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ABSTRACT 
This paper presents a model-based anomaly detection 

architecture designed for analyzing streaming transient aircraft 
engine measurement data. The technique calculates and 
monitors residuals between sensed engine outputs and model 
predicted outputs for anomaly detection purposes. Pivotal to the 
performance of this technique is the ability to construct a model 
that accurately reflects the nominal operating performance of 
the engine. The dynamic model applied in the architecture is a 
piecewise linear design comprising steady-state trim points and 
dynamic state space matrices. A simple curve-fitting technique 
for updating the model trim point information based on steady-
state information extracted from available nominal engine 
measurement data is presented. Results from the application of 
the model-based approach for processing actual engine test data 
are shown. These include both nominal fault-free test case data 
and seeded fault test case data. The results indicate that the 
updates applied to improve the model trim point information 
also improve anomaly detection performance. 
Recommendations for follow-on enhancements to the technique 
are also presented and discussed. 

NOMENCLATURE 
C-MAPSS40k Commercial modular aero-propulsion system 

simulation, 40k 
FDI fault detection and isolation 
FOQA flight operations quality assurance 
PBM performance baseline model 
PWLM piecewise linear model 
RTSTM real-time self-tuning model 
WSSR weighted sum of squared residuals 
VIPR vehicle integrated propulsion research 

INTRODUCTION 
Aircraft operators rely on engine condition monitoring and 

gas path fault diagnostics to help ensure the safe and efficient 
operation of their gas turbine engine assets. A typical 

architecture depicting this functionality is shown in Fig. 1. As 
shown, this architecture includes both on-board and ground-
based functionality. On-board fault detection and isolation 
(FDI) logic continuously monitors control sensors and 
actuators. Additionally, automated data acquisition logic is 
applied to collect in-flight engine measurements. These engine 
measurements, along with any identified engine fault 
conditions identified by the on-board FDI logic, are transmitted 
off-board to fleet-wide ground stations that apply additional 
monitoring functionality. Conventionally, ground-based gas 
path diagnostic approaches are designed to analyze steady-state 
snapshot engine measurement data collected at a limited 
number of discrete operating points each flight. Early diagnosis 
of incipient fault conditions with minimal latency is 
challenging. However, advances in on-board processing and 
flight data recording capabilities are enabling the acquisition of 
full-flight streaming, or continuous, measurement data. This 
includes flight operation quality assurance (FOQA) and flight 
data monitoring programs implemented by airlines [1,2]. Such 
data span a broad range of aircraft flight conditions including 
transient engine operating scenarios. An example of aircraft 
engine flight data is shown in Fig. 2. This figure shows full-
flight data, which contains considerable transients, along with 
notional conventional snapshot measurement points. While this 
vastly expanded quantity of engine data presents new 
diagnostic opportunities, it also necessitates the development of 
new analysis approaches that account for the expanded quantity 
and dynamic content of the data. As the volume and availability 
of flight datasets continues to increase, the future emphasis on 
using these databases for performance and condition 
monitoring purposes is also expected to grow. 

In response to the need for new methods for analyzing 
aircraft flight data for health monitoring purposes, several 
research efforts in this area have been conducted within the 
aviation community. Chu and Gorinevsky have presented work 
on aircraft anomaly detection techniques applied for processing 
FOQA data [3,4], and Das et al have presented a data driven 
approach for anomaly detection in flight recorder data [5]. 
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Figure 1. Conventional aircraft engine condition monitoring 
and gas path fault diagnostic architecture. 

Merrington et al applied analytical redundancy methods to 
process aircraft gas turbine engine transient measurement data 
[6], and Kerr et al [7], Dewallef et al [8], and Borguet et al [9] 
have each proposed Kalman filter-based approaches for the on-
line processing of aircraft engine measurement data for 
diagnostic purposes. 

Recently, NASA developed a unified approach for 
processing full-flight streaming engine data for performance 
estimation and fault diagnostic purposes [10,11]. This model-
based approach is suitable for either post-flight or on-board 
processing of acquired engine flight data. Simulation studies 
have found this architecture to hold promise for analyzing 
streaming flight data either in real-time or post-flight. However, 
key to the performance of this or any other model-based 
diagnostic technique is having a model that accurately reflects 
the nominal operating performance of the actual engine. Often, 
available engine models do not match the actual engine well 
due to modeling inaccuracies, or unaccounted enhancements, or 
configuration changes an engine design may undergo over its 
lifecycle. These issues can negatively impact the performance 
of model-based diagnostic approaches. In Ref. [12] a hybrid 
modeling approach is applied combining analytical and 
empirical modeling to achieve improved model-to-engine 
matching. The empirical component of this hybrid model is 
based on a neural network trained to learn observed residuals 
between the engine and the model based on available engine 
measurement data. This has been shown to improve model-to-
engine matching, but only addresses the portion of the engine 
operating envelope from which measurement data is available 
for training the neural network. The study presented in this 
paper addresses engine-to-model inaccuracies by applying a 
simple curve fitting technique for updating the model based on 
steady-state information extracted from nominal engine 
measurement data. Furthermore, the identified curve fits can be  

Denotes notional “snapshot” measurement point
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Figure 2. Example commercial aircraft engine flight data. 
 
readily extended (extrapolated) to additional portions of the 
operating envelope beyond that from which measurement data 
is available. This technique has been found to improve overall 
model accuracy and enable successful anomaly detection when 
implemented within the NASA-developed model-based 
diagnostic architecture. 

The paper is organized as follows. First, the NASA-
developed model-based architecture for integrated aircraft 
engine performance estimation and fault diagnostics is 
presented. This is followed by a description of model 
enhancements made to improve engine-to-model matching 
based on available nominal engine measurement data. Next, the 
architecture is applied to analyze actual engine test data 
including both nominal and faulty engine operating scenarios. 
The architecture’s anomaly detection performance with and 
without the model enhancements are presented and compared. 
This is followed by a discussion of potential follow-on work 
and conclusions. 

MODEL-BASED ARCHITECTURE FOR PROCESSING 
STREAMING AIRCRAFT ENGINE MEASUREMENT 
DATA 

The NASA-developed model-based architecture for 
integrated aircraft engine performance estimation and fault 
diagnostics is shown in Fig. 3. It contains two models designed 
to operate in parallel—a real-time self-tuning model (RTSTM) 
and a performance baseline model (PBM). The RTSTM is a 
self-tuning engine model based on a piecewise linear Kalman 
filter. It self-tunes to account for performance deterioration that 
the engine may incur over time with usage. The RTSTM is 
capable of providing real-time estimates of measured and 
unmeasured engine performance parameters for condition 
monitoring purposes. The PBM is designed to provide a 
reference baseline of recent past engine performance. It 
incorporates a version of the same piecewise linear model used 
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Figure 3. Performance trend monitoring and gas path fault 
diagnostic architecture 
 
in implementing the RTSTM. The PBM accepts inputs 
consisting of actuator commands, u, and a parameter 
representative of engine power, yr, such as fan speed or engine 
pressure ratio. The PBM is driven to the power reference 
parameter to prevent the model from inadvertently diverging 
from the engine. In addition to receiving continuous inputs 
from the engine, the model also automatically receives 
periodically updated tuning parameter estimates from the 
RTSTM. This periodic update of the tuning parameters allows 
the PBM to adapt to normal performance deterioration that 
occurs gradually over time, but prevents the model from 
immediately adapting to rapid performance shifts caused by 
faults. The frequency of the periodic tuning parameter update is 
user-specified, but is recommended to be on the order of once 
per flight. Sensed engine outputs, y, and PBM predicted engine 
outputs, ŷ , are compared, and the resulting residual vector, y~ , 
is analyzed for diagnostic purposes. Small residuals indicate 
that the engine is operating nominally, whereas large residuals 
indicate anomalous engine behavior.  

The subsections below will first discuss the construction of 
a piecewise linear model used to implement the RTSTM and 
PBM, followed by a description of the anomaly detection logic 
applied within the performance trend monitoring and gas path 
diagnostic architecture. This is followed by a description of the 
enhancements made to help improve model-to-engine 
matching.   
 
Piecewise Linear Model Implementation 

An aircraft engine piecewise linear model (PWLM) is 
created from an available transient nonlinear engine model, or 
cycle deck. Linear state space system point models are 
extracted from the nonlinear model and then combined and 
scheduled for interpolation based on engine operating point. In 
this fashion the PWLM is able to approximate the transient full-
envelope nonlinear model response, while offering advantages 
over the more complex nonlinear model. A PWLM is usually 
less computationally intensive than its nonlinear equivalent, 
and the simpler structure allows for straightforward design of 
linear estimation approaches such as a Kalman filter. A detailed 
description of PWLM construction can be found in Ref. [13], 
and is summarized below. 

The nonlinear model of an aircraft engine is assumed to be 
represented by the following equations 
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where x and u represent the vectors of engine state variables 
and control command inputs, respectively. The vector h 
represents health parameters, such as efficiency or flow 
capacity, reflective of performance deterioration within the 
major rotating modules of the engine.  For given input values, 
the nonlinear functions f and g generate the vectors of state 
derivatives x� , and sensed engine outputs y, respectively. By 
linearizing the engine model at a given operating point, the 
following state-space equations can be obtained: 
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Here, A, B, C, D, L, and M are the state-space matrices 
reflecting system dynamics.  The trim vectors, denoted by the 
subscript “trim,” reflect the values of the state variables, 
commands, and sensed outputs when the model is at steady-
state (i.e., x�  = 0) at the given operating point. Collectively, the 
trim vectors define what is referred to as a “trim point.” The 
vector href represents a reference health condition specified by 
the system designer.  In Eq. (2), parameter deviations relative to 
trim or reference conditions are denoted by the delta symbol 
(�). A block diagram illustration of the linear state space model 
implementation at a single operating point is shown in Fig. 4. 
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Figure 4. Linear state-space model implementation 
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The initial step in creating this PWLM is the computation 
of linear state-space models from the nonlinear model at 
multiple operating points.  These operating points serve as the 
interpolation scheduling parameters in the piecewise linear 
model. Figure 5 shows a notional three-dimensional example of 
operating point specification using altitude, Mach number, and 
power setting as the scheduling parameters.  The number of 
operating points and spacing between operating points, which 
does not have to be uniform, are design decisions left to the end 
user.     

Power
Reference
Parameter

Altitude

Mach

� denotes location in 3-dimensional 
space defining an operating point

 

Figure 5. Example of three-dimensional piecewise linear 
model operating point scheduling 
 
Anomaly Detection 

Within the model-based diagnostic architecture, anomaly 
detection is performed by monitoring residuals between sensed 
engine outputs and those predicted by the performance baseline 
model (See Fig. 3). If no fault is present, the engine and PBM 
are expected to be in good agreement, in which case the 
residuals will be small. Conversely, in the event of a system 
fault impacting engine performance, the engine and PBM will 
diverge and the residuals will increase. Anomaly detection is 
performed by monitoring a weighted sum of squared residuals 
(WSSR), which is calculated as shown in Eq. (3) 
 

yRyT ~~ 1WSSR ��  (3) 
 
Here, y~  is the vector of measurement residuals reflecting the 
difference between sensed engine outputs and PBM produced 
outputs and R is the sensor measurement covariance matrix. If 
necessary, the WSSR signal can be filtered to smooth the signal 
and eliminate any short-term outliers contained therein. The 
WSSR signal is compared against a defined threshold, and if 
that threshold is exceeded an anomaly is declared.  

 
Re-trimming of Piecewise Linear Model  

As mentioned previously, a model’s ability to accurately 
reflect the sensed outputs of the actual engine is key in enabling 
effective model-based diagnostic methods based on that model. 
The step taken in this study to improve engine-to-model steady-

state matching is to “re-trim” the PWLM based on nominal 
steady-state engine data extracted from engine flight data or test 
cell data. Re-trimming the model entails adjusting the utrim and 
ytrim vectors along with any sensed elements of the xtrim vector 
shown in Eq. (2) to match the acquired steady-state data. The 
re-trimming process is envisioned to occur at relatively 
infrequent intervals, for example, when an engine first enters 
into service or undergoes a major overhaul. Additionally, for 
on-board applications this is not intended to occur on-board the 
aircraft. Rather, the intent is for the model to be re-trimmed off-
line (off-board), and then loaded into an on-board processor. 
The steps in the re-trimming process include identifying engine 
steady-state operating points over a range of power settings, 
applying a polynomial curve fit to that data, and adjusting the 
model trim vector information to match the polynomial curve 
fit. Each step is further discussed below. 

 
Identification of engine steady-state operating 

points. In this study, steady-state engine operating 
performance is approximated based on streaming engine 
measurement data acquired under known nominal (fault-free) 
conditions from a single engine. A fixed-time length sliding 
window approach is applied to analyze the data and determine 
whether each individual sample of measurement data is 
reflective of steady-state engine operation. Several criteria must 
be met to satisfy the steady-state assumption. First, engine 
operating conditions (e.g., pressure altitude and Mach number) 
must remain within defined ranges over the past fixed-time 
window. Second, the standard deviation of select engine 
measurement parameters in the window must be below defined 
thresholds. Finally, the absolute difference between the current 
sample and the mean within the window for select engine 
measurement parameters must be below defined thresholds. If 
all of these criteria are met, the engine is assumed to be at 
steady-state and the current vector of measurement data is 
archived for subsequent use in obtaining the polynomial curve 
fits that will be used for re-trimming the model. The sliding 
window is then advanced forward one time step and the process 
is repeated on the next data point.  

 
Polynomial curve fit. Given the acquired engine steady-

state data within a fixed pressure altitude and Mach number 
range, the next step is to apply a curve fit through each 
measured parameter plotted against the engine power reference 
parameter used in the PWLM. This power reference parameter 
is typically a parameter such as corrected fan speed or engine 
pressure ratio. At any arbitrary steady-state sample k, an nth 
order polynomial equation expressing a measured engine 
output, yi, as a function of the engine power reference 
parameter, yr, can be written as  
 

n
krnikrikriiki ypypyppy ,,,,,,,, ����� �2

210  (4) 
 
where pi,0, pi,1, pi,2, …, pi,n are the polynomial coefficients. 
Assuming N steady-state samples have been identified, the 
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polynomial equations for these samples can be concatenated as 
shown in Eq. (5) 
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Applying algebraic manipulation, Eq. (5) can be written as 
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where Yi is an N�1 vector of steady-state measurements for 
parameter yi, Pi is an nx1 vector of polynomial coefficients, and 
Hr is an N�n matrix relating Pi to Yi. An estimate of the vector 
of polynomial coefficients, iP̂ , can be obtained applying a least 
squares solution as shown in Eq. (7) 
 

� � i
T
rr

T
ri YHHHP 1ˆ �

�  (7) 
 

A notional illustration of a polynomial curve fit through 
acquired steady-state data is shown in Fig. 6. Here, a single 
engine output, yi, is plotted against the power reference 
parameter, yr. The red line represents the yi vs. yr curve based 
on trim point information contained in the original piecewise 
linear model, the black “x’s” represent steady-state operating 
points based on actual sensed engine data, and the blue curve is 
the polynomial curve fit through those steady-state points. Note 
that the polynomial curve fit provides a better representation of 
actual engine performance compared to that of the original 
model. It is noted that Eqs. (4)-(7) only illustrate the 
polynomial curve fitting process for a single element (i.e., the 
ith element) of the sensed measurement trim vector, ytrim. 
Although not shown, an analogous set of equations are also 
produced and applied in order to construct unique curve fits for 
each additional element of the piecewise linear model ytrim 
vector, each element of the utrim vector, and any sensed 
elements of the xtrim vector. Furthermore, for an individual 
actuator command or state variable, the yi information shown in 
Eqs. (4)-(7) is replaced with ui or xi, respectively. 

A necessity for constructing accurate curve fits is the need 
for a suitable amount of steady-state data points distributed 
across a broad range of engine power settings. If most of the 
steady-state data points are concentrated in a narrow yr range it 
will be difficult to obtain curve fits that reflect the true 
performance of the engine. 

 

 
Figure 6. Illustration of steady-state data polynomial curve 
fit 
 

Adjusting model trim points. Once polynomial curve 
fits have been identified for each parameter, that information is 
used to adjust, or “re-trim,” the piecewise linear model trim 
points. This is illustrated in Fig. 7.  Here, the solid red and blue 
lines represent the original and the re-trimmed yi vs. yr curves 
for the given altitude and Mach number range where the 
steady-state data points were obtained. The lighter dashed lines 
represent curves at additional altitude and Mach numbers. If 
sufficient steady-state data is available, curve fits may be 
performed at different altitude and Mach number combinations. 
However, for those altitude and Mach numbers where steady-
state data is limited or unavailable, yi vs. yr curves can be 
approximated based on a curve fit performed at another 
operating point. This is done by first applying a least squares 
calculation to determine a scale factor and offset reflecting the 
separation between two yi vs. yr curves in the original model—
specifically, the separation between a curve where steady-state 
data is available (solid red line in Fig. 7) and a second curve at 
the altitude and Mach number where steady-state data is 
unavailable (a dashed red line in Fig. 7). Next, the obtained 
scale factor and offset is applied to adjust the re-trimmed model 
yi vs. yr curve (solid blue line in Fig. 7) by a proportionate 
amount, thus enabling the calculation of a re-trimmed model yi 
vs. yr curve at the corresponding altitude and Mach number (a 
dashed blue line in Fig. 7). This process is repeated to calculate 
and apply a unique scale factor and offset adjustment for each yi 
vs. yr curve at each altitude and Mach number combination in 
the model.  
 

yr

yi
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Figure 7. Illustration of re-trimmed piecewise linear model 

APPLICATION EXAMPLE 
In this section, an example application of the model-based 

anomaly detection architecture processing actual engine test 
data is presented. This example demonstrates the processing of 
data acquired during the NASA Vehicle Integrated Propulsion 
Research (VIPR) test program—a ground test conducted at 
NASA Dryden Flight Research Center and the Edwards Air 
Force Base on a C-17 aircraft equipped with Pratt & Whitney 
F117 turbofan engines. An objective of the VIPR program is to 
develop and demonstrate engine health management 
technologies including advanced sensors and diagnostic 
algorithms. The VIPR program included both nominal (fault-
free) and non-damaging seeded fault engine test scenarios.  

The engine gas path sensor measurements and actuator 
commands acquired during the VIPR testing are shown in Table 
1 and Table 2, respectively. The model-based anomaly 
detection architecture, shown in Fig. 3, was designed and 
applied for processing this data. This architecture was 
developed using the NASA C-MAPSS40k turbofan engine 
model [14]. While of the same thrust category as the Pratt & 
Whitney F117 turbofan engines used in the VIPR test, 
C-MAPSS40k is not the same engine and therefore notable 
engine-to-model mismatches exist. As such, updating of the 
model is necessary to achieve suitable matching with the 
engines. The subsections below will first discuss re-trimming of 
the piecewise linear model and then show anomaly detection 
and RTSTM Kalman filter tuning parameter estimation results 
obtained by updating the model.  
 

Table 1. Gas Path Sensor Measurements 
Symbol Description 

N1 fan speed 
N2 core speed 
Ps3 high pressure compressor exit static pressure 
T35 high pressure compressor exit total temperature 
P5 low pressure turbine exit total pressure 
T5 low pressure turbine exit total temperature 

 

Table 2. Actuator Commands 
Symbol Description 

Wf fuel flow 
VSV variable stator vanes 

BLD25 station 2.5 bleed valve 
BLD14 14th stage bleed valve 

 
Re-trimming of Piecewise Linear Model  

The first step in re-trimming the model is to identify 
steady-state data points within the available nominal (fault-free) 
data. During the VIPR test, several fault-free “baseline” runs 
were conducted where the engine was operated over a range of 
power settings spanning idle to max power. Figure 8 shows the 
time history of one of the engine gas path measurement 
parameters acquired during a VIPR test baseline run. In this 
figure, and all other figures in this section of the paper, units 
have been omitted and y-axis parameter names are simply 
referred to as yi to protect the proprietary nature of the data. As 
shown in Fig. 8, the baseline run consists of a series of steady-
state stair steps in power settings starting at idle, stepping up to 
max power, and then stepping back down to idle. The steady-
state stair steps are then followed by a gradual 
acceleration/deceleration (idle-max-idle), and then a rapid 
acceleration/deceleration (idle-max-idle). In the figure, the blue 
line represents the acquired raw data and the red dots represent 
identified steady-state data points. Here, the steady-state criteria 
was defined as a data point where the standard deviation of 
both N1 and N2 is below 25 rpm based on a 100 second 
window of past data and the absolute residual between the 
current data point and the mean value over past 100 second 
window of N1 and N2 is less than 20 rpm. If these criteria are 
all met the engine is assumed to be at steady-state. 
 

 
Figure 8. Example of steady-state data points identified 
within a baseline run 
 

Figures 9 and 10 show example steady-state yi vs. yr curves 
for two of the acquired engine gas path parameters. Here, 
corrected fan speed is used as the power reference parameter, 
yr, and the yi parameters are labeled as ya and yb in Figs. 9 and 
10, respectively. Each figure shows the original C-MAPSS40k 
generated curves (red line), steady-state data points identified 
from VIPR nominal baseline runs (black “X’s”), and a fourth  

Time

yi

 

 

Raw data
Steady-state data point
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Figure 9. Original model and polynomial curve fit through 
steady-state data (parameter ya) 
 

 
Figure 10. Original model and polynomial curve fit through 
steady-state data (parameter yb) 
 
order polynomial curve fit through the acquired steady-state 
data points (blue line). The order of this curve fit was 
determined manually through trial and error. As seen in these 
figures, the original piecewise linear model based on 
C-MAPSS40k does not match the steady-state performance of 
the actual engine. However, the polynomial curve fit is able to 
match the steady-state data points fairly well. 

Since the VIPR test was a ground test all of the data was 
acquired at zero Mach and approximately the same pressure 
altitude. Figures 11 and 12 illustrate the extension of the data 
collected at this operating point to other altitude and Mach 
numbers for the purpose of re-trimming the entire piecewise 
linear model. All parameters are shown as corrected 
parameters. Since the VIPR data exhibited no Mach number 
variation and limited pressure altitude variation, it was not 
possible to validate whether the re-trimmed model accurately 
matched the actual engine over the entire operating envelope. 
However, this will be assessed in future studies focused on the 
processing of actual engine flight data spanning a broad 
operating range of altitudes and Mach numbers.  
 

 
Figure 11. Original and re-trimmed PWLM (parameter ya) 
 
 

 
Figure 12. Original and re-trimmed PWLM (parameter yb) 
 
Residual Calculation 

The model-based anomaly detection architecture was 
updated to use the re-trimmed piecewise linear model design. 
Then, both nominal and faulty data acquired during the VIPR 
testing was supplied as input to the architecture. Figures 13 and 
14 show the benefit of using the re-trimmed piecewise linear 
model compared to the original piecewise linear model for 
processing nominal fault-free data acquired during two of the 
VIPR baseline runs. The top half of each figure shows 
information for one of the engine sensed gas path parameters, 
yi, including the actual engine measurement (green line), the 
estimated value produced by the original PBM model (red line), 
and the estimated value produced by the re-trimmed PBM 
model (blue line). Note that the engine measurement (green 
line) is partially obscured by the re-trimmed PBM (blue line) in 
these plots. The bottom half of each figure shows the yi residual 
between the engine measurement and the original PBM (red 
line) and the re-trimmed PBM (blue line). For both of the 
baseline runs, the re-trimmed model provides much better 
matching with the actual engine, which is desired in these cases 
where no fault is present. Conversely, the original model 
exhibits a large amount of mismatch, which limits its utility for 
fault detection purposes.  
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Figure 13. Nominal baseline #1 
 

 
Figure 14. Nominal baseline #2 
 

 
Figure 15. Station 2.5 bleed valve fault 
 

 
Figure 16. 14th stage bleed valve fault 
 

Figures 15 and 16 show residual results obtained by 
processing two of the bleed fault cases conducted during the 
VIPR testing. This includes a station 2.5 bleed fault case (Fig. 
15) and a 14th stage bleed fault case (Fig. 16). In each case the 
bleed valves were failed open. The time of fault insertion is 
denoted by the red vertical arrows in each figure. Once again, 
the top half of each figure shows the engine measurement, the 
original model PBM produced estimate, and the re-trimmed 
PBM model produced estimate of yi while the bottom half of 
each figure shows the residual information for the original 
model and the re-trimmed model. In cases such as these where 
a fault is present, it is necessary for the sensed engine outputs 
and the PBM produced estimated outputs to diverge in order for 
the anomaly to be readily detectable. While the original model 
still exhibits large residuals in these cases we can observe that 
the re-trimmed model also diverges from the measured engine 
output, albeit to a lesser extent. For the station 2.5 bleed fault, 
shown in Fig. 15, the engine and the PBM agree well at lower 
power conditions and do not noticeably diverge until the engine 
reaches higher power settings. This is expected as this is a 
modulated bleed valve and it is normally scheduled open at low 
power settings and modulates closed as the engine moves to 
higher power settings. As such, the engine and PBM agree at 
lower power settings and begin to diverge as the engine 
increases in power. For the 14th stage bleed fault, shown in Fig. 
16, the valve is normally closed under most operating 
conditions. For this fault case, a change in the residuals is 
immediately apparent as soon as the valve is failed open.  
 
Anomaly Detection 

The vector of engine sensed measurements versus PBM 
output residuals, y~ , are used to construct a weighted sum of 
squared residuals (WSSR) as previously shown in Eq. (3). The 
measurement residual matrix, R, applied within this equation 
was determined empirically by calculating the covariance in the 
residuals based on the available nominal baseline run data. The 
residuals used to produce the WSSR signal consist of all sensor 
measurements shown in Table 1, with the exception of the N1 
measurement, which is used as a PBM input. Anomaly 
detection is then performed by comparing the WSSR signal 
against a defined anomaly detection threshold. If this threshold 
is exceeded, an anomaly is declared.  

The WSSR results obtained by processing the acquired 
VIPR data are shown in Figs. 17-20. Here, only re-trimmed 
PBM results are shown. When using the original PBM it was 
not possible to reliably distinguish between normal and 
anomalous engine behavior due to the large mismatch between 
the engine and the model. The top half of each figure shows a 
time history plot of one of the measured gas path parameters 
(denoted as yi) and the bottom half of the figure shows the 
corresponding WSSR information (blue line) and a threshold 
applied and monitored for anomaly detection purposes 
(magenta dashed line). This threshold was manually set to 
ensure that no false alarms were generated when processing the 
nominal (fault-free) engine data acquired during VIPR testing. 
Additionally, the WSSR signal was processed through a median  
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Figure 17. Nominal baseline run #1 
 

 
Figure 18. Nominal baseline run #2 
 

 
Figure 19. Station 2.5 bleed valve fault 
 

 
Figure 20. 14th stage bleed valve fault 

 

filter [15] to help smooth the signal and reduce noise. The 
median filtered WSSR signal is shown in the plots. For the two 
baseline runs, shown in Figs. 17 and 18, the filtered WSSR 
signal remains below the threshold throughout the entire test 
case although increases in the WSSR are evident during 
transients. The two bleed valve fault cases are shown in Figs. 
19 and 20. In each figure the time of fault insertion is denoted 
by the red vertical arrows. For the station 2.5 bleed fault case 
shown in Fig. 19, the WSSR signal exceeds the anomaly 
detection threshold when the engine is taken to higher power 
settings in the 900 to1000 second timeframe, which is expected 
as this is where the valve would normally be partially or fully 
closed. It is noted that the WSSR anomaly detection threshold 
is not exceeded during the engine transients performed around 
the 2600 to 2800 second timeframe even though the engine is 
taken to a power setting where off-nominal 2.5 bleed operation 
should be noticeable.  This is due to the applied filtering of the 
WSSR signal and the magnitude of the fault-induced 
performance shift. 

For the 14th stage bleed fault case shown in Fig. 20, the 
filtered WSSR signal exceeds the anomaly detection threshold 
soon after the fault is inserted and remains above the detection 
threshold throughout the remainder of the test case, including 
the transients towards the end of the test case. Comparing Figs. 
19 and 20 it can be observed that the 14th stage bleed valve fault 
has a larger impact on engine performance than the station 2.5 
bleed fault, making it more readily detectable.  
 
RTSTM Kalman Filter Tuning Parameter Estimation 

Like the PBM, the RTSTM was also updated to use the re-
trimmed piecewise linear model. The Kalman filter 
implemented within the RTSTM estimates model state 
variables plus six model tuning parameters. Figures 21-24 show 
the RTSTM-produced tuning parameter estimates for the 
various test cases. In each figure the top subplot shows results 
using the original model and the bottom subplot shows results 
using the re-trimmed model. Although units have been 
removed, the y-axis scales are identical in all subplots. For the 
baseline runs, shown in Figs. 21-22, it is observed that the 
original model tuner estimates are larger and undergo notable 
variation as the engine transitions to different operating points. 
Conversely, the revised model tuning parameter estimates are 
mainly concentrated near zero, although they do exhibit 
variation when the engine undergoes a transient. These results 
demonstrate that the re-trimmed model more accurately 
matches the steady-state performance of the actual engine, thus 
requiring smaller RTSTM tuning parameter adjustments. The 
station 2.5 and 14th stage bleed fault cases are shown in Fig. 23 
and Fig. 24, respectively. Again, the re-trimmed RTSTM 
produces smaller magnitude tuners with less variation 
compared to the original model. While the station 2.5 bleed 
valve fault results in minimal variation in the tuner estimates, 
changes in the tuner estimates associated with the 14th stage 
bleed valve fault are evident, again due to the fact that the latter 
fault has a larger impact on engine performance. The 14th stage  
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Figure 21. Nominal baseline #1 
 

 
Figure 22. Nominal baseline #2 
 

 
Figure 23. Station 2.5 bleed valve fault 
 

 
Figure 24. 14th stage bleed valve fault 
 

bleed valve fault causes a distinct change in the estimates 
initiating at the time of fault insertion and remaining for the 
duration of the run.   
 
DISCUSSION 

The model-based anomaly detection architecture has been 
shown to hold promise for the processing of streaming aircraft 
engine measurement data. However, future maturation and 
enhancements are warranted. One necessary enhancement is the 
need to further improve engine-to-model matching specifically 
during engine transients. Current work is ongoing to update 
metal temperature state dynamics contained in the model.  

It is also necessary to include and evaluate the full 
functionality of the architecture. The results presented in this 
paper exclusively focus on the anomaly detection performance 
achieved by updating the architecture to use a PWLM re-
trimmed to match nominal engine performance. Here, the 
model-tuning parameters that the PBM periodically accepts 
from the RTSTM to reflect deterioration have been set to zero. 
Follow-on work is necessary to evaluate how the system will 
perform when the engine begins to experience performance 
degradation over time and model tuning parameter updates 
passing from the RTSTM to the PBM are necessary. 
Furthermore, the results presented in this paper only focus on 
anomaly detection capabilities. Follow-on work is ongoing to 
also include fault isolation logic that classifies the root cause 
for any detected anomalies. This will be performed by 
analyzing the observed residual vector present when any 
anomaly is detected, and then classifying the most likely root 
cause for the event.   

SUMMARY 
This paper presented a model-based anomaly detection 

architecture designed for the processing of aircraft engine flight 
data either on-board or post-flight. The significance of this 
technique is that it enables processing of streaming engine 
measurement data and the detection of fault conditions with 
reduced latency. The architecture has been demonstrated for 
processing actual engine measurement data and found to avoid 
false alarms and correctly detect actuator bleed fault scenarios 
contained within the data. A method for re-trimming the model 
contained within the architecture was presented and found to be 
an effective means of addressing model-to-engine mismatch. 
This was performed by fitting a polynomial curve to identified 
nominal engine steady-state operating data, and then updating 
piecewise linear model trim point information. Follow on work 
is recommended to further improve the transient response 
matching of the model and to evaluate overall architecture 
performance when applied to additional aircraft engine 
datasets.  
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