NASA’s Microgravity Materials Science Program – A Review of Experimental Investigations

materialsLAB Workshop
15 April 2014
Richard Grugel / MSFC-EM31
Historical Reference

NASA was not the first to understand and utilize the benefits of processing materials in a microgravity environment. That honor likely goes to William Watts of Bristol, England who in 1753 built a “drop tower” to process molten lead into uniformly spherical shot for firearms.

Molten lead is poured through a sieve. Uniform drops freefall (microgravity), buoyancy effects are minimized. Surface tension dominates forming uniform spheres. Solidified shot lands in a cushion of cooling water.

Boughton Shot Tower
Chester, England
1799, 168’ tall

Phoenix Shot Tower
Baltimore, MD, 234’ tall
1828, tallest structure in US
2.5 million pounds shot/year
Microgravity and Physical Phenomena

Gravity drives thermal and solutal convection
- Detrimentally impacts solidification microstructures
- Compromises diffusion studies

Gravity responsible for sedimentation/buoyancy
- Promotes non-uniform particle distributions

Gravity necessitates, usually, a container to process/study liquids
- Compromises accurate study of material properties such as viscosity
- Compromises nucleation/undercooling studies

Gravity overwhelms subtle physical features
- Thermocapillary effects, surface tension are masked
Microgravity and Physical Phenomena

Microgravity minimizes thermal and solutal convection
- Promotes diffusion controlled growth and uniform solidification microstructures

Microgravity minimizes sedimentation / buoyancy
- Promotes uniform particle distributions
 → Advances our understanding of coarsening and sintering

Microgravity minimizes pressure heads
- Reduces defects in semiconductor materials
- Allows study of granular materials

Microgravity eliminates a container to process / study liquids
- Improves accuracy of material properties measurements such as viscosity and surface tension
- Facilitates nucleation studies
Microgravity allows observation of subtle physical phenomena

- Thermocapillary effects, surface tension are now dominant

<table>
<thead>
<tr>
<th></th>
<th>Large Bubble (0.53mm)</th>
<th>Small Bubble (0.36mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured Velocity</td>
<td>5.6 mm/s</td>
<td>4.1 mm/s</td>
</tr>
<tr>
<td>Calculated Velocity</td>
<td>5.6 mm/s</td>
<td>4.4 mm/s</td>
</tr>
</tbody>
</table>
Microgravity “Platforms”

Drop Towers
- Glenn Research Center
 - 432’ (~5.2s μg)

Levitators
- ~30s μg

Sounding Rockets
- 15-25 min μg

Space Vehicles / Stations
- Long duration μg

Parabolic Aircraft
Long Duration Microgravity Physical Sciences Research

<table>
<thead>
<tr>
<th>Foundational Era</th>
<th>Shuttle Era</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950’s to 1980</td>
<td>1980 to 2000</td>
</tr>
<tr>
<td>Mercury / Gemini / Apollo / Soyuz</td>
<td>STS and MIR</td>
</tr>
<tr>
<td>Spacecraft / Skylab</td>
<td></td>
</tr>
</tbody>
</table>

Soyuz 6 1969 1st Welding Experiment
Apollo 14 1971 Composite Casting
Skylab 1973-1979

Skylab Materials Processing Facility Multipurpose Furnace System

Skylab: “such tests proved that the processing of metals without using containers is feasible in space”.

Technology

<table>
<thead>
<tr>
<th>D008</th>
<th>RADIATION IN SPACECRAFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>D024</td>
<td>THERMAL CONTROL COATINGS</td>
</tr>
<tr>
<td>M479</td>
<td>ZERO-G FLAMMABILITY</td>
</tr>
<tr>
<td>M517</td>
<td>MATERIALS PROCESSING FACILITY</td>
</tr>
<tr>
<td>M532</td>
<td>EXOTHERMIC BRAZING</td>
</tr>
<tr>
<td>M533</td>
<td>SPHERE FORMING</td>
</tr>
<tr>
<td>M534</td>
<td>GALLIUM ARSENIDE CRYSTAL GROWTH</td>
</tr>
<tr>
<td>M536</td>
<td>CREW ACTIVITIES / MAINTENANCE STUDY</td>
</tr>
<tr>
<td>M531</td>
<td>MULTIPURPOSE FURNACE SYSTEM</td>
</tr>
<tr>
<td>M535</td>
<td>IMMACULATE ALLOY COMPOSITIONS</td>
</tr>
<tr>
<td>M558</td>
<td>RADIOACTIVE TRACER DIFFUSION</td>
</tr>
<tr>
<td>M559</td>
<td>MICROSEGREGATION IN GERMANIUM</td>
</tr>
<tr>
<td>M560</td>
<td>GROWTH OF SPHERICAL CRYSTALS</td>
</tr>
<tr>
<td>M561</td>
<td>WHISKER-REINFORCED COMPOSITES</td>
</tr>
<tr>
<td>M562</td>
<td>INDUMI ANTIMONIDE CRYSTALS</td>
</tr>
<tr>
<td>M563</td>
<td>MIXED M V CRYSTALS GROWTH</td>
</tr>
<tr>
<td>M564</td>
<td>METAL AND HALIDE CRYSTALS</td>
</tr>
<tr>
<td>M565</td>
<td>SILVER GRIDS MELTED IN SPACE</td>
</tr>
<tr>
<td>M566</td>
<td>COPPER-ALUMINUM CRYSTALS</td>
</tr>
<tr>
<td>T003</td>
<td>IN-FLIGHT AEROSOL ANALYSIS</td>
</tr>
<tr>
<td>T027</td>
<td>ATM CONTAMINATION MEASUREMENT</td>
</tr>
<tr>
<td>T053</td>
<td>EARTH LASER BEACON</td>
</tr>
</tbody>
</table>

STS3 1982 Latex Spheres
STS9 1983 Spacelab 1
STS17 1985 Spacelab 3
STS51B 1985 Spacelab 2
STS61A 1985 Spacelab D1
STS40 1991 Spacelab LS1
STS42 1992 IML1
STS50 1992 USML
STS46 1992 EUREKA
STS47 1992 Spacelab-J
STS55 1993 Spacelab D2
STS57 1993 LEMZ
STS60 1994 CLPS
STS62 1994 USMP2
STS65 1994 IML2
STS73 1995 USML2
STS76 1996 QUELD LPS
STS77 1996 CFZF SEF
STS78 1996 LM2
STS94 1997 MSL
STS87 1997 USMP4

STS3 Latex Spheres
STS9 InP
THM
IML1
Hg I
VCG
USMP2
IDGE
Long Duration Microgravity Physical Sciences Research

<table>
<thead>
<tr>
<th>ISS Era</th>
<th>Exploration Era</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000 to 2024</td>
<td>2024 to -</td>
</tr>
<tr>
<td>STS and ISS</td>
<td>Moon / Mars / Others</td>
</tr>
</tbody>
</table>

ST107 2003 Columbia
ISS Assembly
Destiny Lab – MSRR
MICAST
ICDGSC
GTCS
DSI
SETA
METCOMP
CETSOL
SISSI
GEDS
FOGS
FAMIS
µg Science Glovebox
CSLM
PFMI
SUBSA
Maintenance Workbench
ISSI
Columbus Laboratory – ESL
THERMOLAB
QUASI
PARSEC
Russian Lab
Japanese Module JEM

In-Situ Resource Utilization
In Space Fabrication and Repair
Summary

Microgravity materials science arguably began in 1753

First long duration μg experiments were Apollo, Soyuz, MIR, Skylab
 - Much Russian welding work
 - Wide range of Skylab materials experiments

Spirited period of μg materials science was during the Shuttle age
 - Many dedicated flights
 - Generally good documentation of results
 - Advances made in our scientific understanding
 → Metals processing, semiconductors, crystal growth, dendritic growth, nucleation

Hiatus due to Columbia tragedy, ISS construction

Microgravity materials science initiated on the ISS
 - Generally good results, still a long line of experiments