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Abstract—In the era of petascale computing, more scientific
applications are being deployed on leadership scale computing
platforms to enhance the scientific productivity. Many I/O tech-
niques have been designed to address the growing I/O bottleneck
on large-scale systems by handling massive scientific data in a
holistic manner. While such techniques have been leveraged in a
wide range of applications, they have not been shown as adequate
for many mission critical applications, particularly in data post-
processing stage. One of the examples is that some scientific
applications generate datasets composed of a vast amount of
small data elements that are organized along many spatial and
temporal dimensions but require sophisticated data analytics on
one or more dimensions. Including such dimensional knowledge
into data organization can be beneficial to the efficiency of
data post-processing, which is often missing from exiting I/O
techniques. In this study, we propose a novel I/O scheme
named STAR (Spatial and Temporal AggRegation) to enable
high performance data queries for scientific analytics. STAR
is able to dive into the massive data, identify the spatial and
temporal relationships among data variables, and accordingly
organize them into an optimized multi-dimensional data structure
before storing to the storage. This technique not only facilitates
the common access patterns of data analytics, but also further
reduces the application turnaround time. In particular, STAR is
able to enable efficient data queries along the time dimension, a
practice common in scientific analytics but not yet supported by
existing I/O techniques. In our case study with a critical climate
modeling application GEOS-5, the experimental results on Jaguar
supercomputer demonstrate an improvement up to 73 times for
the read performance compared to the original I/O method.

I. INTRODUCTION

High performance computing (HPC) today is seeing ex-

tremely high growth rates. From a single petaflop for Road-

Runner in 2008, the Cray Titan has achieved 17 PFlops in

2012. Modeling and simulation continue to play an increas-

ingly important role in pushing the technological envelope

in almost every scientific field. Plentiful compute power in

our leadership petascale machines allows us to model more

complex problems, such as the impact of global warming on

the planet [2], improvements to combustion technologies [6],

the development of nuclear fusion [5], among other high

impact sciences. The volume of generated data from the

applications, and the needs of the requisite analysis demand

a high performance I/O system. However, the growing gap

between computing power and I/O speed has become one

of the biggest challenges while HPC is evolving towards

exascale.

In the past few years, we have seen many scientific ap-

plications are being transmitted to large-scale systems by

adopting I/O solutions that are designed to leverage the parallel

storage system. Recently, emerging co-design paradigms are

bringing the computer scientists and domain scientists together

to design the computer hardware, software and algorithms that

accommodate the computational requirements of applications.

However, many applications have complex data character-

istics that are not well supported by existing parallel I/O

libraries. One particular challenging case is the applications

that generate a large number of small variables. In parallel,

each process only holds a very small portion of data for

each variable. It is challenging to provide a good I/O speed

for both writing and reading. Data aggregation is a common

practice to consolidate the small blocks into large writes that

are preferable on current storage system. Many studies [29],

[15], [35] have shown the effectiveness of such strategy.

However, existing aggregation techniques simply concatenate

data segments without identifying the relationship among the

variable data. The result is a data output that provides limited

read performance, consequently degrading the efficiency of

data post-processing. For example, [7] reported an overhead

nearly 90% from I/O on extreme scale visualization.

The complexity of data access patterns during data post-

processing further exacerbates the I/O problem. Our earlier

work [31], [32] contributed to understanding the common

spatial access patterns of data analytics, and proposed a data

layout technique to alleviate the I/O bottleneck. However,

they only examined the spatial dimension. Data analytics in

temporal dimension is also commonly performed in scientific

application, but poorly supported. Consider a scenario where

a climate scientist attempts to observe the temperature change

of a certain area during one week, which involves a spatial

subset of a variable spanning multiple time steps. The data

access pattern here is to read the temperature data along the978-1-4799-0218-7/13/$31.00 c© 2013 IEEE



time dimension over a small spatial region. Without careful

organization, a large number of seek operations are required to

retrieve data in both spatial and temporal dimensions, resulting

in degraded I/O performance.

To support fast queries in spatial and temporal dimensions,

we have proposed a lightweight I/O scheme called STAR

- Spatial and Temporal Aggregation. STAR identifies the

spatial and temporal relationships between data segments, and

produces a data format that can significantly improve read per-

formance for common access patterns of data analytics [31].

Built upon our analytical understanding of the optimized data

organization to accelerate spatial queries [32], STAR further

employs a temporal aggregation as a complementary tech-

nique. Such temporal aggregation opens up another horizon

for data consolidation and constructs an optimized data organi-

zation for efficient temporal data post-processing. While either

aggregation technique can work well by itself, their integration

into one holistic solution can help us find a balance between

them, thereby enabling even higher read performance for a

much larger variety of analytical and visualization operations.

To the best of our knowledge, this approach has not been

studied previously, but it provides an elegant mechanism for

data consolidation. The novelty of the approach, as well as

its potential for adoption, lies in its improvement in write

performance in addition to its read benefits.

STAR has been incorporated into the Adaptable I/O System

(ADIOS) [1], [20], a high-performance I/O middleware from

Oak Ridge National Laboratory (ORNL) for HPC applications.

Our initial motivating application, and thus the target of our

evaluation, is the NASA GEOS-5 [2] climate simulation. We

evaluate the advantages of STAR on the Jaguar [22] super-

computer at ORNL. Our results show a dramatic improvement

in both write performance (up to 11x improvement) and read

performance (up to 73x improvement) compared to the original

GEOS-5.

The rest of the paper is organized as follows. We first

discuss the motivation of this work in detail in Section II. We

then introduce the design of STAR in Section III. Section IV

validates our strategy through a comprehensive set of exper-

imental results. A literature review is provided in Section V.

We conclude the paper with future research directions in

Section VI.

II. MOTIVATION

The performance of I/O on large-scale systems relies on

a harmonious match between the capability of its underlying

storage system, the logical data organization, and the charac-

teristics of I/O patterns. The optimal I/O performance can be

expected when all of these factors conform with each other.

However, applications normally have different data organiza-

tion and I/O patterns than current mainstream magnetic disk-

based backend storage systems, therefore imposing substantial

challenges in achieving fast I/O. In this section, we present

a case study of a representative application GEOS-5, then

discuss three motivating I/O issues that drive this research.

A. GEOS-5: A Case Study of Data Organization and I/O
Patterns

Logically Contiguous (LC) is one of the common data

organization used by many scientific applications. One of such

examples is GEOS-5, the Goddard Earth Observing System

Model designed by NASA to simulate climate variability on

a wide range of time scales, from small scales of several

hours to long-term climate changes across multiple centuries.

In GEOS-5, data from each process after domain decompo-

sition is aggregated at a few aggregator processes for data

rearrangement before written to the storage. Such operations

are required to maintain the contiguity of data, which in turn

introduces overhead for data movement and memory copies.

Such overhead becomes significant when a large number of

variables are being written out. This pattern is also a common

case for scientific applications [31].
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Fig. 1: Data Movement and Organization of GEOS-5

In a GEOS-5 job with n processes, the data movement

to write a 3-D variable Var1 and a 2-D variable Var2 using

logically contiguous data organization is shown in Fig. 1(a).

A 2-D domain decomposition is performed on Var1 and Var2.

As we can see, a multidimensional variable is written out in

the unit of 2-D hyperslabs. One progress is designated as the

aggregator for one hyperslab. After the 2-D hyperslabs are

formed, one Root process receives them from the aggregators

according to their logical position in the global array. It then



stores them to the storage. From the movement of data, we

can observe a series of sequential memory and communication

operations that would impact the write performance. A large

number of many to many shuffling and many to one fan-in
communication operations are required for data transfer, which

degrade the communication and I/O performance and constrain

the application scalability. Such overhead grows linearly with

the increasing volume of the output variables, as well as the

number of processes.

Data analytics on GEOS-5 output data also suffers from the

low I/O speed. GEOS-5 generates one output file for each time

step. Each variable of that time step is organized contiguously

within the file, as shown in Fig. 1(b). For spatial analytics

within one time step, read performance suffers from frequent

seek operations when requested data subset does not match

with its organization on the disk [32]. Read performance is

even further degraded for temporal analytics, particularly when

a subset of data is requested. Because it is not only limited by

the seeks within one file, but also degraded by the overhead to

operate on multiple files. Even if the variable of all the time

steps are stored within one output file, many seek operations

across time steps are still inevitable.

B. Research Targets

From above discussion, we identified three crucial issues

that need to be addressed for this class of I/O inefficiency.

Deficiency of Current Aggregation Techniques: I/O chal-

lenge on large-scale system is particularly evident for appli-

cations with large amount of small outputs, such as GEOS-

5 [2] and FLASH [16]. As small I/O requests do not conform

to the characteristics of storage system, which currently is

only optimized for large sequential requests. To alleviate this

mismatch, it is a common practice to use some extra memory

as a temporary data buffer to consolidate small data blocks

into one large sequential block. However, the scope of such a

buffering strategy is typically limited to a single compute node

and thus not very effective when the data size per process is

rather small on a single node. For example, one time step of the

half degree simulation of GEOS-5 generates about 3.1GB data.

When the simulation is run with 4,096 processes, each process

contains only 0.78MB data for 265 variables as total. For a

compute node consisting of 16 cores, one node can only accu-

mulate a maximum of 12.5MB of data through shared memory.

To further merge data, inter-node aggregation is frequently

used to consolidate data across compute nodes. However, this

technique involves significant network communication costs.

Both effectiveness and scalability of such network dependent

techniques are limited when the simulation is run at scale.

An aggregation algorithm that can consolidate small data into

larger blocks efficiently with negligible overhead is desired.

Deficiency in Supporting Temporal Data Analytics: The

efficiency of data post-processing heavily relies on the read

performance from generated simulation data. In our previous

work [32], we studied how to organize multidimensional

scientific data into correct size on large-scale storage systems

to achieve the optimized read performance for common access
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Fig. 2: A 3-D Array and Common Access Patterns(k: fastest

dimension)

patterns of spatial data post-processing, including 1) reading an

arbitrary full variable; 2) reading an arbitrary full subvolume;

and 3) reading an arbitrary orthogonal full plane. Fig. 2

shows such patterns in a 3-D array. However, long-running

applications such as GEOS-5 normally consist of many time

steps. It is a common practice for scientists to explore the

physical change of simulated natural systems over a good

span of time. For writing, the expensive I/O costs leads to

significantly prolonged simulation execution time. Simulation

scientists often have to reduce the number of time steps to

maintain the overall cost. Such compromise limits the scope

of scientific exploration and in turn constrains the productivity.

Even after the desired number of time steps are written out,

the data from different time steps are stored in different files,

or in different blocks within the same file. Because the data

segments of different time steps are scattered, a large number

of read requests have to be issued to retrieve the data, leading

to degraded I/O performance. The performance is further

mortified if data blocks are stored in different files as metadata

overhead can become significant. This overhead grows linearly

with the increasing number of time steps, making the temporal

analysis of scientific data very inefficient.

Balance in Supporting Temporal and Spatial Analytics: In

[32] we investigated the optimized data organization on parallel

storage system to significantly improve read performance on a

multidimensional array. However, the study only examined the

physical simulation space but did not include the time axis. As

both temporal and spatial analytics share equal importance in

data analytics, a coordination mechanism is necessary to direct

how to organize data into correct chunk size in order to support

various data post-processing patterns in both dimensions.

To address the aforementioned I/O issues for applications

such as GEOS-5 and prepare them for next-generation com-

puting, we need to come up with a systematic I/O strategy that

can further consolidate data efficiently at scale, and provide

a data organization to support fast temporal and spatial data

post-processing.

III. STAR: DUO-AGGREGATION IN SPACE AND TIME

To address the I/O issues described in Section II, we

propose a lightweight I/O scheme that is able to identify the

spatial and temporal relationships between data segments, and

constructs the multidimensional data into an optimized layout



for efficient data analytics. The I/O scheme consists of two

essential algorithms aiming at low-overhead data consolidation

and fast post-processing: (1) Temporal Aggregation (TAR) that

aggregates data chunks along the time dimension and facilitate

analytics on a time series of data; (2) Spatial Aggregation

(SAR) that merges data in the simulation space and speedup

the analytics in the spatial dimension. Placement of the data

chunks on storage system for near-optimal system concur-

rency. To ensure the benefits of two aggregation strategies,

a coordination algorithm is also proposed to help organize

data blocks into an optimized layout, thereby enabling efficient

access for spatial and temporal analytics.

From a high level, STAR sits between the application and

the underlying storage system. It uses a chunk-based data

organization to enable high-performance parallel I/O flow for

both writing and reading [20]. Fig. 3 shows an example of

data movement using STAR to output a 2-D variable of 3 time

steps. The 2-D blocks of the variable are first merged into a

3-D block with time as a new dimension at each process. Then

SAR is performed among the processes to further merge data

chunks before they are pushed to storage. Such merging is

performed hierarchically to maintain the spatial locality of the

data points, while reducing the amount of write requests. The

placement of merged data chunk on the storage system follows

the Hilbert space filling curve [14], [31]. We describe STAR

in more detail in the rest of this section.
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Fig. 3: Data Movement Between 8 Processes on a 2-D Variable

(output from 3 timesteps)

A. Temporal Aggregation for Optimized Writing

As we discussed in Section II, current aggregation tech-

niques are limited by either the scope of the aggregation, or

the expensive aggregation overhead at scale. To accommodate

applications that have small output and a large number of

time steps, Temporal Aggregation (TAR) is designed to further

consolidate data chunks. As shown in Fig. 3, instead of

pushing the variable to storage at the end of each time step,

three 2-D blocks from different time steps are stored as a

contiguous memory chunk within the local memory of each

process. Logically three 2-D blocks are now stored as one 3-

D data chunk with time as the third dimension. This strategy

gives more opportunities for data to be further merged into

larger segments without introducing inter-process communica-

tion overhead. In this way, a large amount of small requests are

reduced to fewer large operations, which is preferable on large-

scale storage systems. Better scalability can also be expected

as no network communication is involved.

B. Temporal Aggregation for Efficient Temporal Analysis

The efficiency of data post-processing heavily relies on the

read performance of generated simulation data. A common

data layout technique is to organize the output of different

time steps in different locations within one or more files.

Fig. 4(a) gives an example of data output from 3 time steps

into 1 file. The data from different time steps of the same

variable are stored separately. Such layouts cannot efficiently

support data analytics along the time dimension. To retrieve

the data across multiple time steps, many small read requests

are required as well as many seek operations, which are

expensive on current magnetic disk-based storage system.

Moreover, because the distance of data at different time steps

can be large (proportional to the number of variables and

the size of variables), it cannot take advantage of prefetching

techniques that read additional data to avoid seeks. When a

large number of time steps are requested, the cost of seeks

can be significant and in turn degrades the performance. From

the storage system’s perspective, such organization can also be

inefficient. For example, assuming that the default stripe count

is 3 on a file system, the left part of Fig. 5 shows an example in

which one variable is stored separately for 6 time steps. For a

query that examines the data across 6 time steps, 6 requests are

made to retrieve data from the storage targets. Even though

such requests can be served in parallel, a large number of

requests with an increasing number of time steps and readers

cause contention and serialization at the storage targets. In

general, the cost of such access pattern can be expressed as:

Costorg = Nts × (TRequest + TSeek +
DataSizets

BWio
)× α (1)

, where Nts is the number of time steps of the query.

TRequest represents the overhead to initiate a read request to

a storage target. TSeek is the average cost of a seek operation.

V1 V2 V3 … V1 V2 V3 … V1 V2 V3 … 

T1 

V VV1 V2 V3 …V VV V1 V2 V3 … VV VV

T2 T3 

requested data seek operation extra retrieved data 

(a) Original Data Organization

T1-3 

V1 V2 V3 … VV1 

(b) New Data Organization with Temporal Aggregation

Fig. 4: Comparison of Data Organization (1 file)



DataSizets is the requested data size per time step. BWio

is the I/O bandwidth of the storage target. α represents the

interference factor of the system. As we can see, the cost of

performing data analytics in the time dimension grows linearly

with an increasing number of time steps. In particular when

the requested data is small, the majority of time will be spent

on initiating the I/O and performing seek operations.

By merging multiple time steps of data during writing, the

output of Temporal Aggregation becomes a contiguous data

segment from the merged time steps, as shown in Fig. 4(b),

a more preferable data organization on large-scale storage

systems. The benefit of such a data organization is that it

alleviates the contention at the storage backend and improves

the utilization of aggregated bandwidth. For a dtar degree

temporal aggregation, all of the data from Nts time steps

are merged. Therefore the number of I/O requests and seek

operations is reduced to Nts

dtar
. Reading from 6 time steps with

the degree of TAR at 3 is shown in the right part of Fig. 5.

As we can see, only two requests are required to retrieve data.

The number of requests can be further reduced with higher

degrees of TAR. The cost of a query in the time dimension

can be expressed as:

CostSTAR = (
Nts

dtar
×TRequest +TSeek +

Nts ∗DataSizets
BWio

)×α

(2)

Note that TAR does not impact the performance of read

operations for a specific time step because the organization at

each time step is not changed.

C. Spatial Aggregation with Hierarchical Topology

Based on our earlier study in [32], a Spatial Aggre-

gation (HSA) with hierarchical topology is used to merge

small data chunks in the spatial dimension. Instead of simply

concatenating small chunks, HSA aggregates data chunks in

a way that their spatial localities are preserved. For every

spatially adjacent 2n processes, an Aggregation Group (AG)

is formed. Within each AG, one process is selected as the

aggregator for one variable. If there is more than one variable

to be aggregated, the aggregator process will be selected in a

round-robin fashion within the same group for load balancing.

Fig. 6 shows an example of aggregating one variable from

16 processes in a 2-D space. For every spatially adjacent 4

processes, an AG is formed. Aggregation is performed among

the first level aggregators that hold all the data of their group
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members. A higher level of aggregation will be performed

among the lower level aggregators. After aggregation, only

the aggregators will be writing out the data. With HSA, the

amount of read requests and seek operations are reduced by

level× 2n times, where level is the level of HSA performed.
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Fig. 6: Hierarchical Spatial Aggregation

D. Coordination of Duo-aggregation

In [32] we have investigated the ideal data organization

for a multidimensional array on a specific system. For a

chunk-based data organization, we defined the optimized chunk
size, a.k.a the size of data chunk that delivers significant

improved read performance for common access patterns, as

OptSize = BWio × (CC + Ts), where BWi/o is the I/O

bandwidth of one storage node, Ts is the time unit for each

seek operation, and CC is the communication cost unit. Such

organization achieves a good balance between seek overhead

and processing overhead, leading to significantly improved

reading performance for common access patterns. The detail

of this algorithm can be found in [32]. Given the size of

an optimized chunk size OptSize, how much should we

aggregate in the spatial dimension and how much should we

aggregate in the temporal dimension? An algorithm is needed

to coordinate TAR and SAR to construct small variables

into the size of OptSize. The relationship between the two

aggregation algorithms can be expressed by the following

equation:

OptSize = dtar ×DataSizets × (2n)dsar , dtar ≤ Totalts (3)

,where OptSize is the optimized chunk size from our Opti-
mized Chunking algorithm [32], dtar is the degree of Temporal

Aggregation, DataSizets is the amount of data per time step

for each process, n is the number of domain decomposition,

and dsar is the level of Spatial Aggregation.

As an initial study, we balance the use of TAR and SAR in

the integrated scheme. By default, STAR enables one level

of SAR, that is dsar = 1. Under such circumstances, if

aggregating all the time steps is to result in a chunk size larger

than OptSize, the output will be divided into Totalts
dtar

times.

When OptSize is large enough to contain data from all the

time steps, that is Totalts ≤ dtar, dsar can be calculated as:

dsar = �log2n(
OptSize

Totalts ×DataSizets
)�,

= �log2n(
BWio × (CC + Ts)

Totalts ×DataSizets
)�

(4)

STAR allows the user to specify the amount of memory al-

located for STAR based on application and system parameters.

The calculations of dtar and dsar are performed automatically.

The coordination of TAR and SAR can be further tuned

by utilizing the provenance tracking presented in [8]. For



applications that perform temporal analytics more often, more

space can be allocated to the temporal aggregation and less

to the spatial aggregation, and vice versa for the applications

that focus more on spatial analysis.

E. STAR Implementation and Incorporation with GEOS-5

We have designed and implemented STAR first as part of the

Adaptable I/O System (ADIOS)[1], which has shown signif-

icant performance benefits for a number of applications [3],

[18], [20], [35], [24]. ADIOS applies the chunking strategy

for storing multidimensional datasets. We built STAR as a

component of ADIOS to leverage its penetration among the

existing scientific applications. ADIOS allows users to specify

the amount of memory for data buffering, we use such feature

to direct the coordination of TAR and SAR as we described

in the previous section.

As a case study, we have enabled STAR within GEOS-5

as an extension of its HISTORY I/O component, as shown

in Fig. 7. HISTORY component is in charge of the output

for diagnosis data. Currently it provides two types of output

format: the GrDAS flat binary data output and self-describing

NetCDF-4/HDF-5 file format. The output format of GEOS-5

is defined within its input configuration file, where users can

easily switch to STAR and leverage its high-performance I/O

for writing and reading.

GEOS-5 

HISTORY 

GrDAS NetCDF4/
HDF5 STAR 

General  
Circulation Model 

AGCM OGCM 

Atmosphere  
Analysis 

Fig. 7: GEOS-5 Model Architecture

IV. EXPERIMENTAL RESULTS

We have evaluated the performance of STAR on the

Jaguar [22] supercomputer at ORNL, one of the fastest super-

computers in the world. It is equipped with 18,688 compute

nodes. Each node contains one 16-core Opteron processor and

32GB memory. Jaguar is connected to Spider (an installation

of Lustre) as its storage subsystem. Spider has three partitions

named Widow 1, Widow 2 and Widow 3, respectively. In our

experiments, we use its Widow 2 partition which contains a

total of 336 storage targets (OSTs).

GEOS-5 is used as the test application in our evaluation

experiments. It is configured at a simulation resolution of 0.5-

degree unless otherwise stated. The output consists of 185

2-D variables and 80 3-D variables in total. The simulation

resolution is 576 × 361 with 72 vertical levels, which is

regridded to 48 levels during output. Therefore the size of

each 2-D variable is 576× 361, and size of each 3-D variable

is 576 × 361 × 48. Such configuration leads to the data

size per time step as 3.12GB. GEOS-5 applies 2-D domain

decomposition on the simulation space, leaving the vertical

resolution undivided. A 2-D variable with time as its third

dimension can be expressed as var(k, j, t), where k represents

the longitude and also is the fastest dimension. j represents the

latitude. A 3-D variable with time as its fourth dimension can

be expressed as var(k, j, i, t), where i represents the altitude,

a.k.a., the vertical levels.

Our evaluation mainly focuses on the read performance

of three different data organizations: the original GEOS-5

NetCDF-4 I/O method (NC4), the original ADIOS (ADIOS),

and ADIOS with STAR (STAR). We also include the write

performance evaluation to examine the performance impact

of STAR to the data output. For read evaluation, the object

variables are produced by 4,096 processes with 30 time steps.

STAR has 2-level of spatial aggregation and 30 time steps

temporal aggregation enabled during data output. Every test

case is ran 10 times and the average result is reported.

A. Planar Read of 1 Time Step

As we discussed in Section II-B, reading an arbitrary

orthogonal full 2-D plane from a 3-D variable is the most

common and very challenging access pattern in data post-

processing [31]. Therefore we mainly focused on this access

pattern for read performance evaluation along with other use

cases. In our first experiment, three 2-D slices, namely (k,

j), (j, i) and (k, i), are read from a 3-D variable on three

different dimensions. Note that temporal aggregation does not

change the read performance at each time step. Therefore

this experiment mainly reflects the effectiveness of spatial

aggregation. To better mimic the actual practices, we vary the

number of readers from 16 (the core count of one compute

node on Jaguar) to 512. These choices are made based on

the understanding that application scientists typically use 10%

or fewer processes for reading out of the original number of

writing processes. We evaluate the performance of reading

three 2-D slices from a 0.5-degree variable and a 0.25-degree

variable. The results are shown in Fig. 8.

As expected, intensive chunking on small variables causes

the performance of ADIOSto suffer due to a large number of

seek operations. Increasing the number of readers helps allevi-

ate such overhead through parallel reads. STAR demonstrates

performance improvement through its spatial aggregation algo-

rithm. By applying SAR, the number of seek/read operations

is reduced by a factor of 4 on each dimension. With 2 levels of

SAR enabled, such operations are reduced to only 1/16 of the

original ADIOS. Accordingly, fast reads are observed along

with good scalability. A similar trend is also seen with larger

variables produced by the 0.25-degree resolution simulation,

as shown in Fig. 8(b). Overall, STAR demonstrates 3 times

speedup compared to NC4, and 6 times speedup compared to

the original ADIOS.
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Fig. 8: Planar Read Performance Within 1 Time Step (Total

read time of 3 2-D planes on 3 dimensions)

B. Planar Read of 30 Time Steps

Examining the changing values of data variables over time

is a common pattern for data analytics. In this experiment,

we evaluate the performance of reading a 2-D plane from 3

dimensions of a 3-D variable across all 30 time steps. That

logically means that data is read in three kinds of subsets,

namely (k, j, t), (k, i, t) and (j, i, t). t equals to 30 in this

case. With STAR, 2-level spatial aggregation and 30-timestep

temporal aggregation are performed to the data. The original

GEOS-5 simulation produces one file per time step. Since

temporal aggregation does not push out data immediately at

the end of each time step, it reduces the number of output

files by its degree of aggregation, i.e., 30
N when it is performed

across N time steps. Therefore, only 1 output file is generated

for STAR.

The total read time and its breakdown to retrieve a 2-D slice

on three dimensions across 30 time steps together is shown in

Fig. 9. Each figure represents one dimension. As we can see,

the original NC4 data layout exhibits good performance in

the case of (k, j, t), for which data is contiguously stored. The

read time on the other two dimensions is more dominated by

I/O as the data contiguity is broken on the disk. Frequent read

requests along with seek operations are required to retrieve the

requested data. Metadata overhead also becomes significant,

particularly with larger number of readers. This is because

analyzing data across 30 time steps requires each process to

retrieve data from 30 files. It causes many file open and close

operations that are negatively impacting the read performance.

Contention in the network and at the storage targets further
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Fig. 9: Planar Read Performance of 30 Time Steps (Multiple

Files, 0.5-degree variables)

increase the cost at larger reader counts. The same metadata

overhead is observed for the original ADIOS, in addition

to its performance degradation from seeking through the

small data chunks at each time step. STAR demonstrates

significant performance benefits in this test case. Because it

only generates one output file, its performance is less affected

by such metadata operations. More importantly, unlike the

cases of NC4 in which the majority of the time is spent

on reading the data, STAR demonstrates very efficient read

operations with temporal aggregation. Overall, STAR achieves

the best performance on three dimensions. A maximum of

39× speedup is achieved by STAR compared to the NetCDF4

method in the original GEOS-5.

There are also cases where applications generate one single

file by appending the time step outputs. In this case, the

overheads of metadata operations are the same for different

data organizations. Thus the performance difference mainly

comes from the actual reading of data. To represent such

scenario, we manually set the GEOS-5 to store data from

all time steps in one file for NC4 and the original ADIOS.

The performance evaluation is performed on the 0.25-degree



variables. Fig. 10 shows the experimental results. As we can

see, STAR again achieves the best performance through its

duo-aggregation algorithms . A maximum of 64× speedup is

achieved compared to NC4.

C. Read Performance of 1-D Subset on 30 Time Steps

Another common data pattern for analytics is to read a 1-D

subset of variables across time steps. Such access patterns can

be expressed as reading a subset of the variable at (k, t), where

j and i are constant, or reading a subset at (j, t), where k and

i are constant. Data variables of GEOS-5 only have 48 data

points in the i dimension, and reading in the (i, t) dimension

is also rare in practice; therefore we do not include it in this

test case. Fig. 11 shows the results for reading 1-D subsets

from a 3-D variable. As we can see, while the performance of

NC4 and ADIOS suffers from storage contention and a large

number of read requests, STAR demonstrates a significantly

improved performance in both cases. A maximum of 73×
speedup is achieved compared to NC4.
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Fig. 11: 1-D Read Performance of 30 Time Steps (1 file ,

0.25-degree variables)

D. Write Performance of STAR with Duo-Aggregation

The aggregation algorithms potentially could negatively

impact the write performance due to network communication

and memory operations. However, we also expect such cost

can be compensated by the intensive data buffering through

temporal aggregation. So we evaluate the write performance

of STAR when both TAR and SAR are enabled. In this

experiment, we fix the degree of TAR to 30 time steps. Base

on Equation 4, this leads to 1 level of SAR for 512 and 1,024

processes, and 2 level of SAR for the rest of test cases. We

compare the write performance of STAR (duo-aggregation)

with NC4, ADIOS, and STAR with only TAR enabled. The

write performance is shown in Fig. 12.

 0

 200

 400

 600

 800

 1000

 1200

512 1024 2048 4096 8192

E
la

p
se

d
 T

im
e 

(s
ec

)

Number of Writers

NC4
ADIOS

TAR
STAR

Fig. 12: Data Output Elapse Time with Duo-aggregation (30

time steps, Temporal Aggregation=30 time steps)

As shown in Fig. 12, STAR achieves the best write per-

formance compared to NC4 and the original ADIOS. The

I/O time is further reduced when both TAR and SAR are

enabled. This is because SAR reduces the number of write

requests by four-fold for 2-D domain decomposition, leading

to further reduced contention at the storage. More importantly,

good scalability is demonstrates by using such strategy. Even

with 8,192 processes, we observe a performance improvement.

This is because the number of write processes is reduced to

512 by using a 2-level SAR. A maximum of 11× speedup is

achieved compared to NC4, and the speedup is only 4× with

only TAR.

V. RELATED WORK

Improving parallel I/O performance on large-scale sys-

tem has been an active research topic in the High Perfor-

mance Computing community. Early efforts such as two-phase

I/O [29], split-phase collective I/O [11] and disk-directed

I/O [15] tried to improve I/O performance through data buffer-

ing and scheduling techniques. Yu et al. [34] exploited the file

joining on the Lustre file system and proposed a hierarchical

striping strategy to fully leverage the aggregated bandwidth

from storage. In [9] and [4], subfiling was also utilized to

harness the I/O bandwidth. A number of I/O middleware

libraries were designed to alleviate the I/O cost for large-scale

scientific applications, such as NetCDF-4 [33], HDF-5 [30],

[21], PnetCDF [17] and ADIOS [1]. Recently, staging [35]

has been one of the major efforts to further improve I/O

performance. It aggregates the data at a staging area, so I/O

can be performed asynchronously with the progress of the

application.

The performance of data read operations has gained increas-

ing attention recently. Childs et al. [7] reported that 90% of

time is spent on I/O in a data visualization workflow. To solve

such issue, GFDL [12] has to store multiple copies of the data

with a different dimension as the primary dimension, which

requires extra I/O time and disk space. To understand the
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Fig. 10: Planar Read Performance of 30 Time Steps (1 file, 0.25-degree variables)

bottlenecks of reading, Lofstead et al. evaluated and discussed

the performance of many of the reading patterns for extreme

scale science applications [19].

A line of work studied the efficient data reorganization

for multidimensional data structure. Sarawagi et al. [25]

categorized the strategies for efficient organization of large

multidimensional arrays into four classes, namely chunking,

reordering, redundancy, and partitioning. Chunking has been

commonly recognized as an efficient data layout for mul-

tidimensional arrays because of its capability of alleviating

dimension dependency [28]. [31] studied the placement of

data chunks and improved read performance for scientific

applications running on large scale systems. [10] and [13]

examined different caching algorithm for chunking. Schlosser

et al [27] explored the chunk placement strategy at the disk

level. Sawires et al [26] proposed a multilevel chunking

strategy to further improve the performance for range queries

on a multidimensional array. Otoo et al [23] mathematically

calculated the optimal size of subchunks from a combination

of system parameters. One of our previous efforts [32] took a

similar approach and studied the optimized chunking on large-

scale systems. However, all of these works did not take into

consideration of storing small multidimensional variables from

a large number of processes. Nor did they examine the data

organization for reading on time dimension.

VI. CONCLUSION

To speedup data output of the applications with large

amount of small outputs and enable fast temporal and spatial

data analytics, we propose a lightweight I/O scheme named

STAR - Spatial and Temporal AggRegation. STAR consists

of two data reorganization strategies and one coordination

algorithm. Temporal Aggregation is designed to open up

another dimension to further aggregate data blocks. This

novel strategy also provides an efficient read performance for

analytics with a temporal series of data. A spatial aggregation

with a hierarchical topology is used to optimize data organi-

zation for spatial data analytics. The coordination of spatial

aggregation and temporal aggregation is carefully designed

to conform to our study on optimized data organization

on large-scale storage systems. In addition to the reading

performance benefit, the lightweight aggregation algorithms

are also beneficial to the write performance through forming

large data output with negligible overhead. STAR has been

designed and implemented within ADIOS I/O middleware

from ORNL so it can be easily adopted by any application. As

a case study, we have enabled STAR for the Goddard Earth

Observing System Model (GEOS-5) from NASA by extending

its diagnosis data I/O component. With a much simplified

I/O flow and a system-friendly data organization, an efficient

I/O speed is demonstrated for both writing and reading. Our

experimental results on the Jaguar supercomputer at ORNL

have demonstrated a maximum of 11× speedup for the write

performance, and 73× speedup for the performance of data

post-processing.
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