Analysis and Results from a Flush Airdata Sensing (FADS) System in Close Proximity to Firing Rocket Nozzles

Aliyah N. Ali
NASA Dryden Flight Research Center

Jerry Borrer
NASA Johnson Space Center
Introduction

- PA-1 overview
- FADS system overview
- PA1 trajectory results
- CFD study
- Summary
• First in a sequence of atmospheric flight tests for developing the Orion Crew Exploration Vehicle (CEV); a component of the now deactivated Constellation

• **Purpose**: To demonstrate capability of the LAS and boilerplate CM to abort from the launch pad and safely return the CM to the ground using the parachute recovery system.

• Orion CEV now Multi Purpose Crew Vehicle (MPCV)
PA-1 Launch Abort System

- **Attitude Control Motor**: provided omnidirectional control for the LAV
 - Max thrust 6.5×10^3 lbf
 - 8 nozzles

- **Jettison Motor**: responsible for pulling the LAS away from the CM
 - Max thrust 4×10^4 lbf
 - 4 nozzles

- **Abort Motor**: responsible for pulling the LAV away from the launch pad
 - Max thrust 5×10^5 lbf
 - 4 nozzles

Separated LAS and CM

PA-1 Flight Test Article

LAV

ACM Nozzle
Attitude Control Motor: ACM
JM Nozzle
Jettison Motor: JM
AM Nozzle
Abort Motor: AM
1. Launch
2. Abort Motor Burnout
3. Reorientation Started
4. Reorientation Completed
5. LAS Jettison
6. FBC Jettison
7. Drogue Parachute Deployment
8. Main Parachute Deployment
9. LAS Touchdown
10. Main Parachute Full Inflation
11. CM Touchdown
Flush Airdata Sensing System

- Pressure data collected from pressure ports flush with the surface
 - Used to calculate angle of attack, sideslip, impact pressure, free stream pressure and Mach
- Estimated air data parameters from Launch up to the start of vehicle reorientation
- Experimental system
 - Not used for control
 - All data post processed

FADS Reference Frame Relative to Flight Test Article Reference Frame

FADS pressure ports on LAS (protective covering on)

Distance of FADS ports from ACM nozzles
• Aerodynamic Model
 – Combination of closed form potential flow solution for a blunt body and modified Newtonian flow model

\[p_i = q_c \left[\cos^2(\theta_i) + \epsilon \sin^2(\theta_i) \right] + P_\infty \]

\[\cos(\theta_i) = \cos(\alpha_e)\cos(\beta_e)\cos(\lambda_i) \]
\[+ \sin(\beta_e)\sin(\phi_i)\sin(\lambda_i) \]
\[+ \sin(\alpha_e)\cos(\beta_e)\cos(\phi_i)\sin(\lambda_i) \]

– \(p_i \): port pressure, \(q_c \): impact pressure, \(P_\infty \): freestream static pressure, \(\epsilon \): calibration parameter
– \(\theta_i \): angle velocity vector makes with normal to i’th port
– \(\alpha_e \): effective or local angle of attack
– \(\beta_e \): effective or local angle of sideslip
– \(\phi_i \): clocking angle of i’th port
– \(\lambda_i \): cone angle
Angle of Attack, Sideslip & Flank Angle

• Angle of Attack
 – Contained in XZ plane
 – Used triples algorithm (NASA/TM-1998-206540: Whitmore, Cobleigh, Haering) which uses differences of three distinct surface pressures from ports aligned with Z_{FADS} axis

• Flank Angle
 – Contained in XY plane
 – Applied 90^0 counterclockwise rotation to clocking angles of ports on Y_{FADS} axis
 – Used triples algorithm to calculate flank angle

• Sideslip
 – $\beta = tan^{-1}(tan(\beta_F) \times cos(\alpha))$
Calibration Parameter: ϵ

- Applied least squares to system of equations defining pressures at all nine ports

\[
\begin{bmatrix}
P_1 \\
\vdots \\
P_9
\end{bmatrix} =
\begin{bmatrix}
\cos^2(\theta_1) + \epsilon \sin^2(\theta_1) & 1 \\
\vdots & \vdots \\
\cos^2(\theta_9) + \epsilon \sin^2(\theta_9) & 1
\end{bmatrix}
\begin{bmatrix}
q_c \\
P_\infty
\end{bmatrix}
\]

\[
\epsilon = \frac{\sum_{i=1}^{9} \sin^2 \theta_i (C_p - \cos^2 \theta_i)}{\sum_{i=1}^{n} \sin^4 \theta_i}
\]
Impact Pressure, Freestream Static Pressure, Mach

- Impact pressure (q_c) and freestream static pressure (P_∞)
 - Iterative estimator
 (NASA/TM-1998-206540: Whitmore, Cobleigh, Haering)

\[
\begin{bmatrix}
q_c \\
\vdots \\
p_n
\end{bmatrix}
_{(j+1)} =
\left\{
\begin{bmatrix}
M_{(j)}^T Q M_{(j)}
\end{bmatrix}
\right
^{-1}
\begin{bmatrix}
M_{(j)}^T Q \\
\vdots \\
p_n
\end{bmatrix}
\]

\[
M_{(j)} =
\begin{bmatrix}
(cos^2(\theta_1) + \varepsilon_{(j)} \sin^2(\theta_1)) & 1 \\
\vdots & \vdots \\
(cos^2(\theta_n) + \varepsilon_{(j)} \sin^2(n)) & 1 \\
\end{bmatrix}
\]

\[
Q =
\begin{bmatrix}
q_1 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & q_n
\end{bmatrix}
\]

- Mach number
 - Isentropic flow relation for subsonic flow

\[
\frac{q_c}{P_\infty} = \left(1 + \frac{\gamma - 1}{2} M_\infty^2 \right)^{\gamma-1} - 1
\]
• Database made up entirely of CFD data generated with OVERFLOW; a Navier Stokes flow solver
• The portion of vehicle forward of the AM nozzles was modeled in the CFD
• ACM was not modeled
• Mach range
 • \{0.2, 0.4, 0.5, 0.6, 0.7\}
• Alpha range
 • \{0.0, 2.5, 5.0, 7.5, 10, 12.5, 15, 20\}
• Beta range
 – \{0.0\}
• Took advantage of vehicle axisymmetry to algebraically expand the database
Calibration Data

$\alpha(\alpha_e, \beta_{fe}, M_\infty), \beta_{fe} = 0$
Calibration Data

\(\varepsilon(\alpha_e, \beta_{fe}, M_{\infty}), \beta_{fe} = 0 \)
Best Estimated Trajectory: BET

• Used combination of:
 – Inertial data
 – radar tracking
 – optical observations
 – day of flight atmosphere profile

• To determine data parameters of the vehicle along its trajectory
Flight Data Comparison: Angle of Attack

2. Abort Motor Burnout

3. Reorientation Started
Flight Data Comparison: Sideslip

2. Abort Motor Burnout
3. Reorientation Started
Flight Data Comparison:
Freestream Static Pressure

2. Abort Motor Burnout
3. Reorientation Started
Flight Data Comparison: Impact Pressure

- Abort Motor Burnout
- Reorientation Started
Flight Data Comparison: Mach Number

![Graph showing Mach Number comparison over time.]

- **Mach Number**: The graph illustrates the change in Mach number over time for different scenarios.
- **Abort Motor Burnout**: Marked at 2 seconds.
- **Reorientation Started**: Marked at 10 seconds.

The graphs compare FADS, BET, and BET 1σ scenarios, highlighting critical points in the flight test.
ACM Jet Interaction
With FADS Ports

- 9 Points considered along the flight trajectory prior to reorientation
- 18 CFD cases run using OVERFLOW: a Navier Stokes Flow Solver
- 9 cases ACM on, 9 cases ACM off
 - Input
 - Alpha, Beta from FADS
 - Mach from BET
 - Free stream pressure from Balloon data
- Only portion of vehicle forward of AM nozzles modeled
Effect of Attitude Control Motors on FADS Ports

Impact Pressure [psf]

- 2. Abort Motor Burnout
- 3. Reorientation Started

2. Abort Motor Burnout

Impact Pressure [psf]
CFD to Flight Data Comparison:
Angle of Attack

2. Abort Motor Burnout
3. Reorientation Started
CFD to Flight Data Comparison: Sideslip

- Abort Motor Burnout
- Reorientation Started
CFD to Flight Data Comparison: Impact Pressure

2. Abort Motor Burnout
3. Reorientation Started
CFD to Flight Data Comparison: Freestream Static Pressure

- **2. Abort Motor Burnout**
- **3. Reorientation Started**
CFD to Flight Data Comparison: Mach Number

- Mach Number
- Abort Motor Burnout
- Reorientation Started
Summary

• PA1 airdata estimates from the FADS system showed influences of the adjacent firing rocket motor nozzles
• CFD study showed less influence of the ACM than expected given the PA1 BET to FADS comparison
• New calibration database necessary
 – minimum required: CFD which models complete vehicle
 – desired: combination of Wind tunnel and CFD which incorporate ACM and AM
• New CFD study needed with model of complete vehicle including ACM and AM models
PA1 Movie

http://www.youtube.com/watch?v=wzlCDDJyTRI
(Space City Films)
BACK-UP
Triples Algorithm

- Uses combinations of pressures from three distinct ports along the axis of interest
- Angle of attack (α)
 - Use pressure readings from ports along Z-axis
- Flank angle (β_f)
 - Use pressure readings from ports along Y-axis
- Side slip (β)

$$\beta = \tan^{-1}(\tan(\beta_f) \cos(\alpha))$$
Triples Algorithm

Angle of Attack

- Let: \(\Gamma_i = p_i - p_k \)
 \(\Gamma_j = p_j - p_i \)
 \(\Gamma_k = p_k - p_j \)

\[
A = \Gamma_k \sin^2(\lambda_j) + \Gamma_j \sin^2(\lambda_k) + \Gamma_k \sin^2(\lambda_i)
\]

\[
B = \Gamma_k \cos(\phi_j) \sin(\lambda_j) \cos(\lambda_j)
+ \Gamma_j \cos(\phi_k) \sin(\lambda_k) \cos(\lambda_k)
+ \Gamma_k \cos(\phi_i) \sin(\lambda_i) \cos(\lambda_i)
\]

\[
\alpha_e = \frac{1}{2} \tan^{-1} \left(\frac{A}{B} \right)
\]

\(|\alpha_e| \leq \frac{\pi}{4}\)

\[
\alpha_e = \frac{1}{2} \left[\pi - \tan^{-1} \left(\frac{A}{B} \right) \right]
\]

\(|\alpha_e| > \frac{\pi}{4}\)
Triples Algorithm
Angle of Attack

• Used ports along the Z axis: $\phi = 0, \pi$
• All combinations of three distinct ports were considered (i, j, k).
• By taking the differences in pressure:

$$\frac{p_i - p_j}{p_j - p_k}$$

q_c, P_∞ and ϵ are decoupled from equation
• With $\phi = 0, \pi$; sideslip is also removed from the equation
• Resulting α_e is calibrated to wind tunnel data and/or CFD data to get α