FUNCTIONAL TASK TEST:

Data Review

June 30, 2014

Neuroscience, Exercise Physiology & Cardiovascular Laboratories

NASA-Johnson Space Center, Houston, TX
Background

After space flight there are changes in multiple physiological systems including:

- Cardiovascular function
- Sensorimotor function
- Muscle function

How do changes in these physiological systems impact astronaut functional performance?
Objectives

1. Determine the effects of space flight on astronaut’s ability to perform mission critical functional tasks.

2. Identify the key physiological factors that contribute to decrements in functional performance.

Inform the design of targeted countermeasures
Functional Task Test (FTT)

Functional Performance
- Seat Egress and Walk
- Recovery from Fall/Stand
- Ladder Climb
- Rock Translation
- Torque Generation
- Construction Activity
- Jump Down

Physiological Measures

Muscle
- Strength
- Power
- Control
- Neuromuscular Drive

Sensorimotor
- Balance
- Gait
- Dynamic Visual Acuity
- Fine Motor Control

Cardiovascular
- Plasma Volume
- Heart Rate
- Blood Pressure

Interdisciplinary testing regimen maps postflight functional performance to related physiological changes.
Subject Groups

Shuttle: 7 subjects
12-16 day flights

ISS: 12 subjects (total n=13)
6 month flights

Bed Rest:
- Controls: 11 subjects
- Exercise: 9 subjects
- Exercise + Testosterone: 8 subjects

70 days bed rest
Testing Schedules

Preflight

- L-180
- L-60
- L-30

Preflight

- L-180
- L-60
- L-30

Pre-bed rest

- BR-12
- BR-7
- BR-1

Post-flight

- R+0
- R+1
- R+6
- R+30

Post-flight

- R+1
- R+6
- R+30

Post-bed rest

- BR+0
- BR+1
- BR+6
- BR+12

70 days in bed rest
Using Bed Rest as a Sensorimotor Analog

Space flight modifies:
Vestibular and body load information

Bed rest modifies:
Body load information

Bed rest serves to delineate the role of body unloading in space flight performance changes
Receptors that Detect Body Load

Muscle Spindles

Mechanoreceptors
Mechanoreceptors of Hairy Skin

Golgi Tendon Organ

Body loading information controls motor output:

• Balance control
• Generation of stepping patterns
• Termination of gait
Functional Tests

- Seat Egress and Walk
- Ladder Climb
- Rock Translation
- Recovery from Fall/Stand
- Construction Activity
- Torque Generation
- Jump Down
Functional Tests: Parameter List

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Test Condition</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Tests</td>
<td></td>
<td>Heart Rate</td>
</tr>
<tr>
<td>Activity Board</td>
<td></td>
<td>Time to Complete Activity Board Test</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>Lag Time of Head Yaw relative to Trunk Yaw</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>RMS of Head Yaw relative to Trunk Yaw</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>Time from Start through End of Slalom Section</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>Time from Portal Entry through Slalom Section</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>Time to Decend Ramp</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>Time from Start to Portal Entry</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>Total Time to Complete Entire Egress Course</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>Time from Start through Portal Completion</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>Time to Complete Portal Section</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>Time from Portal Completion through Slalom Section</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>Time from Start to Top of Ramp</td>
</tr>
<tr>
<td>Egress</td>
<td>Seated & Reclined</td>
<td>Time from End of Slalom Course to Top of Ramp</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Prone & Stand</td>
<td>Diastolic Blood Pressure</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Prone & Stand</td>
<td>Heart Rate</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Prone & Stand</td>
<td>Pulse Pressure</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Prone & Stand</td>
<td>R-R Interval (High Frequency)</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Prone & Stand</td>
<td>R-R Interval (Low:High Frequency Ratio)</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Prone & Stand</td>
<td>R-R Interval</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Prone & Stand</td>
<td>Systolic Blood Pressure (Low Frequency)</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Prone & Stand</td>
<td>Systolic Blood Pressure</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Stand</td>
<td>Settling Time of the Vertical Ground Reaction Force during Transition from Prone to Stand</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Stand</td>
<td>Mean Sway Speed of Vertical Ground Reaction Force: 2D-Resultant</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Stand</td>
<td>Mean Sway Speed of Vertical Ground Reaction Force: Anterior-Posterior</td>
</tr>
<tr>
<td>Fall Recovery</td>
<td>Stand</td>
<td>Mean Sway Speed of Vertical Ground Reaction Force: Medial-Lateral</td>
</tr>
<tr>
<td>Jump Task</td>
<td></td>
<td>Air Time of Jump</td>
</tr>
<tr>
<td>Jump Task</td>
<td></td>
<td>Settling Time of the Vertical Ground Reaction Force upon Landing</td>
</tr>
<tr>
<td>Jump Task</td>
<td></td>
<td>Peak Vertical Ground Reaction Force upon Landing</td>
</tr>
<tr>
<td>Jump Task</td>
<td></td>
<td>Time Difference of Take-Off Between the Leading and Lagging Feet</td>
</tr>
<tr>
<td>Jump Task</td>
<td></td>
<td>Time to Peak Vertical Ground Reaction Force upon Landing</td>
</tr>
<tr>
<td>Ladder Climb</td>
<td></td>
<td>Time to Climb 40 Rungs on the Ladder</td>
</tr>
<tr>
<td>Rock Translation</td>
<td></td>
<td>Time to Move Rocks to Second Rack and Back to First Rack</td>
</tr>
<tr>
<td>Rock Translation</td>
<td></td>
<td>Time to Move Rocks to Second Rack Only</td>
</tr>
<tr>
<td>Torque Generation</td>
<td>Isometric</td>
<td>Torque Generation: Maximum Isometric Force</td>
</tr>
<tr>
<td>Torque Generation</td>
<td>Isotonic</td>
<td>Torque Generation: Number of Turns during Isotonic Test</td>
</tr>
<tr>
<td>Torque Generation</td>
<td>Isotonic</td>
<td>Torque Generation: Total Work during Isotonic Test</td>
</tr>
</tbody>
</table>
Physiological Tests: Parameter List

<table>
<thead>
<tr>
<th>TestName</th>
<th>TestCondition</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Tests</td>
<td></td>
<td>Heart Rate</td>
</tr>
<tr>
<td>Bench Press</td>
<td>Force Control</td>
<td>Bench Press Force Control: No Visual</td>
</tr>
<tr>
<td>Bench Press</td>
<td>Max Isometric Force</td>
<td>Bench Press Maximum Isometric Force</td>
</tr>
<tr>
<td>Bench Press</td>
<td>Max Isometric Force</td>
<td>Bench Press Rate of Force Development</td>
</tr>
<tr>
<td>Bench Press</td>
<td>Power Endurance</td>
<td>Bench Press Maximum Power (Endurance Test)</td>
</tr>
<tr>
<td>Bench Press</td>
<td>Power Endurance</td>
<td>Bench Press Total Work</td>
</tr>
<tr>
<td>Knee Extension</td>
<td>Force Control</td>
<td>Knee Extension Force Control: No Visual</td>
</tr>
<tr>
<td>Knee Extension</td>
<td>Force Control</td>
<td>Knee Extension Force Control: Visual</td>
</tr>
<tr>
<td>Knee Extension</td>
<td>Twitch</td>
<td>Interpolated Twitch: Central Activation Capacity</td>
</tr>
<tr>
<td>Knee Extension</td>
<td>Twitch</td>
<td>Interpolated Twitch: Central Activation Ratio</td>
</tr>
<tr>
<td>Knee Extension</td>
<td>Twitch</td>
<td>Knee Extension Maximum Isometric Force</td>
</tr>
<tr>
<td>Knee Extension</td>
<td>Twitch</td>
<td>Knee Extension Rate of Force Development</td>
</tr>
<tr>
<td>Leg Press</td>
<td>Max Isometric Force</td>
<td>Leg Press Maximum Isometric Force</td>
</tr>
<tr>
<td>Leg Press</td>
<td>Max Isometric Force</td>
<td>Leg Press Maximum Isometric Force Normalized to Body Weight</td>
</tr>
<tr>
<td>Leg Press</td>
<td>Max Isometric Force</td>
<td>Leg Press Rate of Force Development</td>
</tr>
<tr>
<td>Leg Press</td>
<td>Power Endurance</td>
<td>Leg Press Maximum Power (Endurance Test)</td>
</tr>
<tr>
<td>Leg Press</td>
<td>Power Endurance</td>
<td>Leg Press Total Work</td>
</tr>
<tr>
<td>Line Test</td>
<td></td>
<td>Percent Correct Steps during Line Test</td>
</tr>
<tr>
<td>Line Test</td>
<td></td>
<td>RMS of Torso Linear Acceleration (Resultant) over Line Test Trial</td>
</tr>
<tr>
<td>Line Test</td>
<td></td>
<td>RMS of Torso Roll Velocity over Line Test Trial</td>
</tr>
<tr>
<td>Line Test</td>
<td></td>
<td>RMS of Torso Pitch Velocity over Line Test Trial</td>
</tr>
<tr>
<td>Line Test</td>
<td></td>
<td>RMS of Torso Yaw Velocity over Line Test Trial</td>
</tr>
<tr>
<td>Line Test</td>
<td></td>
<td>Time to Complete Line Test Trial</td>
</tr>
<tr>
<td>Line Test</td>
<td></td>
<td>Tandem Walk (Line Test) Parameter</td>
</tr>
<tr>
<td>Fine Motor</td>
<td></td>
<td>Time to Complete Pegboard Task</td>
</tr>
<tr>
<td>Plasma Volume</td>
<td></td>
<td>Blood Volume</td>
</tr>
<tr>
<td>Plasma Volume</td>
<td></td>
<td>Hematocrit</td>
</tr>
<tr>
<td>Plasma Volume</td>
<td></td>
<td>Hemoglobin</td>
</tr>
<tr>
<td>Plasma Volume</td>
<td></td>
<td>Plasma Volume</td>
</tr>
<tr>
<td>Plasma Volume</td>
<td></td>
<td>Plasma Volume Index</td>
</tr>
<tr>
<td>Plasma Volume</td>
<td></td>
<td>Red Cell Volume</td>
</tr>
<tr>
<td>Posture Test</td>
<td></td>
<td>Equitests Score</td>
</tr>
<tr>
<td>Locomotion</td>
<td>Dynamic</td>
<td>Head pitch: Sum of FFT Spectral Powers between 1.5-2.5 Hz</td>
</tr>
<tr>
<td>Locomotion</td>
<td>Dynamic</td>
<td>Maximum Lag from the Cross-Correlation of Head Pitch and Torso Pitch</td>
</tr>
<tr>
<td>Locomotion</td>
<td>Dynamic</td>
<td>Maximum Value of the Cross-Correlation of Head Pitch and Torso Pitch</td>
</tr>
<tr>
<td>Locomotion</td>
<td>Dynamic</td>
<td>Maximum Lag from the Cross-Correlation of Head Pitch and Torso Vertical Position</td>
</tr>
<tr>
<td>Locomotion</td>
<td>Dynamic</td>
<td>Maximum Value of the Cross-Correlation of Head Pitch and Torso Vertical Position</td>
</tr>
<tr>
<td>Locomotion</td>
<td>Dynamic</td>
<td>Average Step Time while Walking for the DVA Test</td>
</tr>
<tr>
<td>Locomotion</td>
<td>Dynamic</td>
<td>Standard Deviation of Step Time while Walking for the DVA Test</td>
</tr>
<tr>
<td>Locomotion</td>
<td>Dynamic</td>
<td>Torso Pitch: Sum of FFT Spectral Powers between 1.5-2.5 Hz</td>
</tr>
<tr>
<td>Locomotion</td>
<td>Dynamic</td>
<td>Torso Vertical Position: Sum of FFT Spectral Powers between 1.5-2.5 Hz</td>
</tr>
<tr>
<td>Locomotion</td>
<td>Dynamic</td>
<td>Visual Acuity Score Post Bed Rest relative to Average Pre Bed Rest</td>
</tr>
</tbody>
</table>
Instrumentation for Functional Testing

Body motion sensors on head and trunk: kinematics

Holter monitor: ECG

Portapres: continuous blood pressure
Subject unbuckled a harness, stood up from a seat and then completed an obstacle course.

Testing occurred with:
- Seat upright (Upright Seat Egress)
- Seat positioned with its back to the floor (Supine Seat Egress)
Seat Egress and Walk Test (Upright)

Shuttle

ISS

Bed Rest

Pre Postflight
Pre Post Bedrest
Shuttle ISS
Bed Rest
Pre Postflight

Control
Exercise
Exercise+T
Seat Egress and Walk Test (Supine)

Shuttle

ISS

Bed Rest

Pre
Postflight
Control
Exercise
Exercise+T
Recovery from Fall/Stand Test

Subjects were asked to lie face down on a foam surface for 2 minutes and then stand up as quickly as possible and step on a force plate and remain standing for 3 minutes.
Recovery from Fall: Mean Sway Speed

Shuttle

ISS

Bed Rest

Mean Sway Speed (mm/sec)

Pre Postflight

Pre Post Bedrest

Shuttle

ISS

Bed Rest

Control

Exercise

Exercise+T
Recovery from Fall: Postural Settling Time

Shuttle

Pre
L-60
L-30
R+0
R+1
R+6
R+30
Postflight

Bed Rest

Pre
BR-7
BR-3
BR+0
BR+1
BR+6
BR+11
Post Bedrest

ISS

Pre
L-60
L-30
R+0
R+1
R+6
R+30
Postflight

Control
Exercise
Exercise+T
Subjects transferred three weights with handles (2.7 kg, 4.5 kg, 9 kg), one at a time, a distance of 2.4m and placed them in a receptacle and then transferred the weights back to the initial receptacle.
Rock Translation Test

Shuttle

ISS

Bed Rest

Pre Postflight
Pre Post Bedrest
Shuttle
ISS
Bed Rest

Control
Exercise
Exercise+T
Jump Down Test

Subjects jumped down from a platform (30 cm height) onto a force plate to measure postural stability.
Jump Down Test: Postural Settling Time

Shuttle

ISS

Bed Rest

Pre Postflight
Pre Post Bedrest
Control
Exercise
Exercise+T
Subjects performed a variety of standard construction and assembly tasks:

- Connecting hoses to receptacles
- Mating a series of electrical connectors
- Using a cordless power tool to remove and tighten bolts on a handle assembly
Torque Generation Test

To simulate a hatch-opening task subjects applied torque to a wheel assembly while standing in two conditions:

1) Wheel fixed: subjects applied peak torque.

2) Wheel freely moveable with constant resistance. Subject turned the wheel as many times in 20 sec. at 50% peak torque.
Torque Generation Test: Max. Isometric Force

Shuttle

- Force (lbs)
- L-60, L-30, R+0, R+1, R+6, R+30
- Pre, Postflight

ISS

- Force (lbs)
- L-60, L-30, R+1, R+6, R+30
- Pre, Postflight

Bed Rest

- Force (lbs)
- BR-7, BR-3, BR+0, BR+1, BR+6, BR+11
- Pre, Post Bedrest

Legend:
- ▢ Control
- ⬤ Exercise
- ▲ Exercise+T
Torque Generation Test: Total Work

Shuttle

ISS

Bed Rest

Control
Exercise
Exercise+T
Ladder Climb Test

To simulate ladder climbing subjects climbed 40 rungs on a passive treadmill ladder at a self-generated pace.
Functional tests with requirements for postural equilibrium to complete (Seat Egress, Recovery from Fall, Rock Translation, Jump Down) showed greatest postflight decrement in performance.
Summary: Functional Tests

High Demand for Postural Stability Control
- Seat Egress and Walk
- Rock Translation
- Recovery from Fall/Stand
- Jump Down

Low Demand for Postural Stability Control
- Torque Generation
- Construction Activity
- Ladder Climb

Both space flight and bed rest subjects (control and exercisers) showed greatest deficits in functional tests with higher demand for postural stability control.
Physiological Tests

Sensorimotor
Postural stability
Fine motor control
Gait control
Dynamic visual acuity

Cardiovascular
Plasma volume
Heart Rate
Blood Pressure

Muscle Performance
Lower body:
Max. isometric force, power/endurance, force control and neuromuscular drive

Upper body:
Max. isometric force, force control, power/endurance
Tandem Walk Test

Subjects attempted to walk 10 steps with the eyes closed, arms folded across the chest, while placing the feet in a tandem heel-to-toe position for each step.
Tandem Walk Test: Percentage of Correct Steps

Incorrect Steps:
sidestepped, opened eyes, or paused for more than three seconds between steps

Shuttle

Pre Postflight

Bed Rest

Pre Post Bedrest

Control
Exercise
Exercise+T
Tandem Walk Test: Torso Roll Velocity RMS

Shuttle

ISS

Bed Rest

Pre Postflight
Pre Post Bedrest
Shuttle
ISS
Bed Rest

Control
Exercise
Exercise+T
Postural Control Test

cEQ = (12.5 – Peak to Peak Sway)/12.5 * % trial completed
Postural Equilibrium Control: Space Flight

Short Duration: Computerized Dynamic Posturography
Recovery curve for SOT 5 Head Erect Shown for Comparison

Long Duration: Computerized Dynamic Posturography
Eyes Closed on Unstable Support with Head Moving (±20° @ 0.33Hz)
Postural Equilibrium Control: Bed Rest

The graph shows the SOT 5M EQ Score over the post-bedrest period (days 0-14). The scores are compared across three conditions: Control, Exercise, and Exercise+T. The data indicates a decrease in SOT 5M EQ Score over time for all conditions, with Exercise+T showing the least decrease compared to the other two conditions.
Subject walked at 6.4 km/h for 90 s on a treadmill while performing a dynamic visual acuity (DVA) test consisting of identifying gaps in the letter C presented on a computer screen.
Locomotion: Torso Pitch Stability

Shuttle

ISS

Bed Rest

Pre Postflight
Pre Post Bedrest

Control
Exercise
Exercise+T
Locomotion: Dynamic Visual Acuity Test

Bed Rest

Eye Chart Lines

PRE	BR+0	BR+1	BR+6	BR+11

AVG Ctrl
AVG Ex
Locomotion: Gait Cycle Timing/Step Time

Shuttle

Pre Postflight
Pre Post Bedrest

ISS

Control
Exercise
Exercise+T
Fine Motor Control Test

The Grooved Pegboard Test was used to assess fine motor control. Subjects were required to rotate pegs with a key along one side to match the insertion hole.
Fine Motor Control Test

Shuttle

<table>
<thead>
<tr>
<th>Time</th>
<th>Pre</th>
<th>Postflight</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-60</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>L-30</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>R+0</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>R+1</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>R+6</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>R+30</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

ISS

<table>
<thead>
<tr>
<th>Time</th>
<th>Pre</th>
<th>Postflight</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-60</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>L-30</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>R+1</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>R+6</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>R+30</td>
<td>65</td>
<td>65</td>
</tr>
</tbody>
</table>

Bed Rest

<table>
<thead>
<tr>
<th>Time</th>
<th>Pre</th>
<th>Post Bedrest</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR-7</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>BR-3</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>BR+0</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>BR+1</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>BR+6</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>BR+11</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

- **Control**
- **Exercise**
- **Exercise+T**
Summary: Sensorimotor Tests

- Tests of balance and dynamic gait control control show greatest deficits for both space flight and bed rest.
- Bed rest control subjects show alterations in gait cycle timing and dynamic visual acuity.
- Fine motor control not reduced after Shuttle and bed rest; trend for reduction after ISS.
- Bed rest data indicate that body support unloading is a contributing factor in postflight functional performance decrement.
- Points to the importance of providing axial body loading as a central component of an integrated training system.
Functional Task Test: Cardiovascular

Goals
- Identify CV responses during multiple functional tasks.
- Determine if exercise prevents the negative CV adaptations during bed rest and maintains functional task performances.
- Use the ‘Recovery from Fall, Stand Test’ as a controlled orthostatic challenge to identify changes in the CV system that may contribute to functional task impairment.

Measurements
- Heart rate, plasma volume, blood pressure
- Following bedrest HR is elevated during multiple Functional Tasks.
- Returns towards Pre-BR values over 11 days.
Exercise reduces the elevated HR following bedrest.
Smaller difference in HR between pre- and post-BR
• Testosterone does not provide an additional benefit beyond Exercise alone in minimizing the change in HR between pre- and post-bederest.
• Are certain functional tasks “riskier” due to greater CV stress?
Functional Task: Recovery From Fall

- Prone: 2 min
- Stand: 3 min

- Controlled maneuver
- Provides orthostatic stressor to CV system
- 3 min to minimize probability of syncope
- Continuously monitor BP and HR
- Incorporate balance/sway measures

- All subjects completed the task.
- No signs of pre-syncope.
1. Exercise protects prone HR from rising.
2. Appears to be no difference between Ex and Ex&T groups.
1. Exercise attenuates the increase in standing HR.
2. No difference between Ex and Ex&T groups.
3. Recovered by BR+11?
1. Standing HR response is increased on BR+0.
2. The increase is reduced on BR+1, but may remain elevated on BR+11.
3. Is there a difference between Ex&T and Ex on BR+0?
Potential Factors Contributing to an Elevated HR Response

1. Cardiac dysfunction
2. ↓ PV
3. Altered autonomic function

- Previous bed rest studies suggest a reduced LV mass and diastolic dysfunction, leading to reduced SV.
- Exercise training during 2-8 weeks of bed rest prevents these changes, preserves cardiac function.

1. Does the difference from BR+0 to BR+1 indicative of remaining cardiac dysfunction?
2. Does Testosterone provide protection against cardiac dysfunction?
Plasma Volume

1. PV decreases following bed rest in all groups.
2. Recovers by BR+1.
Autonomic Function

• During and/or post spaceflight sympathetic outflow is increased and exaggerated.

• Following 10 d of HDT, blood volume is reduced and greater reductions in arterial pressure during CV stress are compensated for by ↑HR (via increased SNS activity) to maintain BP.

1. Sympathetic modulation is augmented following bed rest.
2. Recovers by BR+1, suggesting an appropriate response to a fall in SV on BR+0.
1. Following bed rest, prone HR is elevated in Control, but not Exercise subjects.

2. To accomplish the Functional Task of moving from Prone to Standing:
 - Greater ↑HR on BR+0
 - Exercise may provide some protection?
 - Does Exercise + Testosterone provide more protection?
 - HR remains 3-5 bts/min greater on BR+11

3. PV is decreased on BR+0 and almost completely recovers by BR+1.

4. Syncope did not occur during 3 min of quiet standing.
Lower Limb Muscle Performance

Maximum Isometric Force: Subject in leg press system pushes against a fixed force plate.

Power/Endurance: Subject pushes a weight away as fast as possible (40% max force, 21 repetitions, ballistic, concentric only, magnetic brake catches weight).
Lower Body Maximum Isometric Force

Shuttle

ISS

Bed Rest

Pre Postflight
Pre Post Bedrest
Control
Exercise
Exercise+T
Lower Body Total Work

Shuttle

ISS

Bed Rest

Pre Postflight
Pre Post Bedrest
Control
Exercise
Exercise+T
Lower Body Max. Power

Shuttle

Maximum Power (W)

L-60, L-30, R+0, R+1, R+6, R+30

Pre, Postflight

Ex & T Dominated by one subject

ISS

Maximum Power (W)

L-60, L-30, R+1, R+6, R+30

Pre, Postflight

Bed Rest

Maximum Power (W)

BR-7, BR-3, BR+0, BR+1, BR+6, BR+11

Pre, Post Bedrest

Control

Exercise

Exercise+T
Upper Limb Muscle Performance

Maximum Isometric Force: Subject in leg press system pushes against a fixed force plate.

Power/Endurance: Subject pushes a weight away as fast as possible (40% max force, 21 repetitions, ballistic, concentric only, magnetic brake catches weight).
Upper Body Maximum Isometric Force

Shuttle

ISS

Bed Rest

<table>
<thead>
<tr>
<th>Force (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
</tr>
<tr>
<td>1100</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>900</td>
</tr>
<tr>
<td>800</td>
</tr>
<tr>
<td>700</td>
</tr>
</tbody>
</table>

- **Pre**
- **Postflight**

- **Control**
- **Exercise**
- **Exercise+T**
Upper Body Maximum Total Work

Shuttle

ISS

Bed Rest

Pre Postflight
Pre Post Bedrest
Control Exercise Exercise+T
Upper Body Maximum Max. Power

Shuttle

- L-60 Pre
- L-30 Pre
- R+0 Postflight
- R+1 Postflight
- R+6 Postflight
- R+30 Postflight

ISS

- L-60 Pre
- L-30 Pre
- R+1 Postflight
- R+6 Postflight
- R+30 Postflight

Bed Rest

- BR-7 Pre
- BR-3 Pre
- BR+0 Post Bedrest
- BR+1 Post Bedrest
- BR+6 Post Bedrest
- BR+11 Post Bedrest

- **Control**
- **Exercise**
- **Exercise+T**
Central Neural Activation Capacity

Loss of muscle strength due to space flight could be caused by changes in two factors:

1) Change in central neural activation, leads to changes in ability to recruit muscle fibers

2) Muscle atrophy

Twitch interpolation method used to assess neural activation capacity. Electrical muscle stimulus was provided to thigh muscle during maximal isometric leg extension.
Central Neural Activation Capacity

Shuttle

Bed Rest

Pre vs Postflight

Pre vs Post Bedrest

Central Activation Capacity (%)

L-60 L-30 R+0 R+1 R+6 R+30

Pre

Postflight

Control

Exercise

Exercise+T
Assessment of Force Control

Subject matched leg or arm force with a reference force displayed on computer screen during isometric arm and leg extension (5% max force). Test done with and without visual feedback.

Coefficient of Variation (COV) = \(\frac{SD \text{ force output}}{mean \text{ force output}} \)
Lower Limb Force Control: With Visual Feedback

Shuttle

ISS

Bed Rest
Lower Limb Force Control: Without Visual Feedback

Shuttle

ISS

Bed Rest

- **Control**
- **Exercise**
- **Exercise+T**
Upper Limb Force Control: With Visual Feedback

Shuttle

ISS

Bed Rest

Force Control (CV)

Pre Post Bedrest

Control

Exercise

Exercise+T

L-60 L-30 R+0 R+1 R+6 R+30

Pre Postflight

BR-7 BR-3 BR+0 BR+1 BR+6 BR+11

Pre Postflight
Upper Limb Force Control: Without Visual Feedback

Shuttle

ISS

Bed Rest

Pre Postflight

Control

Exercise

Exercise+T
Summary: Muscle Performance

- Control bed rest subjects show decreased muscle performance of lower limbs.
- Central neural activation capacity altered for control bed rest subjects.
- No overall changes in force control were detected in all groups.
Inflight Treadmill Exercise and Postflight Dynamic Walking Performance

Kendalls Tau = 0.60 (p < 0.01)

More time on treadmill associated with improved postflight postural stability control
Inflight Treadmill Exercise and Postflight Posture Control

Increased body loading on treadmill associated with improved postflight postural stability control

Kendalls Tau = 0.49 (p < 0.05)
Exercising with greater loads improves postflight functional mobility (previous Mobility study)

Greater loads during inflight squat exercises associated with enhanced postflight functional mobility

Increased body loading on treadmill enhanced recovery of postflight functional mobility

Exercising with greater loads improves postflight functional mobility (previous Mobility study)

Exercising with greater loads improves postflight functional mobility (previous Mobility study)
Integrated Countermeasure System: Requirements

1) Aerobic Exercise
2) Resistive Exercise
3) Balance training using treadmill walking
 - Support surface motion
 - Modified visual flow
 - Axial body loading
Train on a treadmill with surrogate sensory challenges:

- Altered visual information
- Support surface motion (motion base treadmill system)
- Variation in body loading
Gravity-Bed: Method to Provide Balance Training During Bed Rest

Oddsson et al. A rehabilitation tool for functional balance using altered gravity and virtual reality
Journal of NeuroEngineering and Rehabilitation 4:25, 2007

Backpack frame freely moving on air-bearings
Sample Postural Stability Data

Tilted Room One-Leg Standing

Upright One-Leg Standing

Gravity Bed Produces Similar Instability to Upright Standing

Courtesy Lars Oddsson
Sample Postural Stability Data

Gravity Bed Produces a Balance Training Effect
Gravity-Bed Training Study

- Balance board in supine
- 10 training sessions over two weeks
- 5 + 5 healthy young subjects
- 10 trials 1-leg balancing for 35 s max

![Graph showing balance time on half-cylinder]

- Increase in Balance Time of 58% (17.3s to 27.3s, \(p < 0.05 \))
- No Change in Control Subjects

Gravity-Bed Produces Improvement in Balance Control

Oddsson & Wall 2002
Gravity Bed Training Improves Balance in Patients with Severe Balance Problems
Integrated Countermeasure System: Bed Rest Study

Training Group

1) Aerobic Exercise
2) Resistive Exercise
3) Balance training using treadmill walking
 - Support surface motion
 - Modified visual flow
 - Axial body loading

Compare with Control and Exercise subjects from CFT70
Publication Plan

1) Combined space flight and bed rest paper

2) Multiple discipline/topic specific papers
Backup Slide
Correlations between Functional and Physiological Tests (all data combined)

Somers D: Within Subject Significant Relationship

<table>
<thead>
<tr>
<th>Sensorimotor</th>
<th>Upfront Egress</th>
<th>Supine Egress</th>
<th>Fall Recovery</th>
<th>Rock Translation</th>
<th>Activity Board</th>
<th>Torque Generation (Maximum)</th>
<th>Torque Generation (Work)</th>
<th>Ladder Climb</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Fall Recovery (Mean Resultant Sway Speed)</td>
<td>2. Fall Recovery (Mean Resultant Sway Speed)</td>
<td>2. Fall Recovery (Mean Resultant Sway Speed)</td>
<td>2. Fall Recovery (Mean Resultant Acceleration)</td>
<td>2. Line Test (Percent Correct Steps)</td>
<td>2. Fall Recovery (Mean Resultant Sway Speed)</td>
<td>2. Leg Press MIF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exercise</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cardio</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>