
VARED: Verification and Analysis of Requirements
and Early Designs

Julia Badger David Throop Charles Claunch

I. MOTIVATION

Requirements are a part of every project life cycle; ev-
erything going forward in a project depends on them. Good
requirements are hard to write, there are few useful tools to
test, verify, or check them, and it is difficult to properly marry
them to the subsequent design, especially if the requirements
are written in natural language. In fact, the inconsistencies and
errors in the requirements along with the difficulty in finding
these errors contribute greatly to the cost of the testing and
verification stage of flight software projects [1].

Large projects tend to have several thousand requirements
written at various levels by different groups of people. The
design process is distributed and a lack of widely accepted
standards for requirements often results in a product that varies
widely in style and quality. A simple way to improve this
would be to standardize the design process using a set of
tools and widely accepted requirements design constraints.
The difficulty with this approach is finding the appropriate
constraints and tools. Common complaints against the tools
available include ease of use, functionality, and available
features. Also, although preferable, it is rare that these tools
are capable of testing the quality of the requirements.

II. TOOL DESCRIPTION

The VARED tool chain (Figure 1) aims to provide an
integrated environment to analyze and verify the requirements
and early design of a system. The input to the tool are natural
language requirements that have been written to some common
standards. The requirements are then automatically parsed into
a formalized requirements language and checked for quality
using Natural Language Processing (NLP) techniques. The
Requirements Conversion Engine (RCE) then automatically
converts the formalized requirements into Linear Temporal
Logic (LTL) statements. LTL is an appropriate form for using
formal methods both on and with the requirements. The
Logical Consistency Checker (LCC) will formally analyze the
LTL version of the requirements for satisfiability and vacuity
with respect to an appropriate state model, seamlessly incor-
porating automatic testing and verification of the requirements
statements into the design process.

Two existing tools have been adapted to design and verify
early system designs based on environment models and the
formal requirements statements. The SBT Checker and the
state model will help designers create controllers and system
models with the appropriate structure needed for the InVeriant
symbolic model checker. InVeriant will formally verify the
controllers or system model against the LTL version of the

Fig. 1. VARED- integrated requirements and early design tool chain.

requirements statements, which both incorporates automatic
testing and verification for the early design stage of software
development, and also formally ties the requirements and early
design together.

A novel feature of the VARED toolchain is the use of a state
model of the system and its environment. This state model
is developed from the scope and the high-level requirements
of the system under design. The model is created using
State Analysis-derived methods [2] and is used to aid nearly
all pieces of the VARED tool chain, including the natural
language processing, the LCC, SBT Checker, and InVeriant.
Brief descriptions of the tool’s components are as follows.

A. STAT/Edith

The natural language processing tool for VARED is called
Edith and was built on more than a decade of work on the
underlying STAT parsing tool. STAT (Semantic Text Analysis
Tool) [3] is a NLP tool that was originally built to parse
through space shuttle problem reports. The Edith extension
allows STAT to be used to parse requirement statements into
a structure that can be parsed by the Requirements Conversion
Engine, if possible. Edith parses the sentences structure, which
is naturally normalized by the fairly structured English lan-
guage found in requirements statements, and replaces common
words and phrases with general words associated with LTL se-
mantics. It also queries the state model to find the appropriate



form that the subject and other noun phrases should take, so
that the formal requirement statements can be used with the
state model downstream in the tool chain. If Edith encounters
a sentence structure or noun phrase that it does not recognize,
the requirement statement is returned to the user with an error
message; otherwise, a structured English statement conforming
with the state model terminology is sent to the RCE.

B. Requirements Conversion Engine

The RCE consists of two parts. The first part is a third-party
open source package called SALT that translates structured
English to LTL. The second part takes the LTL output and
converts it to a form that can be used by the downstream
tools. SALT (Structured Assertion Language for Temporal
Logic) [4] is a temporal specification language designed to
create concise statements that are used in model checking
and runtime verification. In particular, SALT is configured
to output LTL as understood by SMV (Symbolic Model
Verifier) [5]. The RCE returns requirements statements written
in LTL in PANDA syntax [6], which is used by the Logical
Consistency Checker and InVeriant.

C. Logical Consistency Checker

The LCC provides two functionalities for checking the
quality of the formal requirement statements against the state
model. First, it uses PANDA [6] to format the LTL formulas
in conjunction with formalized state model properties to create
an SMV input file. This input file checks the given formula
against a universal model to check the satisfiability of the
statement with respect to the state model. Second, the LCC
will take the combined requirements and state model LTL
statements and check them for vacuity [7]. Informally, an LTL
formula is vacuous in an expression if that expression does
not affect the value of the formula. The LCC provides the
user feedback on requirements statements that are vacuous or
unsatisfiable so that the user can correct the initial requirement
or the state model of the system as necessary.

D. SBT Checker and InVeriant

InVeriant is a symbolic model checker that is capable of
doing safety checking on a class of linear hybrid automata
(LHA) that have a special property called state-based transi-
tions [8]. This property ensures that the system covers the state
model- that is, each state represented in a model of the system
and its environment has a corresponding location in the model
of the controller. Using the SBT Checker, this property can
be checked for modularly in smaller automata that combine
to create an automaton that models the entire system under
control. The InVeriant model checker then combines the
individual LHA into the model for the system under control
using both the controller LHA inputs and the state model of
the system. It then checks the overall system design against
the formal requirements statements to ensure that they hold in
all states of the system design. Both tools provide the user
feedback if the models do not pass the respective checks,
allowing the user to redesign the system model as appropriate

to meet the state-based transitions property or to satisfy the
requirement statement.

III. CONTRIBUTIONS AND FUTURE WORK

Though natural language processing of requirements is
broadly studied (i.e., [9], [10]) and the formal methods al-
gorithms utilized in the VARED tool are on par with current
technology, the major contribution in this work is combining
the two while taking a system-level approach. The design
method that this tool uses requires the requirements engineer
to create a model of the system and the environment from the
requirements and supporting documentation. Then, using that
model, the VARED tool helps designers to both analyze the
quality of requirements as well as provides traceability of the
requirements through the early design stage, where the con-
troller is designed and verified against the requirements. This
state model based approach is unique to both natural language
processing and symbolic model checking tools available today.

The VARED tool has been developed to support systems
whose controllers can be described as linear hybrid automata
with certain properties. Because the properties and controller
design depend heavily on the fidelity of the state model
constructed, this tool is appropriate for analyzing and de-
veloping systems in the early stage of design. The choice
of LTL as the specification language introduces limitations
on the set of requirements that can be analyzed; however,
the tool is expandable to other types of logics as needed.
Several other future directions for the model checkers could
be implemented to expand the usefulness of the VARED tool,
such as introducing timing, liveness properties, and branching.

REFERENCES

[1] D. Peercy, Software Quality Engineering Course Guide. SEMATECH,
1995.

[2] D. Dvorak, M. Indictor, M. Ingham, R. Rasmussen, and M. Stringfellow,
“A unifying framework for systems modeling, control systems design,
and system operation,” IEEE Conference on Systems, Man, and Cyber-
netics, October 2005.

[3] J. T. Malin, C. Millward, F. Gomez, and D. R. Throop, “Semantic
annotation of aerospace problem reports to support text mining,” IEEE
Intelligent Systems, vol. 25, pp. 20–26, 2010.

[4] A. Bauer, M. Leucker, and J. Streit, SALT: Structured Assertion Lan-
guage for Temporal Logic. Springer Berlin / Heidelberg, 2006, vol.
LNCS 4260, pp. 757–775.

[5] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang, “Symbolic
model checking: 1020 states and beyond,” in Proc. of the Fifth Annual
IEEE Symposium on Logic in Computer Science, 1990, pp. 428–439.

[6] K. Y. Rozier and M. Y. Vardi, “A multi-encoding approach for LTL sym-
bolic satisfiability checking,” in FM 2011: Formal Methods. Springer,
2011, pp. 417–431.

[7] A. Gurfinkel and M. Chechik, “Robust vacuity for branching temporal
logic,” ACM Transactions on Computational Logic (TOCL), vol. 13,
no. 1, p. 1, 2012.

[8] J. M. B. Braman, “Safety verification and failure analysis of goal-
based hybrid control systems,” Ph.D. dissertation, California Institute
of Technology, 2009.

[9] L. Mich and R. Garigliano, “NL-OOPS: A requirements analysis tool
based on natural language processing,” in Proceedings of Third In-
ternational Conference on Data Mining Methods and Databases for
Engineering, Bologna, Italy, 2002.

[10] F. Iwama, T. Nakamura, and H. Takeuchi, “Constructing parser for
industrial software specifications containing formal and natural language
description,” in Proceedings of the 34th International Conference on
Software Engineering, ser. ICSE ’12, 2012, pp. 1012–1021.


