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ABSTRACT

This paper analyzes the convective mass transport by sorting air parcels in terms of their equivalent po-

tential temperature to determine an isentropic streamfunction. By averaging the vertical mass flux at a con-

stant value of the equivalent potential temperature, one can compute an isentropic mass transport that filters

out reversible oscillatory motions such as gravity waves. This novel approach emphasizes the fact that the

vertical energy and entropy transports by convection are due to the combination of ascending air parcels with

high energy and entropy and subsiding air parcels with lower energy and entropy. Such conditional averaging

can be extended to other dynamic and thermodynamic variables such as vertical velocity, temperature, or

relative humidity to obtain a comprehensive description of convective motions. It is also shown how this

approach can be used to determine the mean diabatic tendencies from the three-dimensional dynamic and

thermodynamic fields.

A two-stream approximation that partitions the isentropic circulation into a mean updraft and a mean

downdraft is also introduced. This offers a straightforward way to identify the mean properties of rising and

subsiding air parcels. The results from the two-stream approximation are compared with two other defi-

nitions of the cloud mass flux. It is argued that the isentropic analysis offers a robust definition of the

convective mass transport that is not tainted by the need to arbitrarily distinguish between convection and

its environment, and that separates the irreversible convective overturning from oscillations associated with

gravity waves.

1. Introduction

Atmospheric convection transports energy and water

from Earth’s surface to the free troposphere. The ascent

of warm, moist air in saturated turbulent plumes is bal-

anced by subsidence of drier and colder air that takes

place in the environment or in convective or mesoscale

downdrafts. Convective systems, however, rarely occur

as simple overturning cells; rather, they are associated

with a variety of turbulent motions over a wide range

of scales. Any analysis of such flow is complex because

individual air parcels undergo multiple dynamical and

thermodynamical transformations. For simplicity, one

may want to separate irreversible ascent and mixing of

air parcels from the gravity waves. However, such sep-

aration is not straightforward as convective plumes and

gravity waves are often spatially and temporally collo-

cated. The main purpose of this paper is to introduce a

new technique to diagnose the convective overturning in

numerical models.

The proposed approach takes advantage of the quasi

conservation of entropy to isolate convective over-

turning from oscillatory motions. The concept of isen-

tropic analysis (i.e., analyzing motions on surfaces of

constant entropy) dates back to the early development

of dynamical meteorology (Rossby 1937). As potential

temperature and entropy are approximately conserved

in the free troposphere, the motions of air parcels can be

tracked on isentropic surfaces even when a lack of ob-

servations prevents determining their vertical displace-

ment. This technique was initially focused onmidlatitudes

weather systems and led to the widespread use of
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isentropic maps in synoptic meteorology. It was recog-

nized early on that convective processes posed a spe-

cific challenge, as they involved a significant amount of

mixing as well as latent heat release. To account for the

latent heat release, several studies (Browning and Ludlam

1962; Ludlam 1963; Green et al. 1966) introduced the use

of the wet-bulb potential temperature: an adiabatic in-

variant for reversible phase transition. Combining moist

thermodynamics and isentropic analysis has been par-

ticularly influential in identifying the importance as-

cending moist air masses in the so-called moist conveyor

belt (Harrold 1973). Isentropic coordinates have also been

applied in studies of moist convection Xu and Emanuel

(1989), tropical cyclogenesis (Schubert and Alworth

1987; Molinari et al. 1997), hurricane intensity (Molinari

et al. 1995), and structure (Merrill and Velden 1996).

In this paper, we propose a systematic framework to

analyze upward mass transport in moist convection by

conditionally averaging it in terms of the equivalent

potential temperature. The traditional isentropic anal-

ysis faces an important difficulty when applied to con-

vective motions: moist isentropes exhibit an extremely

complex geometry as they are continuously stretched

and folded by turbulent convection. This complex ge-

ometry makes it virtually impossible to describe the in-

stantaneous flow on a moist isentrope. However, we will

show here that this limitation can be overcome by con-

ditional averaging of the flow to obtain a mean isentropic

circulation.

Our approach here is analogous to studies of the

meridional circulation in isentropic coordinates. By av-

eraging the meridional mass transport in terms of its

potential temperature (Dutton 1976; Johnson 1989; Held

and Schneider 1999) or of its equivalent potential tem-

perature (Pauluis et al. 2008, 2010), one obtains a mean

meridional circulation on dry or moist isentropes that is

composed of a single equator-to-pole overturning cell in

each hemisphere. This isentropic circulation is in sharp

contrast to the Eulerian-mean circulation, obtained by

averaging the velocity at constant pressure, which ex-

hibits the well-known three-cell structure, with the Had-

ley cell in the tropics, Ferrel cell in the midlatitudes, and

polar cell at high latitudes. The differences between the

Eulerian and isentropic circulations offer an example of

how conditional averaging in a turbulent flow can lead to

new insights on how the turbulence is affecting parcel

trajectories. The technique we develop here amounts to

analyzing the isentropic circulation in the vertical di-

rection and offers a systematic way to separate irrevers-

ible overturning by convective motions from reversible

oscillations by gravity waves.

Section 2 introduces the isentropic averaging for the

convective mass transport and defines the convective

streamfunction. Our approach here is to compute the

conditional average of vertical mass transport in terms

of its equivalent potential temperature in a way that is

similar to Kuang and Bretherton (2006). This mass trans-

port can then be integrated to obtain a streamfunction,

which offers a simple representation of the convective

overturning. This methodology is used to analyze radi-

ative–convective equilibrium simulations with the Sys-

tem for Atmospheric Modeling (SAM; Khairoutdinov

and Randall 2003). In section 3, the isentropic averaging

is generalized to assess the thermodynamic and dy-

namical properties of the air parcels. It can be used to

define the probability of occurrence, mean vertical ve-

locity, and mean thermodynamic properties such as

water content and buoyancy of air parcels in terms of

height and equivalent potential temperature. Thus, it

is possible, for example, to isolate a population of

intense, almost undiluted updrafts associated with

peak vertical velocities of about 40m s21 in numerical

simulations. Section 4 shows application of the isen-

tropic analysis to determine the mean diabatic tendency

from the convective streamfunction. Furthermore, en-

trainment rate can be determined empirically as func-

tions of equivalent potential temperature and height.

Section 5 introduces a two-stream decomposition

of the convective motions based on the isentropic

analysis. The convective circulation is partitioned

between mean upward and mean downward flows of

equal mass transport but different thermodynamic

properties. These results are contrasted with two

other definitions of the convective mass transport. It

is shown here that, as a result of this comparison, the

isentropic analysis leads to significantly lower value

of the convective mass transport particularly in the

upper troposphere.

2. Isentropic streamfunction

The isentropic averaging technique discussed below will

be used to analyze a simulation of radiative–convective

equilibrium performed with SAM, a cloud-resolving

model developed byKhairoutdinov andRandall (2003).

Themodel was integrated on a 216 km3 216 km3 28 km

domain at 500-m horizontal resolution and stretched

vertical grid with 64 gridpoints, with periodic bound-

ary conditions in the horizontal directions. The lower

boundary is an ocean surface at constant temperature

of 301K, while a sponge layer is applied in the upper

8 km to prevent the reflection of gravity waves. The

model uses a five species single-moment microphys-

ics, an explicit radiative transfer, and was integrated

for 100 days, with the last 60 days used for the time

averaging.
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We refer to an isentropic slice as the intersection of an

isentrope with a surface of constant height. We define

the isentropic distribution of the variable f as the in-

tegral of f on a given isentropic slice:

h f i(z, ue0)5
1

PLxLy

ðP
0

ðL
y

0

ðL
x

0
f (x, y, z, t)d[ue0 2 ue(x, y, z, t)] dx dy dt . (1)

Here, ue is the equivalent potential temperature, P is

the time period over which the averaging is performed,

and Lx and Ly are the horizontal extent of the domain.

The integral in Eq. (1) involves a Dirac delta function

d[ue0 2 ue (x, y, z, t)], which is approximated here by a

function that is equal to 1/Due for ue between ue02 0.5Due
and ue0 1 0.5Due, and 0 elsewhere. In practice, Eq. (1)

amounts to sorting the air parcels in terms of their

equivalent potential temperature and to summing the

quantity f at each level in finite ue bins. The isentropic

distribution defined by Eq. (1) is therefore a function of

height and equivalent potential temperature. For sim-

plicity of notation, the dependency on (z, ue) will not be

explicitly indicated from now on, but it should be un-

derstood that all isentropic integrals (denoted by angle

brackets) are functions of both z and ue. Note that the

units of h f i are given by the units of f per kelvin.

The equivalent potential temperature is defined fol-

lowing Emanuel (1994)’s Eq. (4.5.11):

ue5T

�
p0
pd

�R
d
/C

p

exp

 
Lyr

CpT

!
H2R

y
r/C

p . (2)

Here, T is the temperature; p0 is a reference pressure of

1000 hPa; pd is the partial pressure of dry air; Rd and Ry

are the ideal gas constants for dry air and water vapor,

respectively; Cp 5 Cpd 1 rTCl is the specific heat at

constant pressure of moist air, with Cpd and Cl the spe-

cific heat of dry air and liquid water, respectively; Ly is

the latent heat of vaporization; H is the relative humid-

ity; and r and rT are the mixing ratios for water vapor and

total water. In our study, we included cloud water and ice

as part of the total water content but excluded pre-

cipitation from the computation of ue. Alternative choices

for a variable used to define isentropic surfaces are ad-

dressed in the discussion section at the end of the paper.

The isentropic distribution of the vertical mass flux

hrwi, where r is the mass per unit volume and w is the

vertical velocity, in the radiative–convective equilibrium

simulation is shown in Fig. 1a. The solid black line shows

the horizontal-mean profile of equivalent potential

temperature ue(z). The units of hrwi (kgm22 s21K21)

correspond to a vertical mass flux per unit area and per

unit of equivalent potential temperature. The quantity

hrwidue corresponds to the net vertical mass flux of air

parcels at level z with an equivalent potential tempera-

ture between ue and ue 1 due.

The isentropic distribution of the vertical mass flux

can be used to define an isentropic streamfunction as

C(z, ue)5

ðu
e

2‘
hrwi(z, u0e) du0e . (3)

From a physical point of view, the streamfunction

C(z, ue) can be interpreted as the net vertical mass flow

per unit area at level z of all air parcels with an equiv-

alent potential temperature less than ue.

The isentropic streamfunction is shown in Fig. 1b.

Given the definition (3), the streamfunction at a given

height first decreases with ue, as air parcels with low

equivalent temperature are on average subsiding, until it

reaches its minimum value for the value of ue at which

hrwi changes sign. That the streamfunction is negative

through most of the troposphere indicates that rising air

parcels have, on average, a higher equivalent potential

temperature than the subsiding air, and thus corresponds

to an upward transport of ue. The absolute minimum of

the streamfunction is located near the surface and is

associated with mixing within the subcloud layer. The

magnitude of the streamfunction decreases sharply

above 1 km, and then decreases more gradually with

height all the way to the tropopause, corresponding to

a continuous detrainment of air from the updrafts. The

streamfunction changes sign at about 12 km, pointing to

the presence of convective overshoots associated with

a weak downward entropy and energy transport as rising

air mixes with air parcels with higher potential temper-

ature before subsiding.

In section 4, we show that that the vertical derivative

of the streamfunction is proportional to minus the mean

diabatic tendency of air parcels and that the mean tra-

jectory of air parcels in z–ue coordinates is along the

streamline. As with any turbulent flow, one should be

aware that individual parcel trajectories may differ sig-

nificantly from the mean velocity in the flow. Ascending

air parcels originating from the lowest atmospheric layer

have high values of ue, up to 355K. The equivalent po-

tential temperature of the ascending air, however, drops

rapidly with height, indicating entrainment of drier air in
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the updrafts. Above 4–5 km, the streamlines become

almost vertical, corresponding to a vanishing mean

diabatic tendency in the updraft, which would indicate

that the role of entrainment is limited above the freezing

level. As adiabatic freezing or sublimation can lead to

an increase in the equivalent potential temperature,

the vertical streamlines above the freezing level might

actually be the results of the compensation between

freezing and entrainment.

The bulk of the descending motion occurs at equiv-

alent potential temperature close to the horizontal-

mean atmospheric state. Furthermore, the streamlines

are closely aligned with ue(z). The subsiding part of the

circulation corresponds to a slow subsidence of air par-

cels whose equivalent potential temperature remains

close to ue(z). The minimum value of ue(z) is 330K and

is located at 5 km, near the freezing level. Above this

minimum, the equivalent potential temperature of the

subsiding air decreases as a direct consequence of ra-

diative cooling. In contrast, below the minimum of ue
the equivalent potential temperature of subsiding air

parcels gradually increases as they approach the sur-

face. While radiative cooling is still present, the increase

of ue is directly tied to the mixing between subsiding

environmental air and detrained cloudy air with a

higher value of ue. Mixing between rising clouds and

the surrounding air is associated with an exchange of

latent heat from the former to the latter. This process

can be directly diagnosed by the tilt of the stream-

function in the lower troposphere, which is reflected

in both a gradual reduction of the equivalent poten-

tial temperature of the ascending air and a compara-

ble increase of the equivalent potential temperature

in subsiding air.

3. Isentropic averaging of convective motions

The isentropic integral (1) is not limited to vertical

mass flux. The same formalism can be applied to any

variable of interest to obtain a more detailed analysis of

the typical properties of the air parcels involved in

convective motions. The probability density function for

a parcel with equivalent potential temperature ue at

level z can be estimated as

hEq: ð1Þi(z, ue)

5
1

PLxLy

ðP
0

ðL
y

0

ðL
x

0
d[ue02ue(x, y, z, t)]dx dy dt . (4)

Indeed, the quantity hEq. (1)i(z, ue0)due is equal to the

fractional area covered by all parcels with equivalent

potential temperature between ue0 and ue01 due at level z.

The logarithm of the probability density function is

shown in Fig. 2a. The rising air parcels observed in Fig. 1

are associated with very low probability. For example, at

an altitude of 5 km, the ascending air has an equivalent

potential temperature greater than 333K, and is asso-

ciated with a probability density less than 0.003K21. All

together the air parcels with ue . 333K account for less

than 0.7% of all air parcels at that level. In contrast,

subsiding air occupies most of the domain. As noted ear-

lier, the equivalent potential temperature of subsiding

air parcels is close to ue(z), which also corresponds to the

maximum of probability density function. For example,

at an altitude of 5 km, the mean subsidence in Fig. 2a

occurs for ue, 333K and accounts for more than 99%of

the air at that level. Subsiding air corresponds to the

bulk of the atmosphere at any level, while rising ther-

mals are rare occurrences.

FIG. 1. (a) Isentropic distribution of vertical mass flux hrwi (kgm22 s21K21) in the radiative–convective equilibrium simulations.

(b) Isentropic streamfunction C(z, ue) (kgm
22 s21). The solid line shows the mean profile of equivalent potential temperature ue(z).
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FIG. 2. (a) Logarithm (in base 10) of the probability density function

hEq. (1)i(z, ue). (b) Isentropic-mean vertical velocity ~w(z, ue) (m s21).

(c) Directionality of the vertical mass flux. See text for definitions.
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The tails of the probability distribution also reveal

some interesting aspects of convection. First, we note

that the tail of the distribution at high ue closely follows

a line of constant value of ue. This indicates that un-

diluted air parcels from the boundary layer can be found

through the entire troposphere. They are, however, very

scarce (with a probability density less than 1024K21)

and do not contribute significantly to the total vertical

mass transport. In contrast, the tail of the distribution for

low values of ue does not exhibit any similar height-

independent cutoff. Indeed, values of ue of 330K or less

are found mostly within the midtroposphere between

3 and 7 km. While one would not expect an air parcel

with such low value of ue to rise in the upper troposphere

where it would be negatively buoyant, one could imag-

ine finding such a parcel near the surface if it had been

brought there by a convective downdraft. As the surface

distribution of equivalent potential temperature ex-

hibits a cutoff at about 336K (the fractional area of all

air parcels with ue , 336K at the surface is less than

1025), we can exclude the presence of strong convective

downdraft that would bring undiluted air from the mid-

troposphere down to the surface. In fact, ue(z) reaches

a value of 336K at approximately 1300m, which implies

that undiluted downdrafts that reach the surface must

originate fromwithin the planetary boundary layer in our

simulation.

The isentropic distributions for hrwi and for den-

sity hri can be combined to define a horizontal- and

isentropic-mean vertical velocity ~w(ue, z) for air parcels

with a given value of ue at level z:

~w(z, ue)5
hrwi(z, ue)
hri(z, ue)

. (5)

For simplicity, we refer to ~w as the isentropic-mean

vertical velocity for all air parcels for a given value of ue
and z. Figure 2b shows the isentropic-mean vertical ve-

locity in our simulation. It exhibits a marked asymmetry

between fast upward ascent at high ue and very slow

subsidence at value of ue corresponding to the horizontal-

mean value, and is in good agreement with the concep-

tual model of Bjerkness (1938). The high values of ~w

(up to 50m s21) observed in the upper troposphere at

high ue correspond to very strong, rare, weakly diluted or

undiluted updrafts. The abrupt decrease of high ~w at

12 km does not necessarily indicate that these strong

updrafts disappear at that level. Rather, as ~w is the av-

erage vertical velocity for all parcels at a given level and

equivalent potential temperature [Eq. (5)], the value of
~w decreases near the mean profile as fast rising parcels

have the same potential temperature as a much larger

number of slow-moving parcels in the environment.

Analysis of higher moments of the distribution could be

used to further investigate the overshoot of these strong

updrafts above their level of neutral buoyancy. Inter-

estingly, while the isentropic analysis did detect strong

updrafts associated with high values of ue, there is

little indication of strong downward motions at low

values of ue that would correspond to strong convec-

tive downdrafts.

The distribution of hrwi is obtained by averaging over

a large number of air parcels. The net vertical mass flux

is often the result of a compensation between rising and

subsiding motions. To quantify the amount of compen-

sation, we introduce the net upward and downward ve-

locities (w1 and w2, respectively) as

w1 5max(w, 0) and (6a)

w2 5min(w, 0) . (6b)

We then compute the corresponding isentropic distri-

bution (hrw1i and hrw2i) and define the directionality

of the mass transport at each z and ue as

A(z, ue)5
hrwi(z, ue)

max[hrw1i(z, ue),2hrw2i(z, ue)]
. (7)

A value of A(z, ue) close to unity indicates that air

parcels at z and ue are almost uniformly moving upward.

Similarly, for a value of A close to 21, air parcels are

almost all moving downward. In contrast, when A is

close to zero, the net hrwi is the result of large com-

pensation between ascending and subsiding motions.

Figure 2c shows the directionality computed for our sim-

ulations. The directionally is close to one in the portions of

the z2 ue space associated with themean ascent (i.e., for

roughly ue . 335K and 2 , z , 10 km). This indicates

that air parcels with high ue are systematically ascending.

In contrast, for values of z 2 ue near ue(z), the di-

rectionality is almost zero. This corresponds to the bulk

of the air at any level, which is associated with a net

downward motion. Such low value of the directionality

indicates that, as air outside of the convective updrafts is

continuously oscillating because of the influence of prop-

agating gravity waves, the subsidence is the residual

transport that remains after a large compensation between

the upward (hrw1i) and downward (hrw2i) contributions.
The averaging procedure used to define the isentropic-

mean vertical velocity can be applied to any variable.

We define the mass-weighted isentropic mean for vari-

able f as

~f (z, ue)5
hrf i
hri . (8)
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This formulation allows us to define the thermodynamic

properties of the air parcels as function of their height

and equivalent potential temperature. Figure 3 shows

the mean value of the temperature ~T (Fig. 3a), specific

humidity ~q (Fig. 3b), condensed water content ~ql 1 ~qi
(Fig. 3c), and buoyancy ~B (Fig. 3d). The temperature

decreases with height until its minimum near the tro-

popause. The coldest temperatures are associated with

overshoots from the deep convective towers at around

15 km. There is a weak inflection line in the temperature

distribution (Fig. 3a). A similar inflection line is also

present in the humidity distribution (Fig. 3b) for the

same values of z and ue. The inflection marks the sepa-

ration between unsaturated parcels to the left of the line

and saturated parcels to the right. As discussed in

Stevens (2005) and Pauluis (2008), the saturation of air

parcels is characterized by a discontinuity in the equa-

tion of state. This means, for example, that the partial

derivative

�
›T

›ue

�
p,q

T

has a different value depending on whether a parcel is

saturated or not. It is confirmed by the distribution of

~ql 1 ~qi (Fig. 3c), which shows that the inflection lines in

the distributions of ~T and ~q indeed correspond to ap-

pearance of condensate.1

The distribution of buoyancy is shown in Fig. 3d.

Typical values for the buoyancy in rising air are on the

order of 0.1m s22, while the buoyancy in the subsiding

air parcels is significantly lower. This is consistent with

FIG. 3. (a) Isentropic-mean temperature ~T(z, ue) (K). (b) Isentropic-mean specific humidity ~q(z, ue) (kg kg
21). (c) Isentropic-mean cloud

water concentration ~qc(z, ue) (kg kg
21). (d) Isentropic-mean buoyancy ~B(z, ue) (m s22).

1 The quantities ~T and ~qy are obtained by averaging over both

saturated and unsaturated parcels, which can smooth the discon-

tinuity in the partial derivatives. The fact that one is apparent in

Figs. 3a and 3b indicates that saturated and unsaturated air parcels

can be fairly well separated by their value of ue at a given level.
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the asymmetry between strong updraft and weak sub-

sidence observed for the ~w. Note the gradual increase of

the buoyancy with equivalent potential temperature,

which is in agreement with the relationship between en-

tropy and buoyancy discussed in Pauluis (2008). There is

also a marked increase in the buoyancy of the air parcels

at about 5 km, which is most likely associated with the

freezing of the liquid water in the convective updrafts.

4. Diabatic tendency

For a statistically steady system, the continuity equa-

tion can be written as

›

›z
hrwi1 ›

›ue
hr _uei5 0. (9)

This equation arises from themass conservation expressed

in ue and z coordinates and is derived in the appendix.

The second term on the left-hand side corresponds to

mass-weighted average of the diabatic tendency _ue.

Equation (9) combined with the definition of the stream-

function (3) makes it possible to express the diabatic

tendency in terms of the vertical derivative of the

streamfunction:

hr _uei52
›C

›z
. (10)

The mass-weighted diabatic tendency hr _uei is shown in

Fig. 4a. Large heating rates are found near the surface

corresponding to the surface latent and sensible heat

fluxes. In the lower troposphere, a dipole of positive

tendency at lower ue and negative tendency at higher ue
is a result of diffusion of water vapor frommoist updrafts

to the drier environment. The upper troposphere is domi-

nated by the negative tendencies associated with radia-

tive cooling.

FIG. 4. (a) Isentropic distribution of diabatic heating hr _uei. (b) Isentropic-mean diabatic heating tendency ~_ue(K s21). (c) Entrainment rate

(s21) from Eq. (12). (d) Entrainment scale height (m) from Eq. (13).
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Alternatively, the isentropic-mean diabatic tendency

can also be expressed as

~_ue 5
hr _uei
hri ,

and is shown in Fig. 4b. Large negative values of the

diabatic tendency (on the order of 1000Kday21) are

associated with the diffusion of water vapor out of cloudy

air parcels. This contrasts with a much slower rate of in-

crease in ue associated with the moistening of dry air, as

the water vapor flux is diffused into amuch larger mass of

environmental air.

The distribution of diabatic heating in the lower tro-

posphere can be explained through a simple model that

assumes that ascending air parcels entrain air from the

environment. If one neglects the effects of radiative cool-

ing, the potential temperature tendency in the updrafts

can be written as

due
dt

5
ue 2 ue

te
, (11)

where te corresponds to the time it takes to mix envi-

ronmental air (assumed here to have the same proper-

ties as the horizontal-mean profile) into an updraft. This

time scale can be estimated based on the isentropic

analysis as

te(z, ue)5
ue2 ue

~_ue

. (12)

The product of the entrainment time scale and the ver-

tical velocity can then be expressed in terms of an en-

trainment scale height:

le(z, ue)5
~w(ue2 ue)

~_ue

. (13)

The entrainment rate and scale height for the radiative–

convective equilibrium simulations are shown in Figs. 4c

and 4d. Kuang and Bretherton (2006) use a similar

Eq. (11) to assess the effects of entrainment on parcel

trajectories. However, in their approach, one must

first assume a given value of the entrainment rate to

determine the value of the equivalent potential tem-

perature following an air parcel at various heights. In

contrast, here we use the results from the isentropic

analysis to determine the mean rate of change of the

equivalent potential temperature, which is then used to

determine effective entrainment rate. From a geometric

point of view, the quantity

~w
~_ue

5
hrwi
hr _uei

5
›C/›ue
›C/›z

is the slope of a streamline determined form the isen-

tropic analysis in Fig. 1b. The entrainment scale height is

obtained by normalizing this slope by the distance to

ue(z). When the streamlines are almost vertical, the

entrainment-scale height is large, indicating little or no

entrainment. Conversely, when the streamlines are al-

most horizontal, the entrainment scale height is small,

corresponding to strongly entraining plumes. It should

also be stressed that Eq. (11) assumes that the change of

ue is solely due to mixing between rising air and an en-

vironment, thus neglecting the effect of radiation and

freezing. The latter can result in a positive tendency ~_ue in

the updraft, in which case Eq. (12) yields a negative en-

trainment rate. The definition of the local entrainment

rate in Eq. (12) should not be applied above the freezing

point of water.

These diagnostics for entrainment shown in Figs. 4c

and 4d reveal a very large amount of mixing within the

subcloud layer, which is associated with a large number

of the shallow overturning eddies that do not rise above

1 km. The mixing height there can be on the order of

500m or less, which corresponds to the model resolu-

tion. In contrast, in the free troposphere, the distribution

of mixing-scale height varies from relatively short (1 km

or less) for parcels founds near the mean profile to value

of several kilometers at large value of ue typical of the

subcloud layer. Updrafts with high values of ue corre-

spond to almost undiluted air parcels but are quite

scarce, while the bulk of the ascending air is associated

with weaker but more entraining updrafts. The fact that

Eq. (13) yields very different entrainment scale for dif-

ferent values of ue indicates that a bulk entrainment rate

obtained from plume models [see de Rooy et al. (2013)

for a review] only characterizes mixing in an average

sense and does not necessarily apply to individual

parcels.

5. Mass flux and entrainment from two-stream
approximation

The isentropic analysis discussed in the previous sec-

tion offers an efficient way to characterize the thermo-

dynamic properties of convective updrafts and downdrafts.

A two-stream approximation is introduced here to syn-

thesize this information. The convective overturning is

divided into a mean ascent and a mean descent based on

the convective streamfunction. First, we define the up-

ward and downward mass transports (M1 and M2,

respectively):
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M1(z)5

ð‘
2‘

hrwiH(hrwi) due and (14)

M2(z)5

ð‘
2‘

hrwiH(2hrwi) due , (15)

where H is a Heaviside step function. As the net mass

transport vanishes, mass transports in the mean ascent

and descent cancel each other out in the absence of

mean vertical motion: M1 1 M2 5 0.

The mass flux obtained from the isentropic analyses

can be compared to other definitions of the convective

mass transport. Two common measures of the convec-

tive mass transport are the vertical mass flux in cloudy

air Mcld and the vertical mass flux in convective cores

Mcor, which are defined respectively as

Mcld(z)5
1

PLxLy

ðP
o

ðL
y

0

ðL
x

0
w(x, y, z, t)H(qc2 �) dx dy dt and (16a)

Mcor(z)5
1

PLxLy

ðP
o

ðL
y

0

ðL
x

0
w(x, y, z, t)H(qc2 �)H(w2 1) dx dy dt , (16b)

where qc is a mass mixing ratio of cloud water, � 5
10210 g kg21 is a small threshold used for determining

the presence of cloud water, and cores are defined with

a threshold on vertical velocity: jwj $ 1m s21.

The vertical profile for M1 from the two-stream ap-

proximation is contrasted with Mcld and Mcor in Fig. 5a,

while the fractional area covered by clouds, convective

clouds and the isentropic ascent are shown in Fig. 5b.

Below the condensation level, bothMcld andMcor vanish

by definition, but M1 is large, as the streamfunction

captures the convective motions in the subcloud layer.

The isentropic mass flux drops sharply at the cloud base,

and the three mass fluxes have similar values within the

lower troposphere between 1 and 5 km. The fact that

the mass flux in convective cores is slightly larger than

the other two indicates that some of the air that rises

within the convective cores must fall back while re-

maining saturated. The fractional area covered by the

convective cores is also significantly smaller than the

fractional areas associatedwith the isentropic ascent and

with clouds. The three fractional areas are, however,

small, on the order of 1%–2% through the lower tro-

posphere. The similarities in the mass fluxes and in the

fractional areas in the lower troposphere further con-

firm that the isentropic ascent occurs within saturated

updraft.

In the upper troposphere, from 5 to 12 km, the mass

fluxes and fractional areas differ significantly depending

on their definition. Both Mcld and Mcld exhibit a second-

ary maximum in the upper troposphere at about 12 km.

In contrast, M1 decreases monotonically. The fractional

areas associated with isentropic ascent and with clouds

increase greatly, whereas the fractional area of convec-

tive cores remains very small. To understand these dif-

ferences, we need to consider the nature of convection in

the upper troposphere: saturated updrafts rise to their

level of neutral buoyancy, overshoot it then settle down,

forming extensive anvil clouds that are slowly dissipated

FIG. 5. Comparison between the two-stream approximation M1 (red), cloud mass flux Mcld (blue), and convective

core Mcor (black): (a) mass flux and (b) fractional area.
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through precipitation and mixing. The convective cores

are defined as cloudy air thatmoves up at a velocity larger

than 1m s21. This velocity threshold implies that Mcor

only captures the ascent during the overshoot, but not

the downward motion that follows as the air moves back

down toward its level of neutral buoyancy. Furthermore,

as air rises in a stratified environment, it generates in-

ternal gravity waves characterized by significant fluctu-

ations of the vertical velocity away from the updraft

itself. If these fluctuations exceed the threshold of

1m s21 within a cloud, then such gravity wave would

result in a positive contribution to Mcor even in the ab-

sence of overturning. Similarly, if a gravity wave prop-

agates through a dissipating cloud, it will be associated

with a net upward contribution to Mcld as Eq. (16a)

registers the gradual increase of the condensation level.

The increase in Mcld and in Mcor reflects interactions

between clouds and gravity waves and should not be

interpreted as an increase in mass flux due to entrain-

ment. This problem arises directly from the difficulty in

separating gravity waves from clouds or convective

cores in the upper troposphere.

The isentropic mass flux exhibits a continuous de-

crease throughout the upper troposphere without any

secondary maximum. An important aspect of the isen-

tropic mass flux lies in that it is mostly unaffected by

propagating gravity waves. Indeed, in the linear theory,

the vertical velocity field of a gravity wave is out of phase

with the equivalent potential temperature perturbation

and thus does not result in any net vertical displacement

of the air parcel over a wave period. Such result can be

further extended under the generalized Lagrangian-

mean framework to show that steady, nondissipative

waves do not produce any mean Lagrangian displace-

ment (Andrews and McIntyre 1978; McIntyre 1980;

Andrews et al. 1987). Gravity waves will only affect the

isentropic mass transport if they are breaking or damp-

ened. Such breaking can be noticed in Fig. 1a with the

dipoles of ascent/subsidence for ue . 340K and z .
12 km, but the corresponding mass transport is small.

The area associated with the isentropic ascent increases

dramatically. This area is defined as the total area of all

air parcels whose equivalent potential temperature is

such that hrwi(z, ue) is positive. Given that hrwi itself
is an average, this area includes some parcels that may

bemoving down. The increase in the area covered by the

isentropic ascent reflects the fact that as the updrafts are

close to their level of neutral buoyancy, a larger pro-

portion of the atmospheric layer has the same value

of ue.

The differences between M1, Mcor, and Mcld in the

upper troposphere can be thought of in terms of the

implicit time scales tied to the conditional averaging.

When averaging over convective cores, the key criterion

is vertical velocity. In situationswhere overshoot or gravity

waves occurs, the vertical velocity varies rapidly on time

scale inversely proportional to the Brunt–V€ais€al€a fre-

quency (i.e., about 10min). In contrast, it may take

several hours for a cloud to dissipate throughmixing and

precipitation. As a result, the averaging over clouds re-

cords air parcels for a longer period than the convective

core. Similarly, as the radiative cooling rate in the upper

troposphere is on the order of 1Kday21, while the

fluctuations of temperature, measured for example as

the difference of temperature between the updrafts and

downdrafts in Fig. 1a, are on the order of 1 or 2K. This

implies that the isentropic analysis includes a longer

time scale: up to a couple of days. Qualitatively, such

longer averaging windowmakes it easier to filter out fast

oscillation such as gravity waves but also results in a

larger number of air parcels being included. In the lower

troposphere, air parcels rise rapidly, in a few minutes or

so. This short ascent time is the primary factor that limits

the contribution of any individual parcel to M1, Mcor,

and Mcld, so that the three mass fluxes and fractional

areas are quite close.

Additional information on the nature of the over-

turning circulation can be extracted by determining the

various thermodynamic properties of the rising and

descending air. For a given variable f, we define its value

in the mean ascent f1 and in the mean descent f2 as

f1(z)5
1

M1

ð‘
2‘

hrwf iH(hrwi) du0e and (17a)

f2(z)5
1

M2

ð‘
2‘

hrwf iH(2hrwi) du0e . (17b)

The transport of a quantity f by the mean ascent F1
f

and by the mean descent F2
f can then be written as

F1
f 5M1[ f1(z)2 f (z)] and (18a)

F2
f 5M2[ f2(z)2 f (z)] . (18b)

Note that in this definition, it is assumed that the upward

or downward mass fluxes are compensated by an equal

but opposite flux occurring at the horizontal-mean

value f .

We first apply these definitions to the moist static

energy:

Hm 5CpT1 gZ1Lyq2Lf qi , (19)

where Cp is heat capacity at constant pressure; T is air

temperature; Ly and Lf are, respectively, the latent heat
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of vaporization and fusion; and q and qi are mass mixing

ratios of water vapor and ice content, respectively. The

mean updraft H1
m , the mean downdraft H2

m , and its

horizontal-mean value Hm are shown in Fig. 6a.

Below 10 km, themean ascent has a highermoist static

energy than the mean descent, corresponding to an up-

ward energy transport. However, above 10 km, themoist

static energy of the rising air H1
m is less than that of the

subsiding air H2
m . This is a result of the convective

overshooting, in which ascending air parcels rise above

their level of neutral buoyancy then mix with environ-

mental air with a higher value of the potential temper-

ature before falling down. The definition of moist static

energy [Eq. (19)] includes latent heat of fusion; thus,

the presence of falling snow and ice causes a net upward

energy flux, which may balance in part the downward

convective energy transport in the upper troposphere.

The moist static energy in the mean downdraft

is always very close to the horizontal mean, with

H2
m 2Hm , 0:5 kJ kg21, which is consistent with the fact

that the mean downdraft is in large part associated with

subsiding air in the unsaturated environment. However,

a closer examination indicates that the moist static en-

ergy in the mean downdraft is slightly higher than the

horizontal-mean value everywhere except near the sur-

face. This can be explained by the fact that a mixture of

unsaturated environmental air and cloudy air has both

higher moist static energy than the environmental air and

higher density because of the reevaporation of conden-

sate. Thus, one would expect such mixture to experience

stronger downward motion, resulting inH2
m to be slightly

larger than the horizontal-mean moist static energy.

While the effect here is small, such behavior indicates

that the convective energy transport cannot be accurately

represented by a simple Gaussian distribution around a

mean atmospheric state.

In the upper troposphere, convective motions trans-

port energy downward and act as a reverse heat engine

that consumes kinetic energy to transport dense, cold air

upward and lighter, warmer air downward. This can be

verified by looking at the mean updraft (B1) and mean

downdraft (B2) buoyancies shown in Fig. 6b. The buoy-

ancy in themean ascent is larger than the buoyancy in the

mean descent between the surface and 10 km, which

corresponds to a net generation of kinetic energy by the

convective motions. The opposite happens above 12 km,

with the mean ascent being denser than the mean

descent, so that kinetic energy is being converted into

geopotential and internal energy.

The two-stream approximation can be used to deter-

mine a bulk entrainment and detrainment rates associ-

ated with the mean updraft. It is assumed that the mass

flux in the mean updraft increases or decreases with

FIG. 6. Results from the two-stream diagnostic for the convec-

tion. (a) Moist static energy (kJ) in the updraft H1
m , in the down-

draftH2
m , and horizontal-mean valueHm. (b) Buoyancy (m s22) in

the updraft B1 and in the downdraft B2. (c) Entrainment and

detrainment rates (m21) based on Eqs. (22) and (23).

3684 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 70



height depending on the balance between entrainment

and detrainment. At the same time, moist static energy

in the updraft is diluted by the entrainment of environ-

mental air. This means that M1 and H1
m in the mean

updraft are governed by the following equations:

dM1

dz
5 (E2D)M1 and (20)

d(M1H1
m)

dz
5EM1Hm 2DM1H1

m 1LfPice , (21)

where E and D are the fractional entrainment and de-

trainment rates (m21), respectively; Lf is the latent heat

of fusion; and Pice is the rate at which ice is removed by

precipitation. If the vertical profiles of M1 and H1
m are

known, the above equations can be solved for entrain-

ment and detrainment rates:

E5
LfPice/M

1 2 dH1
m /dz

H1
m 2Hm

and (22)

D5E2
1

M1

dM1

dz
. (23)

Note that Eq. (22) may yield negative values for the

entrainment rate if the moist static energy in the mean

updraft increases with height, which can happen in the

upper troposphere. This is a limitation of the simplified

model [Eqs. (20) and (21)], which considers a single

rising plume to account for all convective motions. As

can be deduced from Fig. 1, detrainment in the upper

troposphere is associated preferentially with air parcels

that have lower values of ue than the mean updraft (and

hence a lower moist static energy). Nevertheless, the

results from this simple model appear reasonable in the

lower 8–10 km of the atmosphere and are shown in Fig.

6c. The detrainment rate peaks at the cloud base, de-

creases with height, and is always higher than the en-

trainment rate, consistent with the mean updraft mass

flux decreasing with height. The entrainment rate varies

from 6 3 1024m21 right above the cloud base to about

2 3 1024m21 at 8 km. This indicates that while there is

vigorous entrainment in the lower troposphere, it be-

comes less important from the middle troposphere.

As discussed in de Rooy et al. (2013), such bulk en-

trainment and detrainment rates are sensitive to details

in how the bulk model is formulated. For example,

Siebesma and Cuipers (1995) and Siebesma et al. (2003)

derive the entrainment and detrainment rates from the

transport of total water and liquid water potential tem-

perature, while Romps (2010) uses a purity tracer. Un-

fortunately, these different choices can directly affect

the numerical values for the entrainment and detrain-

ment rates. Our analysis indicates that the choice in the

definition of the bulk mass transport has also a large

impact for the retrieval ofE andD. Indeed, had we used

the mass flux in clouds to the convective core as it is

commonly done, we would have found very large value

of the entrainment rate in the upper troposphere where

thesemass fluxes increase with height. Such large values,

however, are an artifact of the fact that both Mcor and

Mcld include a significant contribution from gravity

waves in their estimate of the mass flux. By contrast, the

use of the isentropic analysis to compute M1 offers a

robust way to estimate the convective mass transport

that excludes oscillatory motions such as gravity waves.

Any bulk approach, including the two-stream approxi-

mation outlined here, remains limited by the fact that it

attempts to aggregate a complex flow into a single mass

transport. A better understanding of entrainment and

detrainment processes should describe how they vary

for different parcels, which could be done based on a

conditional average version of Eq. (12) or the local defi-

nition of entrainment introduced by Romps (2010).

6. Discussion

In this paper, a new method of analysis for convective

motions in high-resolution simulations has been pro-

posed. Our approach relies on conditional averaging of

the various properties of air parcels in terms of both the

height and the equivalent potential temperature. This

averaging procedure reduces a four-dimensional data-

set into a two-dimensional distribution by compressing

fluctuations in the two horizontal coordinates and time

into a single thermodynamic coordinate (ue). While

other studies such as Yano et al. (2004) and Pauluis and

Garner (2006) have analyzed the behavior of convection

in terms of the vertical velocity distribution, a condi-

tional averaging based on equivalent potential temper-

ature has the advantage of preserving the separation

between the ascent of warm, moist air and subsidence

of colder, drier air, which are the fundamental aspects of

moist convection. Furthermore, while the equivalent

potential temperature of an air parcel can be affected by

a wide range of processes, such as radiation, evapora-

tion, and mixing, it is conserved for reversible adiabatic

transformation. As defined, a conditional averaging on

ue can be viewed as isolating the irreversible convective

overturning by filtering out fast, reversible oscillatory

motions such as gravity waves.

The conditional averaging has been first used here to

extract a vertical mass flux and to compute an isentropic

streamfunction. Analysis of the streamfunction iden-

tifies the convective overturning as a combination of
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ascents of high energy air parcels and descents of air

with much lower energy, shows the role of entrainment

in reducing the equivalent potential temperature of the

rising air parcels in the lower troposphere, and indicates

the presence of convective overshoot in the tropopause

region. There is a strong asymmetry between updrafts

and downdrafts, with the former occupying a small area

but occurring at fairly large vertical velocity, and the

latter being associated with slow subsidence over the

large portion of the domain. Very strong updrafts, with

vertical velocities reaching 30m s21 corresponding to a

rare occurrence of almost undiluted air parcels ascend-

ing from the boundary layer, were also observed. The

scarcity of undiluted updrafts is in agreement with the

recent findings of Romps and Kuang (2010). Other im-

portant properties of rising and subsiding parcels,

such as temperature, humidity, and buoyancy, can also

be systematically studied with the isentropic-averaging

approach.

Diabatic tendencies can be computed from the con-

tinuity equation expressed in z–ue coordinates without

the need to compute them explicitly within the model.

When applied to the radiative–convective equilibrium

simulations, our analysis shows that entrainment reduces

the equivalent potential temperature in the updrafts

(especially in the lower troposphere), while detrainment

increases the equivalent potential temperature in sub-

siding air parcels. Near the freezing level, a slight in-

crease in the equivalent potential temperature of the

updrafts was also found, which can be attributed to the

freezing of condensed water. Empirical entrainment

rate can also be determined as a function of both height

and the equivalent potential temperature. This analysis

confirms the presence of significant entrainment in the

lower troposphere, while the rare occurrence of updrafts

with high values of ue corresponds to air parcels that

have experienced little to no entrainment.

The choice of the variable used in the conditional

averaging (1) is somewhat arbitrary. We choose the

equivalent potential temperature ue albeit without in-

cluding a contribution from the ice phase or precipita-

tion (i.e., the rain, snow, and graupel species from the

microphysics scheme). Our decision to exclude the pre-

cipitation water is motivated by our desire to avoid rapid

changes in ue that would occur when precipitation falls

through an air parcel. Different choices could have been

made, such as moist entropy, a formulation of the equiv-

alent potential temperature that explicitly includes an ice

phases, or moist static energy. It is, however, not possi-

ble to obtain a thermodynamic variable that is exactly

conserved for an ascending parcel that loses condensed

water or ice. In practice, one would like to use a variable

that is approximately conserved for undiluted ascent, but

exact conservation is not necessary (nor achievable for

actual air parcels) to separate updrafts and downdrafts.

While one of the main motivations for the isentropic

averaging is to obtain a statistical description of con-

vective motions by separating air parcels in terms of

their equivalent potential temperature, it is also possible

to further synthesize the information in terms of a two-

stream approximation. This method defines a mean

ascent and a mean descent based on the isentropic

streamfunction. In doing so, one can describe a convec-

tive mass transport as well as the mean updraft and

downdraft properties. Results from the two-stream ap-

proximation have been compared with standard defi-

nitions of the mass transport inside clouds and inside

convective cores. It is shown that the isentropic analysis

leads to systematically lower values for the mass trans-

port due to the fact that the isentropic analysis filters

out gravity waves (as long as these correspond to re-

versible oscillations of air parcels around their level

of neutral buoyancy), while other averaging techniques

tend to include additional contributions from gravity

waves.

The technique proposed here can be regarded as an

equivalent of the analysis of the meridional circulation

in isentropic coordinates (Dutton 1976; Johnson 1989;

Held and Schneider 1999; Pauluis et al. 2008, 2010) ap-

plied to the vertical transport by convection. As con-

vective motions act to continuously stretch and fold

isentropic surfaces, their geometry can be very complex.

The isentropic averaging can be viewed as a useful

mathematical tool to disentangle this complex geome-

try. The isentropic averaging also serves as a quasi-

Lagrangian coordinate system that filters out fast

reversible oscillations and captures the core convective

processes associated with high-entropy updrafts bal-

anced by slow subsidence of low-entropy air. The ap-

proach presented here is well suited for analysis of

simulated convection. In addition to reduction of com-

plex four-dimensional datasets into more manageable

two-dimensional distributions, the isentropic analysis

offers the possibility of recovering the diabatic tenden-

cies without requiring detailed knowledge of the nu-

merical models. This can be advantageous as one tries to

diagnose the convective transport in increasingly com-

plex numerical models in which the diabatic tendencies

result from an array of physical parameterizations, in-

cluding turbulent closure, microphysics, and radiative

transfer. While direct computation of the isentropic

streamfunction requires a significant amount of data,

it might be possible to approximate it accurately on the

basis of a statistical approximation, as it can be done

using the statistical transformed Eulerian-mean circula-

tion to reconstruct the global isentropic circulation (Pauluis
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et al. 2011). Hence, the isentropic streamfunction could

potentially be used as an intermediary diagnostic for

comparison between high-resolution cloud-resolving

models and single-column models.

Finally, a potential application of the isentropic av-

eraging lies in the reconstruction of the transformations

that various air parcels undergo as they are being

transported within the convective systems. In fact, the

isentropic averaging can recover not only the convective

mass transport, but also the various thermodynamic

properties. It is thus possible to use this information to at

least approximate the thermodynamic evolution of air

parcels. We plan to investigate such technique in an up-

coming paper.
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APPENDIX

Isentropic Average of the Continuity Equation

We derive here Eq. (9), which amounts to a statement

of conservation of mass after isentropic averaging.

First, we define the mass M of air below a level z and

potential temperature ue as

M(z, ue0, t)5
1

LxLy

ðz
0

ðL
y

0

ðL
x

0
rH(ue02 ue) dx dy dz ,

(A1)

where H is the Heaviside function. The time derivative

of M is given by

›M

›t
5

1

LxLy

ðz
0

ðL
y

0

ðL
x

0

›r

›t
H(ue02 ue)2 rd(ue02 ue)

›ue
›t

dx dy dz , (A2)

where we use the fact that (›/›t)H(ue0 2 ue)5
2d(ue0 2 ue)(›ue/›t). We consider a general form for

the ue equation to be

›ue
›t

1V � $ue 5 _ue ,

with V the three-dimensional vector field and _ue
the rate of change of ue resulting from the vari-

ous physical process on the parcel. Using this equa-

tion as well as the continuity equation, we can now

write

›M

›t
5

1

LxLy

ðL
y

0

ðL
x

0

ðz
0
2H(ue02 ue)$ � (rV)1 d(ue02 ue)rV � $ue 2 d(ue02 ue)r

_ue dz dx dy

5
1

LxLy

ðL
y

0

ðL
x

0

ðz
0
2$ � [rVH(ue02 ue)]2 d(ue02 ue)r

_ue dz dx dy

52
1

LxLy

ðL
y

0

ðL
x

0
rwH(ue02 ue) dx dy2

1

LxLy

ðL
y

0

ðL
x

0

ðz
0
d(ue0 2 ue)r

_ue dz dx dy . (A3)

In deriving Eq. (A3), we have used the fact that

d(ue02 ue)rV � $ue52rV � $[H(ue02 ue)] .

While the isentropic integral defined in Eq. (1) in-

cludes a time averaging, it can be extended to define the

instantaneous isentropic integral of a quantity f as

h f i*(z, ue0, t)5
1

LxLy

ðL
y

0

ðL
x

0
f (x, y, z, t)d[ue02 ue(x, y, z, t)]dx dy . (A4)
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Under this notation, the isentropic integral hri
*
is given

by

hri*(z, ue0, t)5
›2M

›z›ue0
.

If we now apply the second-order derivative ›2/›ue0›z

to Eq. (A3), we obtain

›

›t
hri*1

›

›z
hrwi*1

›

›ue0
hr _uei*5 0. (A5)

This amounts to conservation of mass in the z–ue co-

ordinates. We can take the time average of Eq. (A5), so

that the instantaneous integral h�i
*
is replaced by the

time-average counterpart h�i. For a statistically steady

system, the first term on the left-hand side vanishes and

we are left with Eq. (9):

›

›z
hrwi1 ›

›ue0
hr _uei5 0. (A6)
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