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Abstract

During the middle part of this decade a wide variety of passive microwave im-

agers and sounders will be unified in the Global Precipitation Measurement

(GPM) mission to provide a common basis for frequent (3 hr), global precipita-

tion monitoring. The ability of these sensors to detect precipitation by discern-

ing it from non-precipitating background depends upon the channels available

and characteristics of the surface and atmosphere. This study quantifies the

minimum detectable precipitation rate and fraction of precipitation detected

for four representative instruments (TMI, GMI, AMSU-A, and AMSU-B) that

will be part of the GPM constellation. Observations for these instruments were

constructed from equivalent channels on the SSMIS instrument on DMSP satel-

lites F16 and F17 and matched to precipitation data from NOAA’s National

Mosaic and QPE (NMQ) during 2009 over the continuous United States. A

variational optimal estimation retrieval of non-precipitation surface and atmo-

sphere parameters was used to determine the consistency between the observed

brightness temperatures and these parameters, with high cost function values

shown to be related to precipitation.

The minimum detectable precipitation rate, defined as the lowest rate for

which probability of detection exceeds 50%, and the detected fraction of pre-
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cipitation, are reported for each sensor, surface type (ocean, coast, bare land,

snow cover) and precipitation type (rain, mix, snow). The best sensors over

ocean and bare land were GMI (0.22 mm hr−1 minimum threshold and 90%

of precipitation detected) and AMSU (0.26 mm hr−1 minimum threshold and

81% of precipitation detected), respectively. Over coasts (0.74 mm hr−1 thresh-

old and 12% detected) and snow-covered surfaces (0.44 mm hr−1 threshold and

23% detected), AMSU again performed best but with much lower detection

skill, whereas TMI had no skill over these surfaces. The sounders (particularly

over water) benefited from the use of re-analyis data (vs. climatology) to set

the a-priori atmospheric state and all instruments benefit from the use of a

conditional snow cover emissivity database over land. It is recommended that

real-time sources of these data be used in the operational GPM precipitation

algorithms.

Keywords: passive microwave, precipitation, detection, imager, sounder,

emissivity, variational retrieval

1. Introduction

Passive microwave remote sensing of precipitation from space has advanced

tremendously in the past three decades with regard to both number and ca-

pabilities of instruments in operation. The “golden age” of passive microwave

precipitation is anticipated to begin in 2014 with the launch of the Global Pre-

cipitation Measurement (GPM) core satellite on a mission to unify precipitation

estimates from a constellation of sensors.

Early systems such as the Electrically Scanned Microwave Radiometer (ESMR;

Allison et al. (1974)) and Scanning Multi-channel Microwave Radiometer (SMMR;

Gloersen and Hardis (1978)) and corresponding retrieval algorithms (e.g., Wil-

heit et al. (1977); Prabhakara et al. (1986)) primarily focused on the retrieval

of rainfall over oceans due to the clear contrast between the radiometrically

cold background of the low-emissivity ocean surface and radiometrically warm

emission from falling rain at low frequencies (below 50 GHz). The introduction
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of the Special Sensor Microwave/Imager (SSM/I; Hollinger et al. (1990)), with

vertically and horizontally polarized channels at 89 GHz in addition to the lower

frequencies on SMMR allowed for detection of precipitation with the detection

of brightness temperature (Tb) depressions due to the scattering produced by

large, precipitation sized ice particles (e.g., Wu and Weinman (1984); Spencer

(1986)). Although the relationship between the amount of ice scattering and

surface precipitation rate is dependent on the vertical structure of the precip-

itation profile (Kummerow and Weinman, 1988) and ice microphysics (Petty

and Huang, 2010), it has nevertheless remained the primary source of informa-

tion regarding precipitation over land surfaces due to their high, variable, and

inhomogeneous emissivity.

While these instruments and algorithms generally perform well for moderate

to heavy rainfall during the warm season (Ebert et al., 2007), cold-season precip-

itation, i.e., light rain and snowfall in particular, remains challenging (Iturbide-

Sanchez et al., 2011) due to the weaker scattering signal and higher contribution

from the earth surface (Skofronick-Jackson and Johnson, 2011), the emissivity

of which may be complicated by the presence of snow or ice on the ground

(Hewison and English, 1999). Frequencies higher than 100 GHz are particularly

useful for falling snow because of increasingly effective scattering with frequency

and reduced opacity of the atmosphere from water vapor in cold and dry en-

vironments (Bennartz and Bauer, 2003). An early attempt to retrieve falling

snow (Liu and Curry, 1997) used the 92 and 150 GHz channels on the Special

Sensor Microwave/Temperature-2 (SSM/T2) sounder in combination with tem-

perature profiles from the ECMWF forecast model to detect snowfall over the

north Atlantic using empirically-determined Tb thresholds. Empirical methods

have since expanded to use the water vapor channels on Advanced Microwave

Sounding Unit-B (AMSU-B) and Microwave Humidity Sounder (MHS) instru-

ments to effectively mask the surface (Chen and Staelin (2003); Kongoli et al.

(2003); Surussavadee and Staelin (2009)), improving detection skill. These algo-

rithms generally use brightness temperature thresholds to detect precipitation

and empirical regression or neural networks to determine intensity within the
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precipitation mask.

Physically-based methods, in contrast, use radiative transfer models to sim-

ulate brightness temperatures (Tbs) from Bayesian databases of observed (Noh

et al. (2006, 2009); Kummerow et al. (2011)) and modeled (Skofronick-Jackson

et al. (2004); Kim et al. (2008)), or variationally-adjusted (Bauer et al. (2005);

Boukabara et al. (2011)) precipitation profiles. These methods ensure physi-

cal consistency between observed Tbs and retrieved precipitation, but require

accurate models of ice particle scattering (e.g., Liu (2004); Kim (2006); Kim

et al. (2007); Petty and Huang (2010)) and emissivity of snow and ice-covered

surfaces (e.g., Hewison and English (1999); Weng et al. (2001)), which are not as

mature as their counterparts regarding liquid precipitation and ocean surfaces.

The purpose of this study is to establish the minimum precipitation rate

that can be reliably detected over various surface types and with various chan-

nel combinations that will be available on satellites in the GPM constellation.

Because the Bayesian retrieval databases for GPM are still under development,

we instead employ a variational approach that combines physical and empirical

models, described in section 2 to identify precipitation using a null hypothesis

test. The Special Sensor Microwave Imager/Sounder (SSMIS) is used as a proxy

for various GPM-era sensors and evaluated over the continental United States

using the National Mosaic and Quantitative Precipitation Estimates (NMQ;

Zhang et al. (2011)). These datasets are also described in section 2 and results

given in section 3. A summary and concluding remarks are given in section 4.

2. Method

This section describes the retrieval theory and dataset-specific implementa-

tion details used to delineate precipitation in this study. An example retrieval is

also provided to familiarize the reader with the output of the optimal estimation

method applied to this remote sensing problem.
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2.1. General Retrieval Theory

A variational (optimal estimation; Rodgers (2000)) retrieval of non-precipitation

surface and atmospheric parameters via the inversion of a non-scattering ra-

diative transfer model (Elsaesser and Kummerow, 2008) has been adapted for

the datasets used in this study. Essentially, we test a null hypothesis that

an observed set of brightness temperatures y is consistent with a reasonable

set of surface and clear-air atmospheric parameters x not including liquid or

frozen precipitation. This screening method is conceptually identical to that of

Bytheway and Kummerow (2010) and Boukabara et al. (2011) as well as earlier

versions of the Bayesian GPROF algorithm (Kummerow et al., 2001) (more re-

cent versions (Kummerow et al., 2011) include non-precipitating profiles in the

Bayesian database, eliminating the need for an explicit screening step).

The retrieval minimizes a cost function:

Φ = (x − xa)
TS−1

a (x − xa) + (y − f(x))TS−1
y (y − f(x)), (1)

where xa is the a-priori state vector, Sa is the state covariance matrix, f is the

forward (radiative transfer) model, and Sy is the observation covariance matrix.

The contents and formulation of y, xa, f , Sa, and Sy depends on the input and

ancillary datasets; further details are provided in section 2.2. Common aspects

of all retrievals are the use of Rosenkrantz (1998) and Rosenkrantz (1999) for

absorption of atmospheric gases (with improvements (Tretyakov et al., 2003) to

the water vapor lines at 22 and 183 GHz) and the use of FASTEM4 (Liu et al.,

2011) for emissivity over water surfaces.

The cost function (1) is minimized iteratively, starting from xa, using the

Gauss-Newton method to find the value of x where the gradient of Φ with

respect to x is zero. This requires the calculation of the Jacobian matrix K at

each iterative step n by calculating the derivative of each observation (yi) with

respect to each state element (xj):

Kij =
∂yi

∂xj
. (2)
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Before the iteration begins, Sa is orthogonalized, and the variables in x are

transformed into the corresponding EOF space. This step has two consequences

which are beneficial from a computational point of view. First, Sa becomes di-

agonal, which reduces numerical instabilities resulting from floating-point rep-

resentation of ill-conditioned matrices. Second, by discarding those EOFs that

represent variability below the noise level of the sensor plus approximations

made in the radiative transfer model, the retrieval parameter space can be re-

duced, saving computation time. The iterative step is defined as:

xn+1 = xn + Δx

(
KT

nS−1
y Kn + S−1

y

)
−1

×

(
KT

nSy
−1[y − f(xn)] − S−1

a [xn − xa]
)
, (3)

where Δx is a positive value less than one (0.75 is used in this study) that guards

against non-convergent oscillations about the solution, albeit at the expense of

increased iterations. The iteration proceeds until a convergence criterion is

satisfied. The convergence criterion we use requires that the difference between

consecutive iterations is less than 10% of the retrieved state error covariance,

Sx:

(xn+1 − xn)TS−1
x (xn+1 − xn) < 0.1, (4)

where Sx is:

Sx = (KTS−1
y K + S−1

a )−1. (5)

This is the same convergence test used by Elsaesser and Kummerow (2008);

other criteria, such as

1

Nobs

(
y − f(xn)

)T
S−1

y

(
y − f(xn)

)
≤ 1, (6)

which guarantees that the retrieved state simulate the observed Tbs within

the error tolerance specified by Sy (Boukabara et al., 2011), have also been

used in the context of variational retrievals. Without the use of a scatter-

ing radiative transfer model, such a criterion would lead to non-convergence

in many scenes, whether due to precipitation or a poor characterization of the

surface/atmosphere state and covariance by xa and Sa. While non-convergence
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itself has been used to identify precipitation (e.g, Elsaesser and Kummerow

(2008); Bytheway and Kummerow (2010); Boukabara et al. (2011)) in this man-

ner, for this study we are more interested in identifying the minimum threshold

of Φ at which the error due to precipitation exceeds the background “noise”

resulting from surface and atmospheric characterization errors in xa and Sa.

Therefore it is important to find the minimum of Φ which is not guaranteed by

using Eq. 6, whereas using Eq. (4) will get within 10% of the local minimum,

which is likely to be the global minimum as well for the moderately non-linear

radiative transfer under consideration.

2.2. Datasets

During 2009, data from the SSMIS sensor was available from the Defense

Meteorological Satellite Program (DMSP) F16 and F17 satellites. SSMIS is a

conically-scanning microwave radiometer that combines the imaging and sound-

ing channels on the SSM/I, SSM/T1, and SSM/T2 instruments. At a nominal

altitude of 848 km, the ground footprint ranges from 14x13 km at 183 GHz to

73x47 km at 19 GHz and the earth incidence angle is 53.1◦. With 24 channels

ranging from 19 to 183 GHz, SSMIS is capable of providing proxy datasets for

the TRMM Microwave Imager (TMI)2, GPM Microwave Imager (GMI), and

the AMSU/MHS sounders (SNDA/SNDB) that will form the GPM constella-

tion. These proxy datasets mimic the frequency and polarization combinations

on these sensors with the exception of the horizontally and vertically-polarized

10-GHz channels on TMI and GMI and the vertically-polarized 166 GHz chan-

nel on GMI. The cross-track scan geometry of the AMSU sensors cannot be

replicated, which places the weighting functions of the water vapor (177-189

GHz) and temperature (50-60 GHz) sounding channels somewhat higher in the

atmosphere than AMSU, depending on scan position. The channels used in each

2The Advanced Microwave Scanning Radiometer 2 (AMSR2), launched in May 2012 and

also expected to be part of the GPM constellation, has similar channels to its predecessor,

AMSR-E.
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of these proxy datasets are given in Table 1. Note that for SNDA (AMSU-A+B

proxy) only the first three 50-GHz temperature sounding channels, with weight-

ing functions primarily in the troposphere, were included, since the remaining

temperature sounding channels are not expected to be sensitive to precipitation.

[Table 1 about here.]

The source of data was the Temperature Data Record (TDR) maintained by

NOAA3. This record applies corrections (Yan and Weng, 2008) to known cali-

bration problems related to warm load solar intrusions and an emissive antenna

on the F16 sensor (Kunkee et al., 2008) (the latter of these is also present, to a

lesser extent, on F17). Each TDR was manually examined for visually obvious

calibration artifacts. If any artifacts were present (most commonly in the 91H

channel on F16 due to warm load solar intrusions), the file was removed from

the analysis. To accommodate remaining uncertainties in the sensor calibration

and forward model approximations, the diagonal elements of Sy are set to (3

K)2 with zero covariance assumed.

The TDR provides imager (91-183 GHz), environmental (19-37 GHz) and

sounding (50-60 GHZ) channels with 1x1, 2x1, and 3x3 cross-track by along-

track sample averaging, respectively. For this study, all of the proxy sensor

datasets were commonly gridded at one-half (2x2) the native SSMIS sample

resolution, providing a cross-track and along-track spacing of 25 km. This re-

quired spatially averaging the imager channels and linearly interpolating the

sounding channels. The SNDB dataset was also retained at native resolution

because it consists solely of a subset of the high-resolution imager channels.

The datasets used to validate the detection of precipitation come from the

National Mosaic and Quantitative Precipitation Estimate (NMQ; Zhang et al.

(2011)) suite of products. These include three-dimensional reflectivity and a

3At the time of publication, intercalibrated SSMIS data were available at

http://mrain.atmos.colostate.edu/LEVEL1C/ created with the method of (Sapiano et al.,

2012). Because the reference sensor is TMI, the intercalibration is applied only to the 19, 22,

37, and 91 GHz channels on SSMIS.
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number of radar-only and gauge-adjusted precipitation rate estimates. These

are available every 5 minutes at 0.01◦ resolution. For our validation, we used

the radar-only Q2 product. This product is based on the mosaic of hybrid scan

reflectivity, which is a composite of the lowest elevation angle quality-controlled

reflectivity from the National Weather Service WSR-88D Crum and Alberty

(1993) and Environment Canada C-band radar networks. Precipitation is clas-

sified as convective, stratiform, warm rain, hail, or snow based on radar profile

characteristics and ancillary temperature and humidity data, then a correspond-

ing Z-R relationship is applied to derive the precipitation rate. The advantage

of the NMQ-Q2 product is in the high spatial and temporal resolution, but

as with any ground-based radar product, shallow precipitation may be missed

due to beam elevation and terrain blockage (Maddox et al., 2002). In addition,

errors in rain type classification or variability of the Z-R relationship within a

class, as well as the increasing distance between the surface and the radar beam

with distance from the transmitter, are sources of error in cases when an echo

is detected that must be considered when using the rain rate data. To alleviate

the beam elevation-induced error, areas with a beam elevation greater than 1.5

km above the ground were excluded from the analysis.

The radar-only Q2 data were matched to each SSMIS footprint using a

weighting function designed to mimic the SSMIS antenna pattern, without re-

quiring satellite navigation information. A two-dimensional symmetric Gaussian

weighting function with a half-power beamwidth of 38 km was applied to assign

an average rainfall rate to each SSMIS footprint. This represents a compro-

mise between the averaged 91-183 GHz channels (28 km) and the 19-37 GHz

channels (38-73 km). For the high-resolution SNDB dataset, the half-power

beamwidth was set to 13.5 km to match the effective footprint size of 13x14

km for these channels. Precipitation type was assigned to each SSMIS footprint

using MERRA temperature profiles as follows:

• Snow if temperature at all levels (including skin) below 0◦C,

• Rain if the coldest temperature within 500m of the surface is above 0◦C
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and skin, 2 m, and 10 m air temperature are above 0◦C,

• Mix if neither of the above conditions are satisfied.

2.3. Retrieval Parameters

The iterative variational algorithm described in section 2 was used to retrieve

temperature, water vapor, and non-precipitating cloud water at 15 atmospheric

levels from 1000 hPa to 30 hPa, along with skin temperature, 10 m temper-

ature, and emissivity in each channel. The a-priori covariance matrix for the

atmospheric parameters (temperature, water vapor) was derived from 30 years

(1981-2010) of MERRA reanalysis (Bosilovich, 2008) data independently at each

MERRA grid point and for each month. As mentioned in section 2, this co-

variance matrix was orthogonalized and truncated so that the non-represented

variability (defined as the sum of the magnitudes of the residual EOFs) did

not exceed 3 K (temperature) or 1 g kg−1 (water vapor) at any individual at-

mospheric level, which is the minimum necessary to cause a significant (3 K)

change in Tb in any SSMIS channel. The number of retained variables (out of a

possible 32) is shown in Figure 1. Note that more atmospheric components are

required in January compared to July due to the increased variability associated

with strong temperature gradients in the cold season. There is also an effective

reduction in atmospheric complexity over the high terrain of the southwest US,

simply because MERRA levels are defined on constant pressure surfaces and

fewer are available at high surface elevations.

Wind and cloud liquid water path (CLWP) are considered independent of

the atmospheric temperature and water vapor state, and, like those variables,

their mean and variance is derived from the MERRA reanalysis. The vertical

profile of cloud water is considered a function of CLWP and interpolated from

characteristic profiles at the 0.5, 2.5, 5, 15, 25, 50, 65, 85, 95, 97.5, and 99.5th

percentiles of CLWP at each MERRA grid point for each month.

[Figure 1 about here.]
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The surface emissivity is parameterized as a function of wind speed and skin

temperature over water surfaces (assumed to be specular) using the FASTEM4

model (Liu et al., 2011). Although this model also accounts for wind direction

and salinity, these are held constant since at frequencies used in this study, the

resultant change in Tb is less than the assumed 3 K error. Over land surfaces

(assumed to be Lambertian), emissivity means and covariance matrices are de-

rived from the Tool to Estimate Land Surface Emissivity in the Microwaves

(TELSEM; Aires et al. (2011)). As with the atmosphere, the emissivity covari-

ance matrix is orthogonalized and the criteria for component retention is that

remaining variability not exceed 0.01 in any channel. The resulting number of

emissivity components (out of a possible 9) for the GMI configuration can be

seen in Figure 1. Note the increased complexity of the surface in January rela-

tive to July over the Midwest and Plains due to the occasional presence of snow

cover, which has highly variable microwave emissivity (Prigent et al., 2006).

2.4. Example Retrieval

An example case of the non-precipitation retrieval from a 2300 UTC overpass

of F17 on 8 December 2009 is shown in Figure 2. At this time a large cyclone

was developing over the central US. This storm deposited over 20 cm of snow

over a band from western Kansas and Nebraska eastward to northern Illinois

and southern Wisconsin, while at the same time brought widespread heavy rain

to states further south and east, as shown in the composite reflectivity panel on

the lower right.

The first column of Figure 2 depicts the cost function for the four different

sensor configurations listed in Table 1 when MERRA and TELSEM climatol-

ogy are used as the a-priori mean state (xa). Several differences between the

sensors are apparent. All sensors capture the heavy rainfall over the Tennessee

Valley quite well, although the GMI, SNDA, and SNDB configurations appear

better capture the full extent of the light rain area. This is a result of the ad-

ditional sensitivity to scattering in the 150 GHz channel relative to 91 GHz. In

the mix and snow region, there is little apparent signal in the TMI retrieval.
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The other sensors show a much higher cost function here, but this is generally

indistinguishable from the large area of snow cover without precipitation falling

over North Dakota and Montana. This is confirmed by the 150 GHz Tbs in

this area, which show very cold values (<200K) indicative of low emissivity in

this region. Because TELSEM was developed from SSM/I, TMI, and AMSU-A

data (Aires et al., 2011), it extrapolates emissivities at 100 GHz to all higher

frequencies. It is apparent from comparing the 89 and 150 GHz Tbs that in

the North Dakota/Montana region, there is a significant difference in emissivity

between these channels, leading to the large cost for all sensors that include the

high-frequency channels.

False alarms, such as those caused by poor representation of the emissivity

at high frequencies over snow covered surfaces in TELSEM, might be reduced

by improving the characterization of the surface and atmosphere in xa and Sa

with ancillary data. One such source of data, represented in the second column

of Figure 2, is the use of the reanalysis state provided by MERRA instead of

the climatological mean in xa. There is a slight reduction in the cost function

outside the precipitation regions; this reduction is more apparent in the sounding

configurations owing to these channels’ higher dependence on the atmospheric

state than the window channels used by TMI and GMI.

Another source of data that could reduce the errors associated with snow

cover is a real-time snow cover analysis coupled with a snow emissivity database.

To create such a database, emissivities were calculated at all frequencies using

the same retrieval described in section 2 (with zero a-priori covariance between

channels) for FOVs with at least 1 cm of snow indicated by the Snow Data

Assimilation System (SNODAS; Barrett (2003)) and no precipitation indicated

by NMQ for the entire calendar year 2009. The mean and covariance matrices

were then calculated and substituted for the TELSEM means and covariances

in xa and Sa when SNODAS indicated at least 1 cm of snow in the ground.

These retrievals are shown in the third column of Figure 2. The use of this

snow emissivity database results in is a large reduction in the cost function over

much of the Dakotas in the GMI, SNDA, and SNDB retrievals. Some banding
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features are now evident over eastern Nebraska, Iowa, and Minnesota. Note that

large cost values remain just north of the US-Canada border where SNODAS

data was unavailable and the unmodified TELSEM emissivities are used.

In the next section, the extent to which these ancillary datasets improve the

overall skill of detecting precipitation will be evaluated for each sensor configu-

ration over different surfaces, seasons, and types of precipitation.

[Figure 2 about here.]

3. Evaluation

The primary question this study seeks to address is: What is the minimum

detectable precipitation rate that can be discerned from non-precipitating con-

ditions by GPM-era passive microwave sensors? In this section we examine the

results of the retrievals described in section 2 to establish this minimum thresh-

old of detection, whether or not it improves (is reduced) when ancillary data

are used as retrieval input, and how it changes with surface type, precipitation

type, and sensor resolution.

3.1. Characteristics of Non-Precipitating Observations

The first step in this analysis is identifying the distribution of Φ associated

with non-precipitating scenes. Under the assumption that x and y consist of

independent standard normal random variables, the value of the cost function

Φ (1) should follow a chi-squared distribution:

p(x, k) =
xk/2−1e−x/2

2k/2Γ(k/2)
(7)

with k = m + n degrees of freedom, where m is the number of variables being

retrieved and n is the number of observations. It can be inferred from Table 1

and Figure 1 that the degrees of freedom might range from around 10 (SNDB

over ocean during summer) to 30 (GMI over snow during winter). To directly

compare results from all retrievals, the cost function is normalized by m + n,

which sets the theoretical expectation value to one for all m + n. The actual
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distributions of Φ for non-precipitating and precipitating scenes are shown in

Figure 3. The expectation value for all sensors is much lower than the theoretical

value, an indication that there are effectively fewer degrees of freedom than m+n

in each retrieval. This may be the result of non-independence of some channels,

insufficient information content in the observations to modify higher-order EOFs

of the surface/atmosphere, and/or an overestimate of the observation error in

Sy. The latter was tested by reducing the diagonal elements of Sy to (2 K)2

which resulted in an increase in non-convergence of non-precipitating cases. As

far as precipitation detection is concerned, the overall distribution of Φ does

not matter much so long as the Φ values in precipitating scenes are significantly

higher than in non-precipitating scenes.

[Figure 3 about here.]

The sample case (Figure 2) shows significant variations in Φ over non-raining

scenes, with high values over coasts and snow cover. If such high values are

persistant over these surfaces, then the threshold of precipitation detection will

likely be different among them as well. To illustrate the regional differences

in the statistics of the distribution of Φ, the mean, standard deviation, and

skewness of log10(Φ) for the GMI retrieval during the winter season are mapped

in Figure 4. As expected, coasts stand out with significantly higher mean values

(and logarithmic standard deviations) than all other areas. Values higher than

0 (which represent a normalized chi-squared expectation value of one) indicate

that the surface emissivity climatology from TELSEM appears to insufficiently

capture the surface variability in coastal areas. A closer examination indicates

that the largest mean values of Φ occur just offshore, and are likely a consequence

of the retrieval process. The retrieval uses TELSEM-derived emissivity EOFs

if an SSMIS observation is flagged as a land, coast, or near coast surface type.

Since TELSEM is only available over pixels that are predominately land at 0.25◦

resolution, the algorithm searches for the nearest valid TELSEM grid box, which

is likely not representative in the near-coast case. An extension of TELSEM to

50km offshore would easily remedy this problem.
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Aside from coasts, regions of snow cover in the upper Midwest and Rocky

Mountains, as well as the Mississippi Delta region and the St. Lawrence River

Valley and ocean surfaces show up as areas of slightly higher background Φ.

Standard deviations are enhanced in the snow regions, particularly those on

the southern edge of snow cover region in the Plains where snow cover is more

episodic. The distributions of Φ also tend to be positively skewed in this area,

indicating a long tail towards large Φ values relative to a symmetric lognor-

mal distribution. Precipitation detection is made more difficult by a positively

skewed distribution because the expected precipitation signal overlaps with this

long tail, increasingly the false detection rate.

In order to account for these regional differences and to assist in drawing

general conclusions about precipitation detectability over different surfaces, a

combination of the SSMIS surface type flag (land, water, or coast) and SNODAS

snow cover status is used to classify an observation as occurring over bare

ground, snow covered ground, coast, or water. Thresholds of detection will

be reported separately for each of these classes and sensor/ancillary data con-

figuration.

[Figure 4 about here.]

3.2. Precipitation Detection Thresholds

The basis for the detection of precipitation by establishing a threshold value

of Φ lies in the assumption that non-precipitating scenes will have relatively low

values of Φ relative to precipitating scenes based on the formulation of xa and

Sa. In the ideal case, the distributions of precipitating and non-precipitating

Φ would have no overlap, and all precipitation would be detected by selecting

a threshold value of Φ between the two distributions. In reality, there is some

overlap between the distributions, and there must be a tradeoff between in-

creasing the percentage of correct detections and minimizing misses. One way

to optimize this tradeoff is to select a Φ threshold that maximizes the Heidke

Skill Score (HSS; Wilks (2011)), which is a metric that measures the accuracy
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of precipitation detection relative to random chance, at a given rainfall rate. A

value of 1 indicates perfect detection of precipitation above some threshold R0

and rejection of precipitation below R0, 0 indicates no skill (the detected occur-

rence of precipitation is the same as the occurrence in the dataset, but with no

correlation to observed precipitation) and negative values indicate a detection

scheme that is less likely to correctly detect precipitation than random guess

with the correct climatology frequency of precipitation. The HSS is defined as:

HSS =
2(hc − fm)

(h + m)(m + c) + (h + f)(f + c)
(8)

where h, m, f , and c are the fractional hits, misses, false detections, and correct

rejections in a contingency table. The HSS, therefore, can be considered a

measure of the ability of Φ to differentiate between precipitation rates above

and below any particular cutoff value.

The ability of each channel combination in Table 1 to detect various types of

precipitation ranging from 0.5-2 mm hr−1 over the four surface classes is shown

in Figure 5 as a function of month. The peak skill scores of the GMI, SNDA, and

SNDB configurations exceed 0.5 over ocean and bare land surfaces for most of

the year which is consistent with the MIRS algorithm (Iturbide-Sanchez et al.,

2011), not surprising given its similar formulation to the retrieval used in this

study. Over oceans, those sensors with the low-frequency channels (GMI and

TMI) outperform the sounders (particularly SNDB) in detecting rain because

the low-frequency channels are better-suited to sensing warm rain’s emission

signal over the low-emissivity ocean. Snow and mixed precipitation over water

surfaces appear to be best detected by SNDB and SNDA, respectively, but there

are relatively few occurrences of these events in the database.

[Figure 5 about here.]

Coastal regions have always been problematic for precipitation detection,

and this is the case for our retrieval as well due to the uncertain land fraction,

which itself may vary within the same set of observed Tbs due to the different

channel beamwidths. Compounding this error in our retrieval is the apparent
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poor representation of just-offshore regions in the TELSEM database (Figure

4). Nevertheless there is some ability for SNDB to detect precipitation there,

particularly during the summer when the column water vapor is highest and the

89-183 GHz channels are least sensitive to the surface. Since these channels are

available in the SNDA and GMI (minus the 183±1 GHz channel) configurations,

retrievals from these instruments may be improved over coasts by assigning lower

weights to the low-frequency and surface-sensitive channels.

Over bare ground, SNDA appears to be the best instrument for precipitation

detection followed closely by GMI and SNDB with TMI in a distant fourth place.

These rankings hold for all precipitation types although HSS values are distinctly

lower for mixed precipitation and snow. There is a slight seasonality in the

skill scores with a maximum in the summer. This is consistent with Iturbide-

Sanchez et al. (2011) and has been attributed to the seasonal change in the

relative contribution of easily-detected deep convection and weaker/shallower

precipitation associated with synoptic-scale lifting mechanisms (Ebert et al.,

2007).

Separating falling precipitation from snow on the ground is more challeng-

ing for reasons mentioned previously, primarily that the surface emission has

a similar frequency dependence as precipitation. Therefore it is not surprising

that the sounders have the highest skill. There is also a dependence on pre-

cipitation type, with rain and mixed precipitation being easier to detect over

snow-covered surfaces than snowfall. Since the skill scores are calculated for the

same precipitation rate, this is not a consequence of rain being more intense (on

average) than snowfall. Instead, since TMI does not share in this trend, it may

be concluded that the 150-183 GHz channels are more effective in discriminating

precipitation from snow-covered surfaces in the higher water vapor content in

the warmer environments associated with rain.

The skill scores presented in Figure 5 should be considered baseline values

because no ancillary data such as atmospheric state and snow cover, which would

be available in real time for GPM-era precipitation algorithms, were used. The

impact of these data sources is discussed in section 3.3. Also, because there is
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only a weak correlation between Φ and precipitation rate, it is difficult to use

the HSS as a metric to identify the minimum detectable precipitation rate for

each sensor/surface/phase combination. At the extremes, once could imagine

a virga case (precipitation aloft that evaporates before reaching the ground)

that produces a clear scattering signal, whereas an intense lake effect or upslope

snow storm might be small and shallow enough so as to be indiscernible to the

satellite. Indeed, when HSS is examined as function of precipitation rate (Figure

7), there is non-zero skill for the lightest (0.01 mm/hr) events and decreasing

skill for very heavy events. The latter behavior simply indicates that at high

precipitation rates, Φ itself is a poor proxy for intensity.

A more meaningful way to establish the minimum precipitation rate that

can be detected invokes the signal-to-noise ratio. When the signal (precipita-

tion) exceeds the noise (background variability) at a given value of Φ, the mean

precipitation rate at that value of Φ can be thought of as the minimum de-

tectable rate. While this does not explicitly take into account the climatological

occurrence of precipitation as the HSS does, that fraction is low enough (around

15% in the NMQ dataset) that requiring 50% of retrievals in the Φ interval to

be precipitating is indicative of the true ability of the sensor, not just chance

occurrence.

This principle of detection is illustrated in Figure 6 for GMI retrievals of rain

over bare ground. At low values of Φ (< 0.4), the occurrence of precipitation

is lower than the dataset average, and tends to be very light (<0.1 mm hr−1).

As Φ increases so does the occurrence of precipitation and average precipitation

rate. The 50% threshold is reached at a value of Φ of around 1, and at higher

values of Φ, the precipitation fraction exceeds 95% giving very high confidence

in the detection of higher rainfall rates (> 1.5 mm hr−1). At the 50% detection

threshold, the mean rainfall rate, including non-raining scenes, is about 0.4 mm

hr−1, thus the mean conditional rainfall rate is 0.8 mm hr −1. Because of the

positively-skewed distribution of rainfall rates, the conditional median is less

than the conditional mean and tends to lie close to the overall mean.
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[Figure 6 about here.]

Therefore, in Table 2, the rainfall detection threshold is indicated as the

overall, or non-conditional (including zeros) mean rainfall rate, in the Φ interval

for which rainfall occurrence is 50%. As with the HSS values in Figure 5,

these values should be considered baseline since no real-time (as opposed to

climatological) ancillary data was used. The percentage of total precipitation

above the threshold Φ is also given. Values range from over 90% for rain over

oceans to less than 10% for snow over snow cover and all precipitation over

coastlines. For snow, these thresholds are generally consistent with the 0.5-

1.2 mm hr−1 range found by Skofronick-Jackson et al. (2012) using model data.

The over-ocean and coast statistics should be interpreted with caution, however,

as a much smaller sample of precipitation over these surfaces was available,

particularly for mixed precipitation and snow.

[Table 2 about here.]

All of the retrievals discussed in this section were performed on SSMIS ob-

servations averaged to half the native sampling both along- and cross-track,

with the NMQ data convolved with a Gaussian weighting function of 38 km

half-power width, which roughly matches the footprint of the lower-frequency

channels on SSMIS. The high-frequency channels (≥ 91 GHz) have a much

smaller 13x14 km footprint, and to test the impact of this higher resolution on

the results, the SNDB retrievals were performed again using this high-resolution

dataset. For these data there is general broadening of the HSS curves (not

shown) relative to their low-resolution equivalents, with increased skill at the

light and heavy ends of the precipitation spectrum and a decrease at moderate

rates. The main impact of increasing sensor resolution appears to be a more

direct relationship between Φ and precipitation rate rather than an increase in

the fraction of precipitation that is detected.
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3.3. Impact of Ancillary Data

The a-priori atmosphere and surface state for the retrievals discussed in

section 3.2 come from monthly climatology databases. Real-time forecasts or

near-real time analyses of the atmospheric state are available from operational

numerical weather prediction (NWP) centers. These should improve the skill of

precipitation detection, particularly for the sounding instruments, by reducing

the high Φ values associated with a highly anomalous atmospheric state, thereby

reducing false detections. Similarly, a-priori knowledge of the presence of snow

cover, which is also available from many sources in near-real-time, can be used

to choose an appropriate surface emissivity database.

To test the impact of these ancillary datasets, the retrievals performed in

section 3.2 were repeated with two modifications. First, the climatological at-

mospheric base state was replaced with the MERRA reanalysis valid at the time

and location of each satellite observation. The atmospheric covariance remained

the same as climatology, however. Second, when snow cover of greater than 1

cm was indicated by SNODAS, a snow emissivity database was used in place

of TELSEM. This snow emissivity database was derived from the entire year

(2009) of SSMIS observations when snow cover was present (again at the 1 cm

threshold as indicated by SNODAS) under non-precipitating conditions, and

analogous covariances and EOFs were derived.

[Figure 7 about here.]

The HSS from the retrievals that benefit from ancillary data are compared

to the baseline HSS in Figure 7 for each surface type. To examine the causes of

behavior of the HSS, two additional metrics, the probability of detection (POD)

and false alarm rate (FAR) are also plotted in Figure 7. These are defined as:

POD =
h

h + m
(9)

and

FAR =
f

f + c
(10)
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respectively.

As a function of rainfall rate, HSS tends to increase to a maximum near 1

mm hr−1 (except for coastal areas, where the maximum is nearer to 0.1 mm

hr−1). This increase corresponds to an increase in the POD, while the FAR

remains relatively constant. The decrease in HSS at higher precipitation rates is

a consequence of the lack of a direct relationship between Φ and R, which results

in increasing false detections (light rainfall rates with high Φ) even though non-

raining scenes are being correctly rejected and the miss rate decreases. This

pattern remains the same when the ancillary data sources are introduced, but

improvement in skill is clear in many of the retrievals.

Over ocean, the SNDA and SNDB retrievals benefit (via reduction of FAR)

most from the use of reanalysis to set the atmosphere and surface (SST and

wind are part of the ancillary dataset) state, whereas the instruments with

dual-polarized window channels (TMI and GMI) do not benefit nearly as much.

Even with reanalysis data, the SNDB retrieval does not perform as well as the

others, perhaps due to insufficient sensitivity to warm rain due to the lack of low-

frequency channels since the SNDA HSS is as high as TMI and GMI. Over coast,

the only sensors with any meaningful skill (SNDA and SNDB) again benefit from

a-priori knowledge of the atmospheric state. Over bare land, all sensors benefit

from the reanalysis data to reduce the FAR but the improvement is smaller

for those instruments with the most channels (GMI and SNDA), indicating

that these appear to have sufficient information to retrieve the atmosphere and

surface properties without the need for nudging from the reanalysis.

Over snow-covered surfaces, selection of the correct surface database results

in a large improvement for all instruments, including the sounders, where it

provides approximately the same increase in HSS as the use of MERRA data

over the climatological base state. For the more surface-sensitive instruments

(TMI and GMI), the improvement is even greater. One notable feature of the

snow cover HSS statistics is that the highest skill clearly belongs to the SNDA

configuration, pointing to the additional benefit of surface-insensitive channels

near 50 GHz for detecting snow over snow-covered surfaces. As with the use
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of the reanalysis state, these increases in skill primarily come about through

reductions in the Far rather than an increase in POD.

The thresholds of detection are given in Table 3 for the ancillary data-aided

retrievals. In all cases, the minimum threshold decreases and the volume of

precipitation detected increases, and in some cases, a valid threshold exists

where one did not without ancillary data. As suggested by the skill scores in

Figure 7, the improvement is more marked for some sensor/surface combinations

(e.g., sounder over ocean, GMI over snow) than others (e.g, GMI over ocean,

SNDA over land). With ancillary data, the volume of precipitation detected is

as high as 91% for GMI over ocean, but remains poor (generally under 50% and

in some situations under 10%) for precipitation over coasts and snow cover. For

comparison, the volume fraction of snowfall with NMQ reflectivity greater than

18 dBZ (roughly equivalent to the minimum thresholds of the Ku- and Ka-band

on the GPM Dual-frequency Precipitation Radar) is 49%.

[Table 3 about here.]

4. Conclusion

This study presents an examination of the ability of GPM-era passive mi-

crowave sensors to delineate precipitation from non-precipitating scenes over the

variety of surfaces and precipitation types that will be encountered in the 65◦-

inclination GPM core orbit. The basis for precipitation detection is a variational

optimal estimation of non-precipitation parameters (atmospheric temperature

and water vapor profiles, surface emissivity, and non-precipitating cloud water)

which are represented as reduced-dimension EOFs in order to exploit covariance

properties derived from climatology in order to constrain the retrieval. In this

type of retrieval, a high cost function results when the scene being observed

(precipitation) cannot be reconciled with any reasonable combination of the

non-precipitating parameters.

Subsets of data from the SSMIS sensor on DMSP satellites F16 and F17 dur-

ing 2009 were used to simulate the TMI, GMI, AMSU-A, and AMSU-B/MHS
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microwave imagers and sounders which were matched with coincident ground

radar reflectivity and precipitation rate from NMQ. The sensor with the best

Heidke Skill Score was found to be GMI over ocean (90% of precipitation de-

tected, with rates as low as 0.22 mm hr−1 having a 50% probability of detection)

and the full sounder combination (AMSU-A+AMSU-B) over bare land (80% of

precipitation detected, with rates as low as 0.26 mm hr−1 having a 50% prob-

ability of detection ). Over snow-covered surfaces and coastlines, skill and the

detected precipitation fraction were much lower although the sounders did show

some skill in detecting precipitation over these surfaces. Increasing sensor reso-

lution did not affect the fraction of precipitation detected although the minimum

detectable rate increased slightly as a consequence of the shift in distribution of

precpitation towards higher rates at higher resolutions.

In order to maximize the precipitation detection capability of each sensor,

use of real-time ancillary data regarding the surface and atmospheric state is

recommended, particularly for the sounding instruments over ocean where an

increase in detected fraction of precipitation from 56% to 85% was noted. Al-

though the reanalysis used in this study would not be availabel for real-time

retrievals, numerical weather prediction models shoudl provide similar improve-

ments relative to climatology. The use of a conditional snow cover emissivity

dataset in place of an all-condition climatology greatly reduced the minimum

detectable precipitation rate over snow-covered surfaces (from 0.89 mm hr−1 to

0.44 mm hr −1) although the skill and detected fraction remain low compared

to bare ground and ocean surfaces.

Many areas of improvements to the robustness of the ancillary data were

noted. Real-time estimates of the atmospheric state covariance may be avail-

able from ensemble forecast systems which should more realistically constrain

the temperature and water vapor profiles than the climatological covariance.

Improvements to the TELSEM surface emissivity climatology, with separate

snow and bare ground components and extension to at least 50 km offshore to

better represent coastal regions, are recommended as well since these shortcom-

ings were evident in the analysis of retrieval results.
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In conclusion, the constellation of passive microwave sensors during the GPM

era will offer the best opportunity yet afforded to sample the diverse characteris-

tics of precipitation over most of the globe. However, intelligent use of ancillary

data will be necessary in order to realize the full potential of these instruments.

Even then, some regions, particularly coastlines and snow-covered surfaces, will

remain challenges due to the fundamental difficulty of extracting a precipita-

tion signal from the non-precipitating background variability. In these regions,

a combination active sensors and future hyperspectral passive sensors will need

to be relied upon to provide accurate precipitation estimates.
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Φ threshold that maximizes HSS. The ancillary data-augmented
retrievals are indicated by the dashed (MERRA reanalysis) and
dotted (MERRA reanalysis and SNODAS snow cover) lines. Note
that the vertical scale is different for each plot to emphasize the
changes that result from the use of ancillary data. . . . . . . . . 37
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b) GMI Emissivity Components (January)
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c) Atmosphere Components (July)
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d) GMI Emissivity Components (July)
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Figure 1: Number of atmosphere (a,c) and surface (b,d) EOFs retrieved in January (a,b) and
July (c,d) based on MERRA (atmosphere) and TELSEM (surface) climatology for the simu-
lated GMI sensor, which has 10 channels at 9 center frequencies/polarization combinations.
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Figure 2: Cost function for different sensor configurations (rows) and ancillary data (columns)
as applied to SSMIS data from 2200 UTC 8 December 2009. For reference, the 91H and 150
H SSMIS Tbs are shown in the upper right along with the concurrent SNODAS snow depth
analysis and NMQ composite reflectivity in the lower right.
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Figure 3: Histograms of Φ for non-raining scenes for all sensor configurations for the year 2009
over CONUS. The histograms have been normalized such that the area under each curve is
equal to one.
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Figure 4: Statistics of the distribution of non-precipitating Φ values gridded at 0.25◦ reso-
lution. All statistics were performed on the base-10 logarithm ofΦ to be consistent with the
apparent lognormal distribution of Φ in Figure 3.
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Figure 5: Time series of monthly Heidke Skill Score for each sensor, surface, and precipitation
type for precipitation rates between 0.5 and 2 mm hr−1.
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Figure 6: Fractional occurrence of rain and mean/median rainfall rate as a function of nor-
malized retrieval cost (Φ) for the baseline GMI retrieval over bare land surfaces. The climato-
logical precipitation fraction and 50% threshold are indicated by the dotted and dashed lines,
respectively.
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Figure 7: Maximum Heidke Skill Score (HSS; left), Probability of Detection (POD; middle),
and False Alarm Rate (FAR; right) as a function of precipitation rate for each sensor and
surface type for all months. The POD and FAR are calculated at the same Φ threshold
that maximizes HSS. The ancillary data-augmented retrievals are indicated by the dashed
(MERRA reanalysis) and dotted (MERRA reanalysis and SNODAS snow cover) lines. Note
that the vertical scale is different for each plot to emphasize the changes that result from the
use of ancillary data.
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List of Tables

1 List of SSMIS channel frequencies (GHz) and polarizations that
are used to mimic each sensor configuration explored in this sec-
tion (TMI=TRMM Microwave Imager/AMSR, GMI = GPM Mi-
crowave Imager, SNDA = AMSU-A+AMSU-B/MHS, SNDB =
AMSU-B/MHS). Channels not available on SSMIS are crossed
through. Note that the 50-53 GHz channels on F16 are vertically
polarized while those on F17 are horizontally polarized. . . . . . 39

2 Minimum detectable precipitation rate (mm hr −1) and percent-
age of precipitation volume detected (in parentheses) for each
sensor, surface type, and precipitation type in the baseline con-
figuration. The minimum detectable rate is defined as the mean
rainfall rate at the lowest Φ value where at least 50% of retrievals
have R ≥ 0.01mm hr−1. Therefore, these values should be dou-
bled to represent the conditional mean precipitation rate in that
interval. Cells are left blank if no such value exists. . . . . . . . . 40

3 Same as Table 2, except that MERRA atmospheric state was
substituted for climatology as the a-priori atmospheric state and,
for snow covered surfaces, a snow cover emissivity database was
substituted for TELSEM. . . . . . . . . . . . . . . . . . . . . . . 41
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Table 1: List of SSMIS channel frequencies (GHz) and polarizations that are used to mimic
each sensor configuration explored in this section (TMI=TRMM Microwave Imager/AMSR,
GMI = GPM Microwave Imager, SNDA = AMSU-A+AMSU-B/MHS, SNDB = AMSU-
B/MHS). Channels not available on SSMIS are crossed through. Note that the 50-53 GHz
channels on F16 are vertically polarized while those on F17 are horizontally polarized.

SSMIS TMI GMI SNDA SNDB
10H 10H
10V 10V

19H 19H 19H
19V 19V 19V
22V 21V 23V 23V
37H 37H 37H
37V 37V 37V 31V

50V/H 50V
52V/H 52V
53V/H 53H

91H 85H 89H
91V 85V 89V 89 89

150H 166H 150/157 150/157
166V

183±6 183±7 183±7 183±7
183±3 183±3 183±3 183±3
183±1 183±1 183±1
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Table 2: Minimum detectable precipitation rate (mm hr −1) and percentage of precipitation
volume detected (in parentheses) for each sensor, surface type, and precipitation type in the
baseline configuration. The minimum detectable rate is defined as the mean rainfall rate at
the lowest Φ value where at least 50% of retrievals have R ≥ 0.01mm hr−1. Therefore, these
values should be doubled to represent the conditional mean precipitation rate in that interval.
Cells are left blank if no such value exists.

Surface Phase TMI GMI SNDA SNDB
Ocean All 0.23(88%) 0.28(87%) 0.97(56%) 2.22(18%)

Snow — — — —
Mix 1.06 (4%) 0.53(46%) —
Rain 0.19(91%) 0.23(89%) 0.91(58%) 2.12(20%)

Coast All — — 1.19 (2%) —
Snow — — — —
Mix — — — —
Rain — — 1.29 (2%) —

Bare All 1.11(42%) 0.40(68%) 0.26(80%) 0.28(75%)
Land Snow — 0.56 (5%) 0.24(36%) 0.25(30%)

Mix — 0.44(29%) 0.26(53%) 0.23(48%)
Rain 0.99(47%) 0.40(73%) 0.26(81%) 0.28(77%)

Snow All — 0.86 (3%) 0.89 (4%) —
Cover Snow — — 0.89 (1%) —

Mix — 0.81 (2%) 0.63(19%) 0.77 (9%)
Rain — 0.43(35%) 0.25(60%) 0.22(59%)
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Table 3: Same as Table 2, except that MERRA atmospheric state was substituted for clima-
tology as the a-priori atmospheric state and, for snow covered surfaces, a snow cover emissivity
database was substituted for TELSEM.

Surface Phase TMI GMI SNDA SNDB
Ocean All 0.22(89%) 0.22(90%) 0.25(85%) 0.63(61%)

Snow — — — —
Mix 0.85 (4%) 0.50(49%) 0.44(12%)
Rain 0.18(91%) 0.17(91%) 0.24(81%) 0.47(65%)

Coast All — 2.11(8%) 0.74(12%) —
Snow — — — —
Mix — — 0.96(13%) 0.81(9%)
Rain — — 0.58(42%) 0.41(59%)

Bare All 0.77(56%) 0.39(71%) 0.26(81%) 0.28(78%)
Land Snow 1.32 (1%) 0.50(10%) 0.25(38%) 0.25(36%)

Mix 1.83 (2%) 0.44(29%) 0.22(58%) 0.24(57%)
Rain 0.69(61%) 0.38(73%) 0.26(82%) 0.28(79%)

Snow All 1.41 (1%) 0.56(13%) 0.44(23%) 0.53(15%)
Cover Snow — 0.66 (1%) 0.60 (4%) 0.60 (1%)

Mix 1.03 (0%) 0.60(14%) 0.39(42%) 0.46(37%)
Rain 0.91(13%) 0.30(55%) 0.22(65%) 0.22(66%)
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