Magnetic Field Dependence of the Critical Current in S/N Bilayer Thin Films

NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA, *Corresponding Author. Tel: 1-301-286-3078, E-mail address: john.e.sadleir@nasa.gov

Abstract: Here we investigate the effects a non-uniform applied magnetic field has on superconducting transition-edge sensors’ (TESs’) critical current. This has implications on TES optimization. It has been shown that TESs’ resistive transition can be altered by magnetic fields. We have observed critical current rectification effects and explained these effects in terms of a magnetic self-field arising from asymmetric current injection into the sensor. Our TES physical model shows that this magnetic self-field can result in significantly degraded or improved TES performance. In order for this “magnetically tuned” TES strategy to reach its full potential we are investigating the effect a non-uniform applied magnetic field has on the critical current.

Weak-link Behavior of TES

Ginzburg-Landau theory

Critical current (Ic) as a function of both temperature (T) and the TES length (L)

Critical current (Ic) as a function of both temperature (T) and the TES length (L)


Experimental Set-up for Non-uniform Field

Schematic diagram (not to scale)

Calculated magnetic field

Several TESs with different sizes and gaps

New measurement scheme for Ic(B)

Fractional-like oscillation of Ic(B) measured with uniform magnetic field

Simulated Ic(B) response of 30μm TES with 6μm gap and various offset (additional distance between the TES and the lead)

Modeling Ic(B) to reproduce measured data

Summary and Discussion

- Critical current of TES is a function of temperature, magnetic field and the TES size.
- Fraunhofer-like oscillation of critical current with uniform magnetic field is a strong evidence of TESs’ being a weak-link.
- We have come up with a theoretical model that is able to reproduce much of the observed structure in the critical current as a function of non-uniform applied magnetic field.
- Further work is underway to study larger L devices and also TESs with added normal metal structures used for noise mitigation.

Weak-link Behavior of TES

Ginzburg-Landau theory

Critical current (Ic) as a function of both temperature (T) and the TES length (L)

Critical current (Ic) as a function of both temperature (T) and the TES length (L)