FUNCTIONAL TASK TEST:

Data Review

June 30, 2014

Neuroscience, Exercise Physiology & Cardiovascular Laboratories

NASA-Johnson Space Center, Houston, TX
Background

After space flight there are changes in multiple physiological systems including:

- Cardiovascular function
- Sensorimotor function
- Muscle function

How do changes in these physiological systems impact astronaut functional performance?
Objectives

1. Determine the effects of space flight on astronaut’s ability to perform mission critical functional tasks.

2. Identify the key physiological factors that contribute to decrements in functional performance.

Inform the design of targeted countermeasures
Functional Task Test (FTT)

Functional Performance
- Seat Egress and Walk
- Ladder Climb
- Recovery from Fall/Stand
- Rock Translation
- Torque Generation
- Construction Activity
- Jump Down

Physiological Measures

Muscle
- Strength
- Power
- Control
- Neuromuscular Drive

Sensorimotor
- Balance
- Gait
- Dynamic Visual Acuity
- Fine Motor Control

Cardiovascular
- Plasma Volume
- Heart Rate
- Blood Pressure

Interdisciplinary testing regimen maps postflight functional performance to related physiological changes.
Subject Groups

Shuttle: 7 subjects
12-16 day flights

ISS: 12 subjects (total n=13)
6 month flights

Bed Rest:
Controls: 11 subjects
Exercise: 9 subjects
Exercise + Testosterone: 8 subjects

70 days bed rest
Testing Schedules

<table>
<thead>
<tr>
<th>Preflight</th>
<th>Postflight</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-180</td>
<td>L-60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preflight</th>
<th>Postflight</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-180</td>
<td>L-60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre-bed rest</th>
<th>Post-bed rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR-12</td>
<td>BR-7</td>
</tr>
</tbody>
</table>

70 days in bed rest
Using Bed Rest as a Sensorimotor Analog

Space flight modifies:

Vestibular and body load information

Bed rest modifies:

Body load information

Bed rest serves to delineate the role of body unloading in space flight performance changes
Receptors that Detect Body Load

Muscle Spindles

Mechanoreceptors

Golgi Tendon Organ

Body loading information controls motor output:

- Balance control
- Generation of stepping patterns
- Termination of gait
Functional Tests

- Seat Egress and Walk
- Ladder Climb
- Rock Translation
- Recovery from Fall/Stand
- Construction Activity
- Torque Generation
- Jump Down
Functional Tests: Parameter List

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Test Condition</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Tests</td>
<td></td>
<td>Heart Rate</td>
</tr>
<tr>
<td>Activity Board</td>
<td></td>
<td>Time to Complete Activity Board Test</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>Lag Time of Head Yaw relative to Trunk Yaw</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>RMS of Head Yaw relative to Trunk Yaw</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>Time from Start through End of Slalom Section</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>Time from Portal Entry through Slalom Section</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>Time to Decend Ramp</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>Time from Start to Portal Entry</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>Total Time to Complete Entire Egress Course</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>Time from Start through Portal Completion</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>Time to Complete Portal Section</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>Time from Portal Completion through Slalom Section</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>Time from Start to Top of Ramp</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>Time from End of Slalom Course to Top of Ramp</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Prone & Stand</td>
<td>Diastolic Blood Pressure</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Prone & Stand</td>
<td>Heart Rate</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Prone & Stand</td>
<td>Pulse Pressure</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Prone & Stand</td>
<td>R-R Interval (High Frequency)</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Prone & Stand</td>
<td>R-R Interval (Low:High Frequency Ratio)</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Prone & Stand</td>
<td>R-R Interval</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Prone & Stand</td>
<td>Systolic Blood Pressure (Low Frequency)</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Prone & Stand</td>
<td>Systolic Blood Pressure</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Stand</td>
<td>Settling Time of the Vertical Ground Reaction Force during Transition from Prone to Stand</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Stand</td>
<td>Mean Sway Speed of Vertical Ground Reaction Force: 2D-Resultant</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Stand</td>
<td>Mean Sway Speed of Vertical Ground Reaction Force: Anterior-Posterior</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Stand</td>
<td>Mean Sway Speed of Vertical Ground Reaction Force: Medial-Lateral</td>
</tr>
<tr>
<td>Jump Task</td>
<td></td>
<td>Air Time of Jump</td>
</tr>
<tr>
<td>Jump Task</td>
<td></td>
<td>Settling Time of the Vertical Ground Reaction Force upon Landing</td>
</tr>
<tr>
<td>Jump Task</td>
<td></td>
<td>Peak Vertical Ground Reaction Force upon Landing</td>
</tr>
<tr>
<td>Jump Task</td>
<td></td>
<td>Time Difference of Take-Off Between the Leading and Lagging Feet</td>
</tr>
<tr>
<td>Jump Task</td>
<td></td>
<td>Time to Peak Vertical Ground Reaction Force upon Landing</td>
</tr>
<tr>
<td>Ladder Climb</td>
<td></td>
<td>Time to Climb 40 Rungs on the Ladder</td>
</tr>
<tr>
<td>Rock Translation</td>
<td></td>
<td>Time to Move Rocks to Second Rack and Back to First Rack</td>
</tr>
<tr>
<td>Rock Translation</td>
<td></td>
<td>Time to Move Rocks to Second Rack Only</td>
</tr>
<tr>
<td>Torque Generation</td>
<td>Isometric</td>
<td>Torque Generation: Maximum Isometric Force</td>
</tr>
<tr>
<td>Torque Generation</td>
<td>Isometric</td>
<td>Torque Generation: Number of Turns during Isotonic Test</td>
</tr>
<tr>
<td>Torque Generation</td>
<td>Isometric</td>
<td>Torque Generation: Total Work during Isotonic Test</td>
</tr>
<tr>
<td>TestName</td>
<td>TestCondition</td>
<td>Parameter</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>All Tests</td>
<td></td>
<td>Heart Rate</td>
</tr>
<tr>
<td>Bench Press</td>
<td>Force Control</td>
<td>Bench Press Force Control: No Visual</td>
</tr>
<tr>
<td>Bench Press</td>
<td>Max Isometric Force</td>
<td>Bench Press Maximum Isometric Force</td>
</tr>
<tr>
<td>Bench Press</td>
<td>Max Isometric Force</td>
<td>Bench Press Rate of Force Development</td>
</tr>
<tr>
<td>Bench Press</td>
<td>Power Endurance</td>
<td>Bench Press Maximum Power (Endurance Test)</td>
</tr>
<tr>
<td>Bench Press</td>
<td>Power Endurance</td>
<td>Bench Press Total Work</td>
</tr>
<tr>
<td>Knee Extension</td>
<td>Force Control</td>
<td>Knee Extension Force Control: No Visual</td>
</tr>
<tr>
<td>Knee Extension</td>
<td>Force Control</td>
<td>Knee Extension Force Control: Visual</td>
</tr>
<tr>
<td>Knee Extension</td>
<td>Twitch</td>
<td>Interpolated Twitch: Central Activation Capacity</td>
</tr>
<tr>
<td>Knee Extension</td>
<td>Twitch</td>
<td>Interpolated Twitch: Central Activation Ratio</td>
</tr>
<tr>
<td>Knee Extension</td>
<td>Twitch</td>
<td>Knee Extension Maximum Isometric Force</td>
</tr>
<tr>
<td>Knee Extension</td>
<td>Twitch</td>
<td>Knee Extension Rate of Force Development</td>
</tr>
<tr>
<td>Leg Press</td>
<td>Max Isometric Force</td>
<td>Leg Press Maximum Isometric Force</td>
</tr>
<tr>
<td>Leg Press</td>
<td>Max Isometric Force</td>
<td>Leg Press Maximum Isometric Force Normalized to Body Weight</td>
</tr>
<tr>
<td>Leg Press</td>
<td>Max Isometric Force</td>
<td>Leg Press Rate of Force Development</td>
</tr>
<tr>
<td>Leg Press</td>
<td>Power Endurance</td>
<td>Leg Press Maximum Power (Endurance Test)</td>
</tr>
<tr>
<td>Leg Press</td>
<td>Power Endurance</td>
<td>Leg Press Total Work</td>
</tr>
<tr>
<td>Line Test</td>
<td></td>
<td>Percent Correct Steps during Line Test</td>
</tr>
<tr>
<td>Line Test</td>
<td></td>
<td>RMS of Torso Linear Acceleration (Resultant) over Line Test Trial</td>
</tr>
<tr>
<td>Line Test</td>
<td></td>
<td>RMS of Torso Roll Velocity over Line Test Trial</td>
</tr>
<tr>
<td>Line Test</td>
<td></td>
<td>RMS of Torso Pitch Velocity over Line Test Trial</td>
</tr>
<tr>
<td>Line Test</td>
<td></td>
<td>RMS of Torso Yaw Velocity over Line Test Trial</td>
</tr>
<tr>
<td>Line Test</td>
<td></td>
<td>Time to Complete Line Test Trial</td>
</tr>
<tr>
<td>Line Test</td>
<td></td>
<td>Tandem Walk (Line Test) Parameter</td>
</tr>
<tr>
<td>Fine Motor</td>
<td></td>
<td>Time to Complete Pegboard Task</td>
</tr>
<tr>
<td>Plasma Volume</td>
<td></td>
<td>Blood Volume</td>
</tr>
<tr>
<td>Plasma Volume</td>
<td></td>
<td>Hematocrit</td>
</tr>
<tr>
<td>Plasma Volume</td>
<td></td>
<td>Hemoglobin</td>
</tr>
<tr>
<td>Plasma Volume</td>
<td></td>
<td>Plasma Volume Index</td>
</tr>
<tr>
<td>Plasma Volume</td>
<td></td>
<td>Red Cell Volume</td>
</tr>
<tr>
<td>Posture Test</td>
<td></td>
<td>Equitest Score</td>
</tr>
<tr>
<td>Locomotion</td>
<td>Dynamic</td>
<td>Head pitch: Sum of FFT Spectral Powers between 1.5-2.5 Hz</td>
</tr>
<tr>
<td>Locomotion</td>
<td>Dynamic</td>
<td>Maximum Lag from the Cross-Correlation of Head Pitch and Torso Pitch</td>
</tr>
<tr>
<td>Locomotion</td>
<td>Dynamic</td>
<td>Maximum Value of the Cross-Correlation of Head Pitch and Torso Pitch</td>
</tr>
<tr>
<td>Locomotion</td>
<td>Dynamic</td>
<td>Maximum Lag from the Cross-Correlation of Head Pitch and Torso Vertical Position</td>
</tr>
<tr>
<td>Locomotion</td>
<td>Dynamic</td>
<td>Maximum Value of the Cross-Correlation of Head Pitch and Torso Vertical Position</td>
</tr>
<tr>
<td>Locomotion</td>
<td>Dynamic</td>
<td>Average Step Time while Walking for the DVA Test</td>
</tr>
<tr>
<td>Locomotion</td>
<td>Dynamic</td>
<td>Standard Deviation of Step Time while Walking for the DVA Test</td>
</tr>
<tr>
<td>Locomotion</td>
<td>Dynamic</td>
<td>Torso Pitch: Sum of FFT Spectral Powers between 1.5-2.5 Hz</td>
</tr>
<tr>
<td>Locomotion</td>
<td>Dynamic</td>
<td>Torso Vertical Position: Sum of FFT Spectral Powers between 1.5-2.5 Hz</td>
</tr>
<tr>
<td>Locomotion</td>
<td>Dynamic</td>
<td>Visual Acuity Score Post Bed Rest relative to Average Pre Bed Rest</td>
</tr>
</tbody>
</table>
 Instrumentation for Functional Testing

Body motion sensors on head and trunk: kinematics

Holter monitor: ECG

Portapres: continuous blood pressure
Subject unbuckled a harness, stood up from a seat and then completed an obstacle course.

Testing occurred with:
- Seat upright (Upright Seat Egress)
- Seat positioned with its back to the floor (Supine Seat Egress)
Seat Egress and Walk Test (Upright)

Shuttle

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>Pre</th>
<th>Postflight</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R+0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R+1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R+6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R+30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ISS

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>Pre</th>
<th>Postflight</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R+1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R+6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R+30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bed Rest

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>Pre</th>
<th>Post Bedrest</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR+0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR+1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR+6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR+11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Control**
- **Exercise**
- **Exercise+T**
Seat Egress and Walk Test (Supine)

Shuttle

![Shuttle diagram](image)

- Time (sec)
- L-60 | L-30 | R+0 | R+1 | R+6 | R+30
- Pre | Postflight

ISS

- Time (sec)
- L-60 | L-30 | R+1 | R+6 | R+30
- Pre | Postflight

Bed Rest

- Time (sec)
- BR-7 | BR-3 | BR+0 | BR+1 | BR+6 | BR+11
- Pre | Post Bedrest

- Control
- Exercise
- Exercise+T
Recovery from Fall/Stand Test

Subjects were asked to lie face down on a foam surface for 2 minutes and then stand up as quickly as possible and step on a force plate and remain standing for 3 minutes.
Recovery from Fall: Mean Sway Speed

Shuttle

ISS

Bed Rest

Mean Sway Speed (mm/sec)

Pre Postflight

Pre Post Bedrest

Control

Exercise

Exercise+T
Recovery from Fall: Postural Settling Time

Shuttle

- L-60, L-30, R+0, R+1, R+6, R+30
- Time (sec)

ISS

- L-60, L-30, R+0, R+1, R+6, R+30
- Time (sec)

Bed Rest

- BR-7, BR-3, BR+0, BR+1, BR+6, BR+11
- Time (sec)

Legend:
- Red: Control
- Blue: Exercise
- Green: Exercise+T
Subjects transferred three weights with handles (2.7 kg, 4.5 kg, 9 kg), one at a time, a distance of 2.4m and placed them in a receptacle and then transferred the weights back to the initial receptacle.
Rock Translation Test

Shuttle

ISS

Bed Rest

Pre Postflight
Control
Exercise
Exercise+T
Jump Down Test

Subjects jumped down from a platform (30 cm height) onto a force plate to measure postural stability.
Jump Down Test: Postural Settling Time

Shuttle

- L-60
- L-30
- R+0
- R+1
- R+6
- R+30

- Pre
- Postflight

ISS

- L-60
- L-30
- R+1
- R+6
- R+30

- Pre
- Postflight

Bed Rest

- BR-7
- BR-3
- BR+0
- BR+1
- BR+6
- BR+11

- Pre
- Post Bedrest

Legend:
- Control
- Exercise
- Exercise+T
Subjects performed a variety of standard construction and assembly tasks:

- Connecting hoses to receptacles
- Mating a series of electrical connectors
- Using a cordless power tool to remove and tighten bolts on a handle assembly
Construction Activity Board

Shuttle

Pre Postflight

Time (sec)

ISS

Pre Postflight

Time (sec)

Bed Rest

Pre Post Bedrest

Time (sec)

BR-7 BR-3 BR+0 BR+1 BR+6 BR+11

Control Exercise Exercise+T
Torque Generation Test

To simulate a hatch-opening task subjects applied torque to a wheel assembly while standing in two conditions:

1) Wheel fixed: subjects applied peak torque.

2) Wheel freely moveable with constant resistance. Subject turned the wheel as many times in 20 sec. at 50% peak torque.
Torque Generation Test: Max. Isometric Force

Shuttle

- Force (lbs)
- Time: Pre, Postflight

ISS

- Force (lbs)
- Time: Pre, Postflight

Bed Rest

- Force (lbs)
- Time: Pre, Post Bedrest

Legend
- Red: Control
- Blue: Exercise
- Green: Exercise+T
Torque Generation Test: Total Work

Shuttle

- Pre: L-60, L-30, R+0, R+1, R+6, R+30
- Postflight

ISS

- Pre: L-60, L-30, R+1, R+6, R+30
- Postflight

Bed Rest

- Pre: BR-7, BR-3, BR+0, BR+1, BR+6, BR+11
- Post Bedrest

Legend:
- Red: Control
- Blue: Exercise
- Green: Exercise+T
Ladder Climb Test

To simulate ladder climbing subjects climbed 40 rungs on a passive treadmill ladder at a self-generated pace.
Ladder Climb Test

Shuttle

ISS

Bed Rest

Time (sec)

L-60 L-30 R+0 R+1 R+6 R+30
Pre Postflight

L-60 L-30 R+0 R+1 R+6 R+30
Pre Postflight

L-60 L-30 R+0 R+1 R+6 R+30
Pre Postflight

BR-7 BR-3 BR+0 BR+1 BR+6 BR+11
Pre Post Bedrest

Control
Exercise
Exercise+T
Functional tests with requirements for postural equilibrium to complete
(Seat Egress, Recovery from Fall, Rock Translation, Jump Down)
showed greatest postflight decrement in performance
Summary: Functional Tests

High Demand for Postural Stability Control
- Seat Egress and Walk
- Rock Translation
- Recovery from Fall/Stand
- Jump Down

Low Demand for Postural Stability Control
- Torque Generation
- Construction Activity
- Ladder Climb

Both space flight and bed rest subjects (control and exercisers) showed greatest deficits in functional tests with higher demand for postural stability control.
Physiological Tests

Sensorimotor
Postural stability
Fine motor control
Gait control
Dynamic visual acuity

Cardiovascular
Plasma volume
Heart Rate
Blood Pressure

Muscle Performance
Lower body:
Max. isometric force, power/endurance, force control and neuromuscular drive

Upper body:
Max. isometric force, force control, power/endurance
Subjects attempted to walk 10 steps with the eyes closed, arms folded across the chest, while placing the feet in a tandem heel-to-toe position for each step.
Tandem Walk Test: Percentage of Correct Steps

Shuttle

Incorrect Steps:
sidestepped, opened eyes, or paused for more than three seconds between steps

ISS

Bed Rest

- Control
- Exercise
- Exercise+T
Tandem Walk Test: Torso Roll Velocity RMS

Shuttle

ISS

Bed Rest

- Control
- Exercise
- Exercise+T
Postural Control Test

cEQ = (12.5 – Peak to Peak Sway)/12.5 * % trial completed
Postural Equilibrium Control: Space Flight

SHORT Duration: Computerized Dynamic Posturography
Recovery curve for SOT 5 Head Erect Shown for Comparison

LONG Duration: Computerized Dynamic Posturography
Eyes Closed on Unstable Support with Head Moving (±20° @ 0.33Hz)

Preflight

Postflight (days after landing)
Postural Equilibrium Control: Bed Rest

![Graph showing postural equilibrium scores over different days of bed rest for control, exercise, and exercise plus T groups.](image)
Subject walked at 6.4 km/h for 90 s on a treadmill while performing a dynamic visual acuity (DVA) test consisting of identifying gaps in the letter C presented on a computer screen.
Locomotion: Torso Pitch Stability

Shuttle

![Graph showing Total Frequency Power for Shuttle experiments.]

ISS

![Graph showing Total Frequency Power for ISS experiments.]

Bed Rest

![Graph showing Total Frequency Power for Bed Rest experiments.]

Legend:
- **Red** Control
- **Blue** Exercise
- **Green** Exercise+T
Locomotion: Dynamic Visual Acuity Test

Bed Rest

Eye Chart Lines

PRE BR+0 BR+1 BR+6 BR+11

Postflight

AVG Ctrl
AVG Ex
Locomotion: Gait Cycle Timing/Step Time

Shuttle

ISS

Bed Rest

Locomotion: Gait Cycle Timing/Step Time

Pre Postflight
Pre Post Bedrest
Shuttle
ISS
Bed Rest

Control
Exercise
Exercise+T
The Grooved Pegboard Test was used to assess fine motor control. Subjects were required to rotate pegs with a key along one side to match the insertion hole.
Fine Motor Control Test

Shuttle

ISS

Bed Rest

Completion Time (sec)

L-60 L-30 R+0 R+1 R+6 R+30

Pre Postflight

BR-7 BR-3 BR+0 BR+1 BR+6 BR+11

Pre Post Bedrest

Control Exercise Exercise+T
Summary: Sensorimotor Tests

- Tests of balance and dynamic gait control control show greatest deficits for both space flight and bed rest.
- Bed rest control subjects show alterations in gait cycle timing and dynamic visual acuity.
- Fine motor control not reduced after Shuttle and bed rest; trend for reduction after ISS.
- Bed rest data indicate that body support unloading is a contributing factor in postflight functional performance decrement.
- Points to the importance of providing axial body loading as a central component of an integrated training system.
Functional Task Test: Cardiovascular

Goals
• Identify CV responses during multiple functional tasks.
• Determine if exercise prevents the negative CV adaptations during bed rest and maintains functional task performances.
• Use the ‘Recovery from Fall, Stand Test’ as a controlled orthostatic challenge to identify changes in the CV system that may contribute to functional task impairment.

Measurements
• Heart rate, plasma volume, blood pressure
Following bedrest HR is elevated during multiple Functional Tasks.
Returns towards Pre-BR values over 11 days.
- Exercise reduces the elevated HR following bedrest.
- Smaller difference in HR between pre- and post-BR
Testosterone does not provide an additional benefit beyond Exercise alone in minimizing the change in HR between pre- and post-bedrest.
• Are certain functional tasks “riskier” due to greater CV stress?
Functional Task: Recovery From Fall

- Prone: 2 min
- Stand: 3 min

- Controlled maneuver
- Provides orthostatic stressor to CV system
- 3 min to minimize probability of syncope
- Continuously monitor BP and HR
- Incorporate balance/sway measures

- All subjects completed the task.
- No signs of pre-syncope.
1. Exercise protects prone HR from rising.
2. Appears to be no difference between Ex and Ex&T groups.
1. Exercise attenuates the increase in standing HR.
2. No difference between Ex and Ex&T groups.
3. Recovered by BR+11?
Stand Test Heart Rate Response

1. Standing HR response is increased on BR+0.
2. The increase is reduced on BR+1, but may remain elevated on BR+11.
3. Is there a difference between Ex&T and Ex on BR+0?
Potential Factors Contributing to an Elevated HR Response

1. Cardiac dysfunction
2. ↓ PV
3. Altered autonomic function

- Previous bed rest studies suggest a reduced LV mass and diastolic dysfunction, leading to reduced SV.
- Exercise training during 2-8 weeks of bed rest prevents these changes, preserves cardiac function.

1. Does the difference from BR+0 to BR+1 indicative of remaining cardiac dysfunction?
2. Does Testosterone provide protection against cardiac dysfunction?
1. PV decreases following bed rest in all groups.
2. Recovers by BR+1.
Autonomic Function

- During and/or post spaceflight sympathetic outflow is increased and exaggerated.
- Following 10 d of HDT, blood volume is reduced and greater reductions in arterial pressure during CV stress are compensated for by ↑HR (via increased SNS activity) to maintain BP.

1. Sympathetic modulation is augmented following bed rest.
2. Recovers by BR+1, suggesting an appropriate response to a fall in SV on BR+0.
1. Following bed rest, prone HR is elevated in Control, but not Exercise subjects.

2. To accomplish the Functional Task of moving from Prone to Standing:
 - Greater ↑HR on BR+0
 - Exercise may provide some protection?
 - Does Exercise + Testosterone provide more protection?
 - HR remains 3-5 bts/min greater on BR+11

3. PV is decreased on BR+0 and almost completely recovers by BR+1.

4. Syncope did not occur during 3 min of quiet standing.
Lower Limb Muscle Performance

Maximum Isometric Force: Subject in leg press system pushes against a fixed force plate.

Power/Endurance: Subject pushes a weight away as fast as possible (40% max force, 21 repetitions, ballistic, concentric only, magnetic brake catches weight).
Lower Body Maximum Isometric Force

Shuttle

ISS

Bed Rest

- **Control**
- **Exercise**
- **Exercise+T**
Lower Body Total Work

Shuttle

Total Work (J)

Pre Postflight
Pre Post Bedrest
Shuttle
ISS
Bed Rest

Total Work (J)

Pre Postflight
Control
Exercise
Exercise+T

BR-7 BR-3 BR+0 BR+1 BR+6 BR+11

L-60 L-30 R+0 R+1 R+6 R+30

Pre Postflight

5000 6000 7000 8000 9000 10000 11000 12000

6000

7000

8000

9000

10000

11000

12000

5000

6000

7000

8000

9000

10000

11000

12000

L-60 L-30 R+0 R+1 R+6 R+30

Pre Postflight

5000 6000 7000 8000 9000 10000 11000 12000

6000

7000

8000

9000

10000

11000

12000

5000

6000

7000

8000

9000

10000

11000

12000

L-60 L-30 R+0 R+1 R+6 R+30

Pre Postflight

5000 6000 7000 8000 9000 10000 11000 12000

6000

7000

8000

9000

10000

11000

12000

5000

6000

7000

8000

9000

10000

11000

12000

L-60 L-30 R+0 R+1 R+6 R+30

Pre Postflight

5000 6000 7000 8000 9000 10000 11000 12000

6000
Lower Body Max. Power

Shuttle

ISS

Bed Rest

Ex & T Dominated by one subject

Pre & Postflight

Pre & Post Bedrest

Control

Exercise

Exercise + T
Upper Limb Muscle Performance

Maximum Isometric Force: Subject in leg press system pushes against a fixed force plate.

Power/Endurance: Subject pushes a weight away as fast as possible (40% max force, 21 repetitions, ballistic, concentric only, magnetic brake catches weight).
Upper Body Maximum Isometric Force

Shuttle

ISS

Bed Rest

Pre Postflight
Control
Exercise
Exercise+T
Upper Body Maximum Max. Power

Shuttle

- Maximum Power (W)
- L-60, L-30, R+0, R+1, R+6, R+30

ISS

- Maximum Power (W)
- L-60, L-30, R+1, R+6, R+30

Bed Rest

- Maximum Power (W)
- BR-7, BR-3, BR+0, BR+1, BR+6, BR+11
- Pre, Post Bedrest

Legend:
- Red: Control
- Blue: Exercise
- Green: Exercise+T
Central Neural Activation Capacity

Loss of muscle strength due to space flight could be caused by changes in two factors:

1) Change in central neural activation, leads to changes in ability to recruit muscle fibers

2) Muscle atrophy

Twitch interpolation method used to assess neural activation capacity. Electrical muscle stimulus was provided to thigh muscle during maximal isometric leg extension.
Assessment of Force Control

Subject matched leg or arm force with a reference force displayed on computer screen during isometric arm and leg extension (5% max force). Test done with and without visual feedback.

Coefficient of Variation (COV) = \frac{SD\ force\ output}{mean\ force\ output}
Lower Limb Force Control: With Visual Feedback

Shuttle

ISS

Bed Rest

Pre

Postflight

Pre

Post Bedrest

Control

Exercise

Exercise+T
Lower Limb Force Control: Without Visual Feedback

Shuttle

ISS

Bed Rest
Upper Limb Force Control: With Visual Feedback

Shuttle

<table>
<thead>
<tr>
<th>Pre</th>
<th>Post Bedrest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ISS

<table>
<thead>
<tr>
<th>Pre</th>
<th>Postflight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bed Rest

<table>
<thead>
<tr>
<th>Pre</th>
<th>Post Bedrest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graphs:
- **Shuttle** graph showing force control (CV) with data points for Pre, Post Bedrest, and error bars.
- **ISS** graph showing force control (CV) with data points for Pre, Postflight, and error bars.
- **Bed Rest** graph showing force control (CV) with data points for BR-7, BR-3, BR+0, BR+1, BR+6, BR+11, and error bars.

Legend:
- **Control**
- **Exercise**
- **Exercise+T**
Upper Limb Force Control: Without Visual Feedback

Shuttle

<table>
<thead>
<tr>
<th>Force Control (CV)</th>
<th>Pre</th>
<th>Postflight</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-60</td>
<td>L-30</td>
<td>R+0</td>
</tr>
</tbody>
</table>

ISS

<table>
<thead>
<tr>
<th>Force Control (CV)</th>
<th>Pre</th>
<th>Postflight</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-60</td>
<td>L-30</td>
<td>R+1</td>
</tr>
</tbody>
</table>

Bed Rest

<table>
<thead>
<tr>
<th>Force Control (CV)</th>
<th>Pre</th>
<th>Post Bedrest</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR-7</td>
<td>BR-3</td>
<td>BR+0</td>
</tr>
</tbody>
</table>

- Control
- Exercise
- Exercise+T
Summary: Muscle Performance

- Control bed rest subjects show decreased muscle performance of lower limbs.
- Central neural activation capacity altered for control bed rest subjects.
- No overall changes in force control were detected in all groups.
Comparison of Physiological Tests

Sensorimotor

Muscle Performance

Cardiovascular

Legend:
- Bed rest Control
- Bed rest EX
- Bed rest EX + Test.
- Spaceflight ISS
- Spaceflight Shuttle

Tests:
- Pegboard Recovery Fall (Mean Resultant Sway Speed)
- Line Test (Torso Resultant Acceleration)
- Line Test (Percent Correct Steps)
- Treadmill DVA (Torso Pitch)
- Treadmill (Step Time)
- Treadmill (DVA)
- Leg Press (MIF)
- Leg Press (Maximum Power)
- Leg Press (Total Work)
- Upper Body (MIF)
- Upper Body (Maximum Power)
- Upper Body (Total Work)
- Interpolated Twitch (Central Activation Capacity)
- Plasma Volume
- Prone Heart Rate (Fall Recovery)
- Standing Heart Rate (Fall Recovery)
- Hematocrit
- Hemoglobin
- Blood Volume
- Red Cell Volume

Comparisons of Pre/Post changes in different physiological tests.
Inflight Treadmill Exercise and Postflight Dynamic Walking Performance

Kendalls Tau = 0.60 (p< 0.01)

More time on treadmill associated with improved postflight postural stability control
Inflight Treadmill Exercise and Postflight Posture Control

Increased body loading on treadmill associated with improved postflight postural stability control

Kendalls Tau = 0.49 (p < 0.05)
Exercising with greater loads improves postflight functional mobility (previous Mobility study)

- Increased body loading on treadmill enhanced recovery of postflight functional mobility
- Greater loads during inflight squat exercises associated with enhanced postflight functional mobility
- Increased body loading on treadmill enhanced recovery of postflight functional mobility

Functional Mobility Test (FMT)

Graph:
- Pearson $r = -0.844$ (p = 0.017)
- $R^2 = 0.717$
Integrated Countermeasure System: Requirements

1) Aerobic Exercise
2) Resistive Exercise
3) Balance training using treadmill walking
 - Support surface motion
 - Modified visual flow
 - Axial body loading
Train on a treadmill with surrogate sensory challenges:

- Altered visual information
- Support surface motion (motion base treadmill system)
- Variation in body loading
Gravity-Bed: Method to Provide Balance Training During Bed Rest

Oddsson et al. A rehabilitation tool for functional balance using altered gravity and virtual reality
Journal of NeuroEngineering and Rehabilitation 4:25, 2007
Sample Postural Stability Data

Tilted Room One-Leg Standing

Upright One-Leg Standing

Gravity Bed Produces Similar Instability to Upright Standing

Courtesy Lars Oddsson
Sample Postural Stability Data

Gravity Bed Produces a Balance Training Effect

Courtesey Lars Oddsson
Gravity-Bed Training Study

- Balance board in supine
- 10 training sessions over two weeks
- 5+5 healthy young subjects
- 10 trials 1-leg balancing for 35 s max

- Increase in Balance Time of 58% (17.3s to 27.3s, p < 0.05)
- No Change in Control Subjects

Gravity-Bed Produces Improvement in Balance Control
Gravity Bed Training Improves Balance in Patients with Severe Balance Problems
Integrated Countermeasure System: Bed Rest Study

Training Group

1) Aerobic Exercise
2) Resistive Exercise
3) Balance training using treadmill walking
 - Support surface motion
 - Modified visual flow
 - Axial body loading

Compare with Control and Exercise subjects from CFT70
Publication Plan

1) Combined space flight and bed rest paper

2) Multiple discipline/topic specific papers
Backup Slide
Somers D: Within Subject Significant Relationship

<table>
<thead>
<tr>
<th>Sensorimotor</th>
<th>Upright Egress</th>
<th>Supine Egress</th>
<th>Fall Recovery</th>
<th>Rock Translation</th>
<th>Activity Board</th>
<th>Torque Generation (Maximum)</th>
<th>Torque Generation (Work)</th>
<th>Ladder Climb</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Fall Recovery (Mean Resultant Sway Speed)</td>
<td>2. Fall Recovery (Mean Resultant Sway Speed)</td>
<td>2. Fall Recovery (Mean Resultant Sway Speed)</td>
<td>2. Fall Recovery (Mean Resultant Acceleration)</td>
<td>2. Line Test (Percent Correct Steps)</td>
<td>2. Line Test (Percent Correct Steps)</td>
<td>2. Fall Recovery (Mean Resultant Sway Speed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Treadmill (Step Time)</td>
<td>5. Line Test (Percent Correct Steps)</td>
<td>5. Treadmill (Step Time)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

|----------|------------------|------------------|------------------|-------------------|-------------------|------------------|

|--------|------------------|------------------|------------------|------------------|------------------|------------------|

Correlations between Functional and Physiological Tests (all data combined)