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Abstract 

 

 Space erosion from dust impacts may set upper limits on the cosmic ray exposure 

(CRE) ages of stony meteorites. A meteoroid orbiting within the asteroid belt is 

bombarded by both cosmic rays and interplanetary dust particles. Galactic cosmic rays 

penetrate only the first few meters of the meteoroid; deeper regions are shielded. The dust 

particle impacts create tiny craters on the meteoroid’s surface, wearing it away by space 

erosion (abrasion) at a particular rate. Hence a particular point inside a meteoroid 

accumulates cosmic ray products only until that point wears away, limiting CRE ages. 

The results would apply to other regolith-free surfaces in the solar system as well, so that 

abrasion may set upper CRE age limits which depend on the dusty environment. 

Calculations based on N. Divine’s dust populations and on micrometeoroid cratering 

indicate that stony meteoroids in circular ecliptic orbits at 2 AU will record 21Ne CRE 

ages of ~176 × 106 years if dust masses are in the range 10-21 – 10-3 kg. This is in broad 

agreement with the maximum observed CRE ages of ~100 × 106 years for stones. High 

erosion rates in the inner solar system may limit the CRE ages of Near-Earth Asteroids 

(NEAs) to ~120 × 106 years. If abrasion should prove to be ~6 times quicker than found 

here, then space erosion may be responsible for many of the measured CRE ages of main 

belt stony meteorites. In that case the CRE ages may not measure the drift time to the 

resonances due to the Yarkovsky effects as in the standard scenario, and that for some 

reason Yarkovsky is ineffective. 

 



Rubincam                                        2/12/14                                                         3 

1.  Introduction 

 

 The observed cosmic ray exposure (CRE) ages are typically ~1-100 × 106 years 

for stony meteorites, while iron meteorites have CRE ages on the order of ~600 × 106 

years (e.g., McSween, 1999; Norton, 1994; Wood, 1968; Wieler and Graf, 2001). The 

usual explanation for the CRE ages of meteorites is catastrophic collision plus drift time 

plus resonance. In this scenario, a catastrophic collision between bodies in the asteroid 

belt creates fragments. Each fragment becomes a meteoroid. What are now fragments 

were mostly material buried so deeply in the parent bodies that they were shielded from 

galactic cosmic rays. The cosmic ray “clock” thus starts “ticking” once the fragments are 

exposed to the rays (e.g., Greenberg and Nolan, 1989). 

The exposure continues while a meteoroid drifts to a resonance. The main 

mechanism for delivering meteoroids to the resonances is currently believed to be the 

Yarkovsky effects (e.g., Öpik, 1951; Peterson, 1976; Rubincam, 1987, 1995; Afonso et 

al., 1995; Bottke et al., 2000, 2002; Farinella and Vokrouhlicky, 1999). Irons drift slower 

than stones because their higher density and higher thermal conductivity lessen the 

Yarkovsky effects compared to stones, explaining their longer CRE ages. 

 In the Yarkovsky scenario, the drift time would mainly control a meteoroid’s 

CRE age, since once it reaches a resonance, the meteoroid’s orbital eccentricity is rapidly 

pumped up until its orbit crosses that of the Earth (Wisdom, 1983). The pumping 

timescale is only ~ a few 106 years (Gladman et al., 1997); so this part of the delivery 

process does not contribute much to the CRE age. Thereafter the meteoroid hits the Earth, 

to be picked up as a meteorite.  
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 Two issues regarding meteoroid CRE ages are investigated here. The first issue is 

how space erosion by abrasion may at least place upper limits on stony meteorite CRE 

ages. The basic idea is illustrated in Fig. 1. Impacts from interplanetary dust excavate 

craters on a meteoroid, causing abrasion. Hence a meteoroid will slowly erode away over 

time.  

However long that process takes sets an upper limit on the meteoroid’s CRE age. 

Clearly no point inside the meteoroid can accumulate cosmic ray products once that point 

becomes the surface and erodes away. The first issue thus becomes: do the erosion upper 

limits do any violence to the measured CRE ages? If the erosion upper limits tended to be 

much shorter than the measured CRE ages, then there would be a problem. However, it is 

found that the erosion CRE ages are > ~176 ×106 y for the assumed model for stony 

meteoroids originating in the main belt. This is in broad agreement with the measured 

CRE ages of < ~100 ×106 y and allows the Yarkovsky drift timescale. 

The second issue is whether space erosion may not just set maximum ages, but 

whether a better model might be reasonably expected to increase the erosion rate enough 

to lower the CRE ages into the observed range of many meteorites. If so, then CRE age 

may be decoupled from drift time. Stony meteoroids, for instance, could theoretically 

drift for very long periods of time before reaching a resonance, and still have CRE ages 

of (say) only ~30 × 106 y. Certainly meteoroids can drift for extremely long stretches of 

time, because the iron meteoroids have characteristic CRE ages of ~600 × 106 years. This 

leads to the provocative question: do CRE ages measure Yarkovsky drift times of stones 

at all? Perhaps Yarkovsky is weakened or inoperative for some reason and something 

slower causes the drift but still gives the observed CRE ages, thanks to space erosion. 
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On this second issue one can make arguments both for and against increasing the 

erosion rate found here (see section 6). Further investigation is indicated to see whether 

space erosion puts the Yarkovsky interpretation in jeopardy. 

The present paper computes the rate of space erosion for stony meteoroids from 

dust impacts. Divine’s (1993) interplanetary dust populations provide the impactors. Of 

his five distinct populations, only the core and asteroidal populations are used here. His 

eccentric, inclined, and halo populations make negligible contributions to abrasion and 

are ignored. Divine considers dust particles with masses in the range 10-21 kg - 10-3 kg; 

these limits are adopted here. The dust particles in his asteroidal population have typical 

masses of ~10-6 kg, corresponding to particle diameters of ~1 mm = 10-3 m. Some of 

Divine’s (1993) velocity equations are derived in the Appendix as an aid to following his 

development. 

The amount of mass excavated with each dust particle impact on a stony 

meteoroid is based on the work of Gault et al. (1972). The mass lost from the meteoroid 

by making these microcraters is typically many times the mass of the impacting particles. 

Only the CRE ages derived from neon concentrations are examined here. The 

21Ne production rates are based on Eugster et al (2006).  

 In the following, the impacting particles are termed “dust”, even though this 

includes particles up to 1 g = 0.001 kg, which is about the mass of the American dime 

coin (en.wiki.org/wiki/Dime_(United_States_coin)), the smallest coin of United States 

currency. The term “meteoroid” is reserved for the object hit by the dust. 

Space erosion is an old topic (Whipple and Fireman, 1959; Fisher, 1961; 

Whipple, 1962; Schaeffer, 1981; Hughes, 1982; Wieler and Graf, 2001, p. 227, Welten et 
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al., 2001). The present paper focuses on space erosion by abrasion, and devotes only a 

few words to spallation. 

 Divine’s (1993) elegant paper provides the conceptual framework for the present 

investigation; it is a fitting capstone to his career (Nunes, 1997). The mathematical 

treatment which follows differs only slightly from Divine’s. Readers uninterested in the 

derivations can skip to Section 4. 

 

2.  Dust particle density 

 

 This section computes the number density of dust particles for the asteroidal and 

core populations. The result agrees with Divine (1993), giving confidence in the results 

that follow. The abrasion rate will be computed in the succeeding sections. 

 A dust particle’s Cartesian position is given by 

 

r ˆ r = xˆ x +  yˆ y + z ˆ z ,                                                                                                              (1) 

 

where r is its distance from the Sun, ˆ r  is the unit position vector, and ˆ x , ˆ y , and ˆ z  are the 

unit vectors along the x, y, and z axes, respectively, where the z-axis is normal to the 

ecliptic. The dust particle is assumed to orbit the Sun in an ellipse, with the Keplerian 

orbital elements being (a, e, I, Ω, ω, M), where a is the semimajor axis, e is the orbital 

eccentricity, I is the orbital inclination to the ecliptic, and Ω is the nodal position. The 

other two Keplerian elements, argument of perihelion ω and mean anomaly M, will not 

be needed here. See Fig. 2 for the geometry of the orbit. Two auxiliary variables which 
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are used below are the perihelion distance r1 = a(1 − e) and the ecliptic latitude λ, where 

sin λ = z/r. The unit vector ˆ n  normal to the dust particle’s orbital plane is given by  

 

ˆ n = (sin I sin Ω)ˆ x - (sin I cos Ω) ˆ y +(cos I)ˆ z  ,                                                                   (2) 

 

The notation above follows that of Divine (1993), apart from the substitution of I for his i 

and ( ˆ x , ˆ y , ˆ z ) for his (u x ,u y , u z ). 

 The number density ND of dust particles in units of number per cubic meter is 

given by: 

 

ND =
H D

ππ
N1r1

r (r − r1)1/2 dr1
0

r

∫                                  

• 
pe

[−(r − r1) + (r + r1)e]1/ 2r −r1

r +r1

1

∫ de  

 

• 
pI sin I

[(cos2 λλ − cos2 I ]1/2
λ

π − λ

∫ dI   .                                                                                      (3) 

 

This can be written more compactly as 

 

ND =
H D

ππ
w(r1,e, I )dr1dedI∫∫∫                                                                                       (4) 

 

to save space, where 
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w(r1,e, I ) =
N1r1

r (r − r1)1/2

pe

[−(r − r1)+ (r + r1)e]1/2

pI sin I

[cos2 λ − cos2 I ]1/2                                       (5) 

 

(Divine, 1993). In the above HD is a cumulative number distribution 

 

H D = H mm1

∞

∫ dmD   ,                                                                                                           (6) 

 

defined such that HD = 1 for m1 = 1 g = 10-3 kg; Hm is a differential number distribution  

(Divine, 1993, p. 17,030). 

In (3) pI is a distribution which depends only on inclination I and pe is a 

distribution which depends only on eccentricity e. Both the core and asteroidal 

populations have the same pI and pe. They follow the normalizations  

 

pI0

ππ

∫ dI =1                                                                                                                        (7) 

 

pe0

1

∫ de =1  .                                                                                                                      (8) 

 

As Matney and Kessler (1996) point out, though pe > 0 and pI > 0, they are not the 

“textbook” probability distributions; so that pede, for example, is not the number of 

objects between e and e + de. But as they also point out, Divine’s pI and pe are internally 

consistent, and so will be used here. They are shown as the solid lines in Fig.s 3 and 4. 
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The integrals in (3) have to be evaluated. The first step in doing so is to express pI 

and pe in functions different from the straight lines in Fig.s 3 and 4, but still hew closely 

to their values. The new functions make the integrations over I and e in (3) more 

convenient. 

 The pI distribution is the most easily dealt with. Divine (1993) writes it as a 

piecewise function of the form c + bI. Here pI will instead be written piecewise in the 

form of c + b cos I. This allows integrals of the form 

 

 

cosn I sin I

[(cos2 λ − cos2 I]1/ 2
λ

π − λ

∫ dI                                                                                              (9) 

 

to be analytically evaluated by switching to the variable cos I. The resulting expressions 

can be found from tables, such as given by Selby (1974, pp. 429). Table 1 gives the 

constants used for pI; they are chosen so that the pI used here closely resembles Divine’s 

pI, and obeys the normalization (7). Figure 3 compares the two functions. The agreement 

is good. 

 Divine similarly writes pe as a piecewise function of the form c + be, but here it 

will be written as a continuous polynomial function of e on the interval [0,1]. The 

technique is as follows. First, the square root of Divine’s piecewise function is written as 

a sum of Zernicke polynomials  

 

pe
1/ 2 = gi

i = 0

J / 2

∑ Zi(e)                                                                                                             (10) 



Rubincam                                        2/12/14                                                         10 

 

where Zi(e) is the unnormalized Zernicke polynomial of order i and is summed to the 

finite value J/2. The Zernicke polynomials are orthogonal on [0,1] and are related to the 

Legendre polynomials (e.g., Beckmann 1973, pp. 150-156). The Zernicke polynomials 

are given by the equation 

 

Zi (e) =
(−1)i + k( i + k)!

(i − k)!(k!)2
k = 0

i

∑ ek                                                                                              (11) 

 

so that the first few polynomials are Z0(e) = 1, Z1(e) = 2e − 1, Z2(e) = 6e 2 − 6e + 1, etc.  

 They have normalization 

 

Z i (e) = (2i +1)1/ 2 Zi(e)                                                                                                      (12) 

 

so that 

 

[Z i (e)]2

0

1

∫ de =1  .                                                                                                             (13) 

 

Also, in (10) the gi are the unnormalized coefficients, given by 

 

gi = (2n +1) pe
1/2Zi(e)

0

1

∫ de                                                                                                (14) 
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where pe
1/2 has the form (c + be)1/2 where c and b piecewise have Divine’s values. The 

equation (10) is then squared, resulting in an expression of the form 

 

pe = ′ A j
j = 0

J

∑ e j   .                                                                                                                  (15) 

 

The squaring guarantees that pe > 0, as required.  The integral becomes 

 

′ A j e j

j = 0

J

∑
0

1

∫ de = Q   .                                                                                                           (16) 

 

The coefficients Ai′ are then divided by Q, giving new coefficients Aj = Aj′/Q, so that 

 

pe = Aj
j = 0

J

∑ e j                                                                                                                      (17) 

 

and (8) is satisfied. Figure 4 compares the continuous function (17) with Divine’s 

piecewise function. The agreement is quite good. Table 2 gives the values for Aj. 

Switching to the dimensionless variable ξ = 2{e − [(r − r1)/ (r + r1)]}
1/2, so that e = 

[(r − r1)/ (r + r1)] + ξ 2/4, avoids the singularity in the integral over e in (3). The integral 

can then easily be numerically integrated. 

Finally, there is the integral over r1 in (3) to be evaluated. Unlike pI and pe, the 

core and asteroidal populations have their own distinct N1 functions, with the core N1 
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function peaking close to the Sun and the asteroidal N1 function peaking in the main belt 

(Fig. 5). Divine gives each N1 distribution the piecewise form 

 

N1 = Cr1
α  ,                                                                                                                      (18) 

 

which is thus a function of r1, with the constants C and α being given in Table 3. The 

problem in this case is that (r − r1)
1/2 appears in the denominator, which leads to infinity 

problems when r1 is close to r. This singularity in (3) in the integral over r1 can be 

avoided by switching to the dimensionless variable ζ = [(r − r1)/r]1/2, so that r1 = r (1 − 

ζ2). The resulting expression can easily be numerically integrated. 

 With the pI, pe, and N1 in hand, ND in (3) can be evaluated. Figure 6 shows ND for 

the core and asteroidal populations as found by Divine (straight lines), while the dots are 

the ND values computed here for distances between 0.5 AU and 5 AU. The agreement is 

quite good. 

 

3.  Space erosion due to dust particle impact abrasion 

 

 This section computes the rate of space erosion (abrasion) due to dust particle 

impacts on the meteoroid. It is first necessary to find the velocity of the dust and of the 

meteoroid, so that the relative velocity can be computed. From the relative velocity 

comes the kinetic energy which makes the craters. 

 Let v be the velocity of a dust particle in the inertial frame of Fig. 2. The dust 

particle’s velocity is given by 
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v = vr
ˆ r + vφφ ( ˆ n × ˆ r )                                                                                                            (19) 

 

where vr is the radial speed, vφ is the transverse speed, and ˆ n × ˆ r  is the unit vector in the 

orbital plane transverse to ˆ r . The Cartesian velocities are given by Divine (1993): 

 

vx = (v ⋅ ˆ x ) =
x

r
vr −

ryvφ cos I + xzvs

x2 + y2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   ,                                                                          (20) 

 

vy = (v ⋅ ŷ) =
y

r
vr +

rxvφ cos I − yzvs

x2 + y2

⎛

⎝
⎜

⎞

⎠
⎟   ,                                                                          (21) 

 

and 

 

vz = (v ⋅ ẑ) =
z

r
vr + vs   ,                                                                                                     (22) 

 

where 

 

vr = ±
GMS

r 2r1

(r − r1 )[−(r − r1) + (r + r1)e]
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

1/ 2

  ,                                                              (23) 

 

vφφ = +
GM Sr1

r2 (1+ e)
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

1/2

  ,                                                                                                 (24) 
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and 

vs = ±vφφ (cos2 λ − cos2 I )1/2   .                                                                                            (25) 

 

Here MS is the mass of the Sun and G is the universal constant of gravitation. Divine 

(1993) presents these equations without giving the derivations; an outline of the 

derivations is given in the Appendix. 

 A collision occurs when the meteoroid’s position and the dust particle’s position 

coincide. In other words, when they have the same position r ˆ r  as given by (1). The 

collisions take place at the nodes of the dust particle’s orbit. 

 Gault et al. (1972) find for polycrystalline rocks that the mass of material Mej  

ejected from the surface of the meteoroid in an impact is given by Mej ≈ 8.63 × 10-11 E 1.13 

cos2 Θ, where E is the kinetic energy measured in ergs, Mej is in grams, and Θ is the angle 

of the velocity vector with the local vertical. Converting Gault et al.’s equation to SI units 

gives 

 

Mej ≈ Kstone [mD(Δv)2/2]1.13 cos2 Θ  ,                                                                                  (26) 

 

where Kstone = 7.015 × 10-6, E = mD(Δv)2/2 is the kinetic energy and is now in joules, and 

mD is the mass of the impacting dust particle in kg. Also, Δv is its speed relative to the 

meteoroid in m s-1, where 

 

(Δv) 2 = (v - vM) ⋅ (v - vM) , 
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with vM being the velocity of the meteoroid.  

 To account for the oblique impacts embodied by cos2 Θ, it will be reasonably 

assumed that the dust particles pelting the meteoroid from a particular direction will be 

spread uniformly over the circular cross-sectional area seen by the incoming particles. 

Considering the number of particles impacting an annulus of radius Rsin Θ and width 

Rcos Θ dΘ (Fig. 7) and averaging over the hemisphere pelted by the dust gives 

 

R2 sinΘ cosΘ cos2 Θ dΘ dΦ / R2 sinΘ cosΘ dΘ dΦ =1/ 2
0

π /2

∫0

2π

∫0

π /2

∫0

2π

∫                   (27) 

 

as the factor needed to find the average amount of ejected mass <Mej> : 

 

<Mej> ≈ (Kstone/2)[mD(Δv)2/2]1.13  = nejmD                                                                          (28) 

 

In the above equation nej is some multiple of the dust particle’s mass and is given by 

 

 nej ≈  (Kstone/2
2.13 )mD

0.13Δv2.26  .                                                                                        (29) 

 

Assuming that mD ≈ 10-6 kg and Δv ≈ 5000 m s-1 give nej ≈ 61 in (29). Thus the mass lost 

from the stony meteoroid by making a crater is typically many times greater than the 

mass of the impacting dust particle. 
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 The amount of mass loss in ejected kilograms per second from a meteoroid of unit 

volume (1 m3) is given by 

 

 

dM

dt unit

= −κ = −(Kstone / 22.13)
WD

π
w(r1,e, I )(Δv)(Δv)2.26 dr1∫∫∫ dedI                                  (30) 

 

where the extra factor Δv comes from the flux of particles hitting the unit volume and κ 

depends on the orbit the meteoroid is in. Also, 

 

WD = mD
1.13Hm dmD0

∞

∫   . 

 

Assume a spherical meteoroid of radius R and mass M = 4πρR3/3, where ρ is the density.  

To get the rate of mass loss dM/dt (30) is multiplied by πR2. It is also the case that dM/dt 

= d(4πρR3/3)/dt = 4πρR2(dR/dt). Equating the two rates gives 

 

dR

dt
= −

κ
4ρ

= −β   .                                                                                                           (31) 

 

The quantity dR/dt will be referred to below interchangeably as the space erosion 

rate or abrasion rate. It is important to note that it is independent of radius R, as indicated 

in (31), and is constant as long as the meteoroid stays in the same orbit. It is assumed that 

(31) applies to all stony meteoroids regardless of composition. Stony meteorites range in 
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density from ~2200 kg m-3 to ~3900 kg m-3 (McCall, 1973, p. 149). A value of ρ = 2800 

kg m-3 is adopted here.  

 

4. Space erosion rates 

 

 Figure 8 shows the time Tmetre to erode 1 meter of a stony meteoroid due to 

impacts from the combined asteroidal and core populations for the assumed abrasion 

model, where 

 

 β  = (1 m)/Tmetre  ,                                                                                                            (32) 

 

and where the subscript is the accepted spelling of the SI unit of length. All the meteoroid 

orbits lie in the ecliptic; hence IM = 0. The black dots show Tmetre for meteoroids in 

circular orbits for semimajor axes aM between 0.5 AU and 3.5 AU. The speediest erosion 

times Tmetre occur close to the Sun, where meteoroid velocities are fast and the core ND 

concentration is high (Fig. 6). A meteoroid at 0.5 AU takes 50 × 106 y to erode 1 m, while 

at 2 AU it is the much longer 430 × 106 y. Beyond 2.5 AU the times increase sharply, 

rising to > 1000 × 106 y at 3.5 AU, which is slightly beyond the outer edge of the main 

belt. 

 The square in Fig. 8 is for a stony meteoroid with semimajor axis aM = 2 AU and 

eccentricity eM = 0.5, so that the meteoroid journeys between 1 AU to 3 AU; in other 

words, between the Earth and the asteroid belt. In this case Tmetre = 126 × 106 y. This is 

shorter than for a meteoroid in a circular orbit with the same semimajor axis. 
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The star in Fig. 8 is for a stony meteoroid with aM = 1.75 AU and eM = 0.714, so 

that it journeys between 0.6 AU and 3.5 AU. It has the quickest erosion time of all: Tmetre 

= 30 × 106 y. It is in an orbit which takes it deep inside the core population at high 

velocity, as well as through the asteroidal population in the main belt; hence the short 

erosion time. 

 Iron meteoroids apparently will comminute at a rate ~270 times slower than for 

stony meteoroids. The estimate is made as follows. Matsui and Schultz (1984) shot ~0.15 

g steel projectiles at an iron meteorite using the NASA Ames Research Center’s Vertical 

Gun Range. They found that for speeds of ~5 km s-1, the mass loss was ~2.6 times the 

mass of the projectile; in other words nej ≈ 2.6. Assuming for vertical impacts 

 

nej = (Kiron/2
1.13) mD

0.13 Δv2.26                                                                                            (33) 

 

by analogy with (26) for mD = 1.5 × 10-4 kg yields Kiron = 7.809 × 10-8 for irons, as 

compared to Kstone = 7.015 × 10-6 for stones.  

Thus if (33) applies to iron meteoroids, then the mass loss is a factor of ~90 

smaller per impact than for stony meteoroids. The density of iron meteoroids is ~7870 kg 

m-3, a factor of ~3 larger than for stones. Hence the space erosion rate β for irons by (31) 

would be ~270 slower than for stones. Such slow rates are not shown in Fig. 8 and iron 

meteoroids would barely erode over the age of the solar system, according to the present 

abrasion model. 

 

 



Rubincam                                        2/12/14                                                         19 

5.  Space erosion rate and CRE ages of stony meteorites 

 

How do the erosion times Tmetre in Fig. 8 relate to the CRE ages of stones? Several 

simplifications are made below to give a rough answer to this question. 

While Fig. 8 shows Tmetre for two elliptical orbits and similar orbits could be 

calculated, only the Tmetre for circular orbits are used here to estimate CRE ages. The 

rationale is that a meteoroid originating in the main belt spends little time in an elliptical 

orbit (Gladman et al., 1997) before impacting the Earth, offsetting the increased erosion 

rate. 

In what follows below the cosmic ray flux is assumed to be isotropic and constant 

in space and time throughout the solar system. Also, meteoroids always remain spherical 

regardless of size as they erode away. 

CRE ages are measured through the accumulation of products created from the 

galactic cosmic ray bombardment. The product concentration varies with depth inside a 

meteoroid. Neon is an example and is the only cosmic ray product examined here. 

Eugster et al. (2006) in their Fig. 2 show the production rates with depth of 21Ne for stony 

spherical meteoroids for several fixed radii. For a stony spherical meteoroid whose radius 

remains constant, the 21Ne production rate slowly increases from the meteoroid’s center, 

and then sharply decreases as the surface is neared. 

Eugster et al.’s curves can be approximated by the equations 

 

PNe = [ANe + BNe(1− e−d /γ )]e−d /Γ   .                                                                                      (34) 

 
Here PNe is the production rate of 21Ne in arbitrary units per 106 y, BNe = 63, and 
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ANe = 50 + 355R e−R/s   ,                                                                                                    (35) 

 

where R is the meteoroid’s radius in meters, d is the depth below the surface in meters, s 

= 0.333 m, and γ = 0.1 m. Also, 

 

1

Γ
= CNe{1+ tanh[h(R − Rh )]}   ,                                                                                       (36) 

 

where CNe = 1.111, h = 2.519, and Rh = 1.4455. The resulting curves using (34)-(36) are 

shown in Fig. 9 and are to be compared with Eugster et al.’s Fig. 2. The rates are 

computed every 0.1 m in depth. The computed points in Fig. 9 are joined by straight lines 

for clarity. Equations (34)-(36) and their associated constants are not based on any 

theory; rather, they are the result of trial-and-error and mimic Eugster et al.’s curves 

reasonably well for R ≥ 0.3 m.  

Suppose that a meteoroid undergoes no abrasion, so that its radius stays fixed. In 

this case the 21Ne concentration simply increases linearly with time at any given point, 

and the concentration at any given instant looks the same as the production rate in Fig. 9; 

only the scale and units of the vertical axis change. On the other hand, for a meteoroid 

which does undergo space erosion, the production rate (34) holds at every instant, but the 

meteoroid’s radius is constantly changing, resulting in curves that do not reproduce the 

curves in Fig. 9. What the concentration curves do look like is taken up next. 
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A computer program used (34)-(36) to compute the concentration inside a 

spherical stony meteoroid whose radius R shrinks at a constant rate due to abrasion: 

 

R = R0 − βt = R0 − (1 m/Tmetre)t  .                                                                                     (37) 

 

In this equation R0 = 5 m is the initial radius at time t = 0. This value of R0 was chosen 

because it is large enough to greatly shield the interior more than 3 m deep from the 

cosmic rays. The time step was 106 y. 

Figure 10 shows the results for Tmetre = 430 × 106 y, which is the value for a stone 

in a circular ecliptic orbit at 2 AU (Fig. 8), and gives the fastest erosion rate in the main 

asteroid belt for circular orbits. The thin lines are the concentrations vs. depth for a 

shrinking meteoroid when the radius reaches R = 2 m, 1 m, 0.5 m, and then 0.3 m. The 

thick lines are the corresponding concentrations for fixed radii at these values of R; the 

exposure times τNe associated with the thick lines are chosen to give concentrations which 

roughly agree with the thin lines at approximately half the radius of the meteoroid. The 

smallest value τNe = 176 × 106 y in Fig. 10 occurs for stones which have radii R > ~1 m, 

but thereafter the values rapidly increase as the meteoroid shrinks, rising to 384 × 106 y 

for a 0.3 m meteoroid. It is of interest that for meteoroids with R > ~1 m the following 

relationship holds: 

 

τNe ≈ c1Tmetre  ,                                                                                                                   (38) 

 

where c1 ≈ 0.41. For R < ~1 m, the value of c1 rises as the radius shrinks. 
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 The shapes of the space erosion curves are quite different at shallow depths from 

those for meteoroids of fixed radii. Moving from right to left in Fig. 10, the eroding 

meteoroids have curves which increase or flatten out when nearing the surface, while 

those of fixed radii show a sharp downturn. Hence according to the present model, 

pristine meteoroids recovered in space will not show the downturn if they have eroded 

from a large body. 

Meteoroids can ablate and fragment perhaps as much as 27%-99% of their mass 

during their passage through the Earth’s atmosphere (Eugster et al. 2006, p. 833). If a 

meteoroid loses its outermost 0.1−0.2 m, then the part of the curve where the downturn is 

expected vanishes. An investigator may not realize the downturn never existed because of 

space erosion, and may take τNe as the CRE age and erroneously assume that the 

meteoroid was liberated from deep within an asteroid a time τNe years ago, when in fact 

the meteoroid could have been an independent larger body for a long time and taken 

longer than τNe to drift to a resonance. 

If the τNe of eroding meteoroids are taken to be their CRE ages, then is the 

assumed space erosion model in any sort of disagreement with the measured CRE ages of 

meteorites? This question speaks to the first of the two issues raised in the Introduction. 

If, as an extreme example, space erosion was so fast that the erosion τNe values 

were only on the order of ~1 × 106 y, then a meteoroid would not have enough time to 

accumulate sufficient 21Ne to account for the observed longer ~30 × 106 y ages and there 

would be a problem. The least upper bound on τNe is ~176 × 106 y for meteoroids ~1 m in 

radius (Fig. 10) and larger. This limit tends to agree with what is observed: most stony 
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meteorites have ages < ~100 × 106 y. Thus it may be that space erosion sets upper limits 

on the CRE ages of stones which originate in the asteroid belt, but the limits are 

comfortably high enough to encompass the measured CRE ages, which are presumably 

due to Yarkovsky drift. 

The time Tmetre to erode 1 m of the surface of a hypothetical rocky and regolith-

free Near-Earth asteroid (NEA) in the same orbit as the Earth is ~300 × 106 y. This would 

lead to τNe = ~120 × 106 y for the assumed model. This value of Tmetre = ~300 × 106 y at 1 

AU is in fair agreement with one estimate of the abrasion rate of lunar rocks. Gault et al. 

(1972, p. 2723) find ~1mm/106 y for an assumed 1.5π steradian exposure for a rock on 

the Moon’s surface. Adjusting this rate for the 4π exposure of a meteoroid gives Tmetre = 

~375 × 106 y, which is close to the value found here. 

An improved space erosion model might increase the abrasion rate so that the τNe 

actually drop into the observed range of CRE values, rather than just set upper limits. 

This would have implications for Yarkovsky drift. What happens in this case is discussed 

in the next section. 

 

6.  Yarkovsky or space erosion? 

 

Space erosion appears to place upper limits on meteoroid CRE ages, meaning that 

the ages can be less, but not more. So if the Yarkovsky drift to the resonances limit stony 

meteoroid CRE ages to, say, the  ~30 × 106 y observed for L chondrites (e.g., McSween, 

1999, p. 246), and the abrasion least upper bound is ≤ ~176 × 106 y as in Fig. 10, then 
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there is no problem with the standard Yarkovsky scenario of how many meteoroids get 

their CRE ages. The ages tend to be a factor of 6 younger than the least upper bound. 

But the factor of 6 is small enough to give pause. If the space erosion rates were 

great enough to give τNe = ~30 × 106 y, and if the measured CRE ages of many stony 

meteorites are also ~30 × 106 y, then space erosion may compete with Yarkovsky. 

It might even call into question whether Yarkovsky drift is the mechanism by 

which meteoroids reach the resonances. Meteoroids could theoretically dawdle in the 

asteroid belt for very long times using other mechanisms to journey to the resonances, but 

always turn in the observed CRE ages, thanks to space erosion. 

In other words, is something wrong with Yarkovsky? Does it really operate at the 

expected level? If not, why not? 

The ages computed here are based on a number of assumptions, and the calculated 

CRE ages could go up or down using a different set of assumptions. If the ages go down 

by a factor of ~6, then Yarkovsky could be in trouble. Hence the assumptions are worth 

examining to see if the factor of 6 is within reach. 

Several ways to get a greater space erosion rate immediately come to mind. The 

most obvious is to simply raise the dust mass upper limit. Divine (1993) conveniently put 

the upper limit at 1 g = 10-3 kg, a size much larger than what is ordinarily considered 

“dust” (e.g., Shirley, 1997). The present discussion retains Divine’s upper limit of 1 g; 

adding in bigger impactors would certainly excavate more material than considered here. 

This would give faster erosion, but gets into the statistics of small numbers and 

fracturing. 
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 Abrasion is at one end of a continuum, with catastrophic disruption at the other 

end. Possibly many CRE ages might be controlled by the in-between process of spallation 

and abrasion (Fujiwara et al., 1977), rather than just abrasion alone. Because small 

impactors are more numerous than large ones, spallation will presumably be more 

common than catastrophic disruption, in which many fragments of all sizes are created. 

For instance, Matsui and Schultz (1984) found that iron meteorites sometimes fractured 

when hit by a 0.00015 kg (0.15 g) steel impactor. Splintering off sizeable pieces, rather 

than cratering, may be a way of eroding an iron meteoroid faster than the rates found 

here. On the other hand, Matsui and Schultz found that basaltic impactors did not create 

fractures at the speeds they used. Moreover, it is not clear that chunks chipped off by 

spallation would mimic the steady erosion that the sand-blasting by abrasion might be 

expected to give, unless the chunks were numerous and relatively small. 

A second obvious way to get faster erosion is to tinker with Divine’s populations. 

Grün and P. Staubach (1996) verify that Divine’s five solar system dust populations fit 

lunar cratering, spacecraft, and zodiacal light data. But the populations, including the 

asteroidal and core populations considered here, are nonunique (Divine, 1993, pp. 

17,032-17,033) and model-dependent (Divine, 1993 p. 17,037). Hence further 

information about the asteroidal population could increase or decrease the dust 

concentration, with a corresponding effect on CRE ages. 

An alternative distribution for the asteroidal N1 population invented for the sake 

of argument is shown in Fig. 5. It extends the trend in the inner solar system to 3 AU 

(dotted line), and then turns down and cuts off at 5 AU. The resulting Tmetre for circular 

orbits are shown as the open circles in Fig. 8. No open circles are visible in the figure for 
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aM ≤ 1.5 AU because they virtually coincide with the solid black circles. But the Tmetre are 

dramatically lower than from Divine’s population at 2 AU and beyond, so much so that 

the Yarkovsky interpretation for stones might be in trouble if this or a similar alternative 

distribution were to hold. 

However, Divine (1993, p. 17,037) states that a dust distribution which continues 

the trend in the inner solar system would make too large a contribution to the zodiacal 

light for his assumed geometric albedo of 0.01. Hence adopting the alternative 

distribution may not be viable. Further, a more accurate distribution than Divine’s might 

just as well decrease the dust concentration as increase it. 

There is also the question as to whether the dust populations have stayed constant 

over time. It is assumed here that they have stayed the same over hundreds of millions of 

years. However, the dust populations have presumably varied over geologic time, as 

reflected in the dust influx to the Earth (e.g., Gault et al., 1972; Peucker-Ehrenbrink, 

2001; Mukhopadhyay et al., 2001). The present influx may be twice the average influx 

over the past 70 × 106 y (Farley, 2001, p. 1194), so that the abrasion rates may be smaller 

than found above. On the other hand, collisions in the asteroid belt may yield temporary 

local dense concentrations of dust which would accelerate space erosion there. 

Further, the present model assumes a constant flux over geologic time for the 

galactic cosmic rays. This may not be the case (e.g., Eugster et al., 2006). 

A final obvious way to get a greater abrasion rate is to assume more material is 

lifted off from microcratering than given by (29) and (33). Low temperatures in the 

asteroid belt may make the rock more brittle, thus increasing the mass loss beyond what 

is given by (29) and (33). 
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 So: can the model be reasonably altered enough to accommodate the factor of ~6 

and cast doubt on Yarkovsky? As shown above, arguments can be adduced to either 

increase or decrease the space erosion rate. At the present time the question remains 

open. 

 

7.  Discussion 

 

 Only 21Ne concentrations are examined here in relation to CRE ages. It was more 

or less assumed that τNe equates with CRE age.  Neither other cosmic ray products, such 

as 3He, nor tracks are considered in relation to the space erosion model. 

 All rocky surfaces in the solar system which remain free of regolith may have the 

upper limit on their CRE ages controlled by space erosion. The particular limits depend 

upon the dusty environment they find themselves in, as shown in Fig. 8. Erosion rates 

inside 1 AU are rapid. Such fast erosion might have implications for the CRE ages of 

regolith-free Near-Earth Asteroids (NEAs) and any meteorites which originate from them 

(Morbidelli et al., 2006). Pristine samples returned from an NEA may not show the 

downturn in the 21Ne concentration as the surface is neared (Fig. 10). 

The presence of regolith could impede the abrasion of the monolithic rock 

underneath by being thick enough to intercept the dust bombardment, but perhaps still be 

thin enough to allow the cosmic rays to penetrate the rubble and age what is below. 

Presumably meteoroids and the smallest asteroids are regolith-free. 

On the issue of whether space erosion or Yarkovsky controls CRE ages, the 

Yarkovsky effects depend on principal axis rotation. The diurnal Yarkovsky effect 
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depends on the meteoroid’s sense of rotation, increasing the semimajor axis for prograde 

rotation and decreasing it for retrograde rotation. The YORP effect (e.g., Paddack, 1969; 

Paddack and Rhee, 1975; Rubincam, 2000; Bottke et al., 2002; Vokrouhlicky et al., 2006; 

Statler, 2009) or collisions might change the spin axis orientation enough to lessen 

diurnal Yarkovsky’s effectiveness by a random walk, but the seasonal Yarkovsky effect 

(Rubincam, 1987, 1995) will still be operative regardless of where the spin axis is, unless 

the meteoroid tumbles most of the time, which seems unlikely. 

At the young end of the CRE age distribution, it is hard to see how space erosion 

could explain the shortest observed ages of ≤ ~106 y regardless of how much the abrasion 

rate is increased. (Yarkovsky also has trouble with such young ages; Morbidelli et al., 

2006). Moreover, an improved model might just as well lower abrasion rates as raise 

them. Further research is needed to see whether space erosion casts doubt on the 

hypothesis that Yarkovsky drift to the resonances controls many meteorite CRE ages. 

 At the other end of the CRE age distribution, the aubrites also pose a problem for 

space erosion controlling stony CRE ages. They are fragile but tend to have long ages. A 

possible way to resolve the problem is if the aubrite parent body is in an orbit inclined to 

the ecliptic, which would lessen collisional encounters (McSween, 1999, p. 247). Inclined 

orbits are not considered here. 

 The iron meteoroids have the oldest CRE ages and present another possible 

obstacle. Their abrasion rates appear to be so slow that they undergo little erosion 

(Matsui and Schultz, 1984 and section 4 above), so that their CRE ages might be 

controlled by Yarkovsky. Thus there would be two separate explanations as to how 
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meteorites get their CRE ages: space erosion for stones and Yarkovsky for irons, rather 

than one elegant unifying explanation. 

 A potential way around the iron problem is the combined abrasion and fracturing 

mentioned in section 6. Irons might “erode” mainly by spallation (Matsui and Schultz, 

1984), which might explain their CRE ages, rather than Yarkovsky. 

 The results above cast some doubt on the Yarkovsky interpretation of meteorite 

CRE ages. More research is needed to clarify the issue. 

 

Appendix 

 

 Divine (1993) gives the correct expressions for the dust particle speeds vφ, vr, vs, 

and vx, vy, vz, but does not derive them. The purpose of this appendix is to outline their 

derivation, in order to save readers time when it comes to verifying the equations for 

themselves. 

 The velocity of the dust particle is given by (19). The speed vφ is most easily 

found first. By Kepler’s law r 2(dφ/dt) = [GMS a(1 - e 2)]1/2, where φ is the angle in the 

orbital plane. Using the relation r1 = a(1 - e) to eliminate semimajor axis a yields vφ = r 

(dφ/dt) = +[GMSr1(1+e)/r 2]1/2, which agrees with (24). The radial speed vr can then be 

found from vr
2 = ±(v 2 - vφ

2)1/2 and the energy relation v 2 = GMS [(2/r) - (1/a)] after once 

again eliminating a, yielding (23).   

 Finding vs is harder work.  By (1)-(2) and (19) 
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vφ (n̂ × r̂) ⋅ x̂  

= -vφ [(z/r) sin I cos Ω + (y/r) cos I],                                                                              (A1) 

 

vφ (n̂ × r̂) ⋅ ŷ  

 = vφ [(x/r) cos I - (z/r) sin I sin Ω],                                                                                (A2) 

 

vs = vφ (n̂ × r̂) ⋅ ẑ  

= vφ [(y/r) sin I sin Ω + (x/r) sin I cos Ω]                                                                      (A3) 

 

Also, because ˆ n  is perpendicular to ˆ r  

n̂ ⋅ r̂  = (x/r) sin I sin Ω - (y/r) sin I cos Ω + (z/r) cos I = 0                                            (A4) 

 

Squaring (A3) results in a term containing 2xy times some other factors. Squaring (A4) 

also contains in the same 2xy term. Using the square of (A4) to eliminate the 2xy term in 

vs
2 ultimately results in the desired result vs

2 = vφ
2(cos2 λ - cos2 I), which is the square of 

(25), after using sin λ = z/r to get rid of z. This completes finding vφ, vr, and vs. 

 The expressions for vx, vy, and vz will be found next. The velocity vector is given 

by (19). The first term on the right-hand side of (20), (21), and (22) is clearly the 

Cartesian component of vr
ˆ r ; it remains to find the Cartesian components of vφ (ˆ n × ˆ r ) . 
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Rearranging (A4) results in sin I sin Ω = (y/x) sin I cos Ω − (z/x) cos I. Substituting this in 

(A3) and rearranging gives 

 

sin I cos Ω =
rx

x2 + y2

vs

vφ

+
yz cos I

rx

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 

Substituting this in (A1) ultimately gives the second term on the right-hand side of (20). 

A similar derivation gives the second term on the right-hand side of (21). The speed vs 

has already been found, which is the second term on the right-hand side of (22). 
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Table 1.  Constants used in pI, which has the piecewise form pI = c + b cos I in the 
various intervals for I. 
 

I   c   b 

0-10°   0.0  −0.173725 

10-20°   −34.441201 37.741467 

20-30°   −0.0862278 10.082696 

30-40°   −8.449943 1.321211 

45-60°   −0.173725 0.347451 

60-180°  0.0  0.0 
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Table 2.  Constants Aj used for pe, where pe = ΣAje
j over the entire range of eccentricity 0-

1. 

 

j  Aj 

0  0.577483 

1  16.491390 

2  25.200077 

3  −1110.493161 

4  6500.064217 

5  −19912.701496 

6  37816.824484 

7  −46200.552344 

8  35329.116437 

9  −15343.317775 

10  2878.802491 
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Table 3.  Constants used for N1 for the asteroidal and core populations in the r1 intervals 

listed. Both have the piecewise form N1 = Cr1
α. 

 

Asteroidal 

r1 (AU)  α   log10 C 

 

0.1-1.1   3.65185  −21.134  

1.1-2.2   1.66429  −17.331 

2.2-2.5   0.00010  −16.830 

2.5-20.0  −3.51017  −16.830 

 

Core 

0.01-0.1  −1.3   −16.980 

0.1-1.0   −1.3   −18.280 

1.0-2.0   −1.3   −19.580 

2.0-4.0   −16.706  −19.971 
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Fig. 1.  The space erosion scenario. A clock inside a meteoroid measures the cosmic ray 

exposure (CRE) age. Left: The CRE clock is initially too deeply buried to be reached by 

cosmic rays (thin lines) and the clock face reads zero. Center: Once the surface erodes 

enough from dust impacts (dots) so that it is about a meter from the clock, the clock starts 

ticking. Right: The CRE clock records its maximum age when the eroding surface 

reaches it. 
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Fig. 2.  Geometry of a dust particle orbit. The unit vectors ˆ x , ˆ y ,and ˆ z  form a right-

handed coordinate system, with ˆ z  being normal to the ecliptic. The unit vector ˆ n  is 

normal to the orbital plane and makes an angle I with ˆ z . The ascending node of the 

orbital plane makes an angle Ω in the ecliptic. The perihelion distance is r1. The particle 

is at r ˆ r , where ˆ r  is the unit position vector and r is the distance from the Sun. 
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Fig. 3.  Graph of pI vs. I, which is the same for the core and asteroidal populations. 

Divine’s (1993) piecewise function of the form c + bI is given by the solid lines. The dots 

show the values of the piecewise function used here, which has the form c + bcos I. 
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Fig. 4.  Graph of pe vs. e, which is the same for the core and asteroidal populations. 

Divine’s (1993) piecewise function is given by the solid lines. The dots show the values 

of the polynomial function in e used here, as given by (17). 
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Fig. 5.  The solid lines are Divine’s (1993) dust number concentration N1 for the core and 

asteroidal populations as a function of perihelion distance r1 from the Sun. The dotted 

line between 1 AU and 5 AU is an alternative concentration to Divine’s: it continues 

Divine’s slope, followed by a downturn and cut-off at 5 AU. 
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Fig. 6.  Dust number concentration ND in the ecliptic as a function of distance r from the 

Sun for both the core and asteroidal populations for dust particles with masses > 10-7 kg. 

Divine’s (1993) concentrations are given by the solid lines. The dots are the values 

computed as described in section 2 for 0.5 AU ≤ r ≤ 5 AU. 
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Fig. 7.  Geometry of dust particles impinging on a spherical meteoroid from a particular 

direction. The dust particles (black dots) are spread evenly over the cross-sectional area 

πR2 seen by the particles, where R is the meteoroid’s radius. Φ the longitude on the 

meteoroid, while Θ is the colatitude. A particle impacting on the annulus of radius Rsin Θ 

and width Rcos ΘdΘ ejects mass which is proportional cos2 Θ. 
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Fig. 8.  The time Tmetre required to erode a meter of a stony meteoroid from dust impacts 

as a function of a meteoroid’s orbital semimajor axis aM for I = 0°. The solid circles are 

for circular orbits, the square gives Tmetre for aM = 2 AU and eM = 0.5, and the star gives 

the value for aM = 1.75 AU and eM = 0.714, all using Divine’s populations. The open 

circles give the values for circular orbits using Divine’s core population plus the 

alternative asteroidal population shown in Fig. 5. 
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Fig. 9.  The 21Ne production rates from cosmic ray bombardment as function of depth 

inside spherical meteoroids of fixed radii. The rates are in arbitrary units, computed using 

(34)-(36). The meteoroid radii range from 0.3 m to 2 m. The rates are computed every 0.1 

m. The computed points are joined by straight lines for clarity. This figure is to be 

compared to Fig. 2 of Eugster et al. (2006). 
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Fig. 10.  The 21Ne concentrations from cosmic ray bombardment as function of depth 

inside a spherical meteoroid in a circular orbit at 2 AU undergoing space erosion, for an 

initial radius of 5 m  and Tmetre = 430 × 106 y. The concentrations are in arbitrary units, 

and are computed every 0.1 m. The computed points are joined by straight lines for 

clarity. The thin lines are for when a shrinking meteoroid’s radius reaches 2 m, 1 m, 0.5 

m, and 0.3m. The thick lines are corresponding concentrations for meteoroids whose 

sizes remain constant at these values of radius. The exposure times τNe associated with the 

thick lines are chosen to give concentrations which roughly agree with the thin ones at 

approximately half the radius. The eroding meteoroid does not show a downturn in 

concentration as the surface is neared, but a non-eroding meteoroid would. 


