI and DC-8 measurements were taken

in adjacent locations with a ∼5 hour time gap. The DC-8 NO2 profile (second column) appears to

be affected by local pollution in the 600-800 hPa range. In contrast, OMI retrieves a low NO2 VMR590

over a wide area that includes less populated regions. OMI and INTEX-B VMRs show a significant

difference of ∼50pptv in this case.

Figure B2 shows an example of small scale spatial variations in NO2 profiles as seen by the

aircraft measurements. The second column of Fig. B2 shows two DC-8 NO2 profiles that were

taken on the same day at nearby locations. The first column shows the two corresponding OMI595

pixel collections closest to the DC-8 profiles. In order to differentiate the two cases, the first row

uses dark blue for tne DC-8 profile and light blue for OMI pixels, and the second row uses red for

the DC-8 profile and pink for OMI pixels. Since the two DC-8 profiles encompass many of the

same OMI pixels, the shared pixels are marked with purple on the map (top right). Although the

two DC-8 profiles are within a close proximity in both time and space, the averaged NO2 VMRs600

differ by about 20 pptv, perhaps due to a transported pollution plume. However, since the OMI pixel

collections corresponding the two DC-8 profiles share many OMI pixels, this gives similar NO2

OMI VMRs for the two corresponding DC-8 profiles. As a result, OMI and INTEX-B profiles differ

by ∼30 pptv in the first row case, while the difference is smaller in the second row case, about ∼15

pptv.605

Variability of OMI NO2 VMRs can also cause discrepancies between OMI and INTEX-B VMRs.

This variability may be due to actual variability in the NO2 profile over the course of a day and/or

errors in the OMI measurements. Figure B3 shows a case of OMI cloud slicing VMR variation

between orbits for one DC-8 NO2 profile. The first and second panels of Fig. B3 show two OMI

pixel collections taken from two adjacent orbits on the same day. They correspond to one DC-8610

profile taken over the Pacific north of Hawaii. Even though the OMI pixel collections cover a similar

area and time, the resulting NO2 VMRs differ by ∼30 pptv. This variability may be due to a small

scale feature such as a transported pollution plume, altered photochemistry due to the different solar

illuminations or cloud conditions, and/or measurement uncertainties in the OMI data, although the

differences appear to be outside the expected OMI uncertainties.615

Appendix C

Auxiliary data to interpret cloud slicing NO2 VMR

Here, we show auxiliary data that is helpful for quality assurance and interpretation of the NO2 VMR

climatology. The first row of Fig. C1 shows the gridded numbers of OMI pixel collections that are

used to derive the seasonal free tropospheric NO2 climatology. The maps show a sufficiently large620
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number of collections (> 60) for many areas of interest. Large numbers of collections are available

over the frontal storm track regions of the North Atlantic, North Pacific and Southern ocean as well

as the intertropical convergence zone (ITCZ). In addition, there are large numbers of orbits at high

latitudes (> 60°), because these regions can have more than one overpass (orbit) per day. However,

some relatively cloud free areas (e.g., the Sahara) as well as oceanic regions, in areas of subsidence625

with little cloud pressure variability, have smaller numbers of collections (<20).

The second row of Fig. C1 shows the weighted root mean square (RMS) of 95% confidence

intervals of NO2 VMRs. As discussed above, the confidence interval is a measure of the fitting

uncertainty for single NO2VMRs derived from individual pixel collections, i.e. a large RMS of the

confidence interval means a large uncertainty in the individually fitted NO2 VMRs. There are two630

types of regions that have large uncertainties: (1) Regions with low numbers of OMI orbits, i.e, small

amounts clouds or low cloud pressure variability; (2) Areas where NO2 VMRs are high, e.g., major

metropolitan areas. In these regions, we may expect larger variability in the NO2 VCDs within a

single collection.

The third row of Fig. C1 shows maps of standard deviations of the gridded climatological NO2635

VMRs. This is a measure of how much the individually fitted NO2 VMRs vary in each grid box.

Similar to the confidence interval, the standard deviations are large in areas of high NO2 VMRs

(major urban areas and continental plumes) and areas with small clouds amounts and/or small cloud

variability (deserts and oceans near 20°N latitude). In addition, high standard deviations are present

near ∼60°S in Sep.-Nov., possibly owing to stratospheric variability and/or larger errors at high solar640

zenith angles.

The fourth row of Fig. C1 shows maps of the standard error of the mean for the gridded NO2 VMR

climatology (i.e., the standard deviation divided by square root of the number of measurements). The

standard errors provide an estimate of uncertainty for the spatial and temporal variations shown in the

climatology (in the absence of a constant bias). We use this quantity for quality control as described645

in Sect. 4.2.

The fifth row of Fig. C1 shows maps of the OMCLDRR cloud scene pressure for the gridded

NO2 VMR climatology. Owing to significant light penetration inside clouds, the lowest mean cloud

pressures are around 450 hPa, well below the typical cloud top pressures. The cloud pressures also

vary with season.650

Figure C2 shows seasonal mean GMI free tropospheric NO2 VMRs for all-sky conditions. While

the maps of all-sky VMR show similar patterns as compared with those of cloudy conditions, all-sky

NO2 VMRs are generally lower over urban regions and higher over oceans than cloudy NO2 VMRs.

Figure C3 shows tropospheric column NO2 from OMI (upper row) and GMI (bottom row). OMI

and GMI tropospheric columns NO2 agree very well, showing higher columns in winter and lower655

columns in summer over major urban areas. This seasonal variation is also shown in the OMI

climatology of free tropospheric NO2 VMR as presented in Sect. 4.2.1.
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Appendix D

OMCLDO2 sample results

While we used OMCLDRR cloud parameters for analysis in the main text, here we show results660

obtained when using cloud parameters from the OMCLDO2 product. Similar to Fig. 3, Figure D1

shows a scattergram of INTEX-B and OMI cloud slicing NO2 VMRs, but using OMCLDO2 cloud

data. As above for OMCLDRR, the left panel shows results from all available matchups between

INTEX-B and OMI, and the middle panel shows matchups where the standard error of the mean

of INTEX-B measurement < 5 pptv. We note that the number of matchups is different for the665

OMCLDRR and OMCLDO2 results. Since OMCLDRR and OMCLDO2 report slightly different

cloud scene pressures for the same OMI pixel, differences in the cloud data results in different quality

control decisions, and this produces the different numbers of successful collocations. Similarly, the

reported INTEX-B VMRs used in the scattergram can change with the cloud pressure data set as the

INTEX-B VMRs are sampled over the appropriate range of OMI-derived cloud pressures.670

The RMS differences between INTEX-B and OMI NO2 VMRs using both cloud products are

similar in magnitude. OMCLDO2 results have a slightly lower correlation with INTEX-B if we

exclude INTEX-B measurement with large standard errors (> 5 pptv).

Similar to the two upper rows of Fig. 4, Figure D2 shows global maps of the free tropospheric NO2

climatology obtained with OMCLDO2 cloud parameters. OMCLDO2 NO2 VMRs (first row) overall675

have slightly lower magnitudes as compared with OMCLDRR results. The spatial and temporal

patterns of OMCLDO2 NO2 VMR over densely populated regions as well as the continental outflow

patterns are similar to those from OMCLDRR. NO2 VMRs in areas that are thought be affected

by lightning, however, display some differences. In OMCLDRR results, lightning-generated NO2

appears to be present extensively during summer in the both hemispheres. In OMCLDO2 results,680

we can see an indication of lightning-generated NO2 in the SH in Dec.–Feb. While we see possible

lightning NO2 signatures with OMCLDO2 over the Gulf of Mexico, the north equatorial Atlantic,

and India, there is not a significant lightning NO2 feature in the low latitudes of the NH Pacific

in Jun.–Aug. as was shown in OMCLDRR results. The reasons for these differences are not well

understood. Joiner et al. (2010) showed that there is a high frequency of multi-layer clouds in the685

NH Pacific. The two cloud algorithms may behave differently in these complex conditions as Raman

scattering has a linear response with cloud pressure, while oxygen dimer absorption has a pressure-

squared dependence.
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Fig. 1. Schematic view of the cloud slicing technique (not to scale): (a) two above-cloud NO2 column measure-

ments at different cloud scene pressures (blue: column with lower scene pressure; and red: column with higher

scene pressure); (b) the measurements shown on a pressure-column coordinate plane; (c) NO2 VMR derived

from the slope of above-cloud NO2 VCD versus cloud scene pressure with confidence interval (horizontal error

bar) and pressure range (vertical error bar); (d) stratospheric column NO2 derived by extrapolating the linear fit

to the tropopause.
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Fig. 2. Examples of relatively good agreement between OMI cloud slicing VMRs and INTEX-B NO2 profiles

near Houston, Texas, US (top row) and the northeastern Pacific (bottom row). In each example, left: OMI

above-cloud NO2 column versus cloud scene pressure (similar to Fig. 1b); center: INTEX-B NO2 profiles

(dark blue line), INTEX-B NO2 VMR averaged over the OMI pressure range (dark blue square with error

bars), and OMI-derived NO2 VMR (light blue square with error bars); right: locations of OMI and INTEX-B

aircraft measurements.

Fig. 3. Scattergram of INTEX-B and OMI cloud slicing NO2 VMRs; Left: all available collocations of INTEX-

B and OMI NO2 VMR; Middle: collocations where the INTEX-B standard error of the mean < 5 pptv; Right:

locations of the profiles. Red shows cases where the INTEX-B standard error of the mean > 5pptv.
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Fig. 4. For Jun-Aug (left column) and Dec-Feb (right column) averages over 2005-2007; First row: Climatology

of free tropospheric NO2 VMR; Second row: cloudy (τ > 10) GMI free tropospheric NO2 VMR; Third row:

GMI lightning contribution to the free tropospheric NO2 VMRs.

Fig. 5. Left: sampling areas for profiles over East Asia (blue) and its outflow region (purple); right: NO2

profiles over East Asia (blue) and its outflow region (purple) with standard errors in summer for 2005–2007.
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Fig. 6. Left: sampling areas for profiles over tropics of NH (blue) and SH (purple); center: NO2 profiles over

NH tropics for Jun-Aug (blue solid line) and Dec-Feb (blue dotted line) with standard errors; right: NO2 profiles

over SH tropics for Jun-Aug (purple solid line) and Dec-Feb (purple dotted line) for 2005–2007.

Fig. 7. Seasonal, zonal mean of various estimates of stratospheric column NO2 averaged over 2005–2007.
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Fig. A1. Example of calculating a climatological free tropospheric NO2 VMR for a grid box that encompasses

New York City; Left: May 2005; Right: January 2007; Lines show daily (orange) and monthly mean (red) GMI

NO2 profiles. Grey horizontal lines show the pressure threshold above which the NO2 vertical gradient is <

0.33 pptv/hPa.

Fig. B1. Similar to Fig. 2, but showing a case with a discrepancy between satellite and aircraft measurements,

possibly due to poor collocation, with INTEX-B measurements near Houston, Texas, US and OMI measure-

ments over Louisiana, US.
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Fig. B2. Similar to Fig. B1, showing another example over the northeastern Pacific with a discrepancy between

satellite and aircraft data apparently due to small-scale spatial variations in the INTEX-B NO2 profiles.

Fig. B3. Similar to Fig. 2, but showing an example of variation in OMI NO2 VMRs over two adjacent orbits

(1.5 hour time difference) at the same location north of Hawaii, US.
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Fig. C1. Left: Jun-Aug and Right: Dec-Feb averages over 2005-2007: First row: Number of OMI overpasses

used to derive NO2 VMR climatology; Second row: 95% confidence interval of NO2 VMRs; Third row:

Standard deviation of NO2 VMRs; Fourth row: Standard error of the mean of NO2 VMRs; Fifth row: mean

OMCLDRR cloud scene pressures used to compute the NO2 VMR climatology.
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Fig. C2. GMI all-sky free tropospheric NO2 for Jun-Aug (left) and Dec-Feb (right) averages over 2005-2007.

Fig. C3. For Jun-Aug (left column) and Dec-Feb (right column) averages over 2005-2007; Top: OMI tropo-

spheric column NO2; Bottom: GMI tropospheric column NO2.
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Fig. D1. Similar to Fig. 3 but using OMCLDO2 data.

Fig. D2. For Jun.-Aug. (left) and Dec.-Feb. (right) averaged over 2005-2007, Top: Global maps of NO2 VMR

calculated using OMCLDO2 cloud parameters; Bottom: Mean cloud scene pressures from OMCLDO2.
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Table 1. OMI data filtering criteria for cloud slicing approach.

Individual pixel Cloud radiance fraction (fr) > 0.9

UV aerosol index < 1.0

Solar zenith angle (SZA) < 80°

Snow and ice flag = 0 (not affected by snow/ice)

Pixel collection Number of OMI Pixels > 30

Range of cloud effective scene pressure (Pscene) > 200 hPa

Standard deviation of cloud effective scene pressure (Pscene) > 35 hPa

Gradient of NO2 VMR over pressure (dVMR/dP)* < 0.33 pptv / hPa

*Obtained from INTEX-B or GMI profiles

39


