Internal Charging

Joseph I Minow
NASA/MSFC
7th CCMC Workshop
31 March – 4 April 2014
joseph.minow@nasa.gov
NASA Goddard Space Flight Center, Space Weather Research Center (SWRC)

Message Type: Space Weather Alert

Message Issue Date: 2013-07-12T11:35:00Z

Message ID: 20130712-AL-001

Summary:

Significantly elevated energetic electron fluxes in the Earth’s outer radiation belt. GOES 13 "greater than 0.8 MeV" integral electron flux is above \(10^5\) pfu starting at 2013-07-12T11:00Z.

Spacecraft at GEO, MEO and other orbits passing through or in the vicinity of the Earth’s outer radiation belt can be impacted.

Activity ID: 2013-07-12T11:00:00-RBE-001.

Outline

- Internal charging
- MeV electron fluence threat thresholds
- NUMIT internal charging model
- Real time GEO internal charging tool
- LEO internal charging tool
• High energy (>100 keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors

• Threat environment is energetic electrons with sufficient flux to charge circuit boards, cable insulation, and ungrounded metal faster than charge can dissipate

• Accumulating charge density generates electric fields in excess of material breakdown strength resulting in electrostatic discharge

• System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise

PMMA (acrylic) charged by ~2 to 5 MeV electrons
MeV Electron Threat Fluence Thresholds

- **NASA-HBK-4002A:** ~MeV electron flux \(\geq 9 \times 10^4 \text{ e/cm}^2\text{-sec-sr} \)
 \((10^{10} \text{ e/cm}^2 \text{ in 10 hours})\)
- **CCMC/SWRC:** > 0.8 MeV electron flux > 1 \times 10^5 \text{ e/cm}^2\text{-sec-sr}
- **NOAA/SWPC:** >2 MeV electron flux > 1 \times 10^3 \text{ e/cm}^2\text{-sec-sr}
NUMIT Model for EVA Suit Charging

- NUMIT computes charge deposition, electric field as function of depth in insulating materials due to radiation charging by electrons
- Five material layers parameterized by electrical resistivity, radiation induced conductivity parameters, dielectric constant

![Diagram of EVA Suit Charging](image)

Table 1-2 NUMIT Model, Existing Suit

<table>
<thead>
<tr>
<th>Layer</th>
<th>Z_{eff}</th>
<th>A_{eff}</th>
<th>Density (g/cm3)</th>
<th>Vol. Resis. (S/m)</th>
<th>κ</th>
<th>RIC (S/m)</th>
<th>RIC Exp</th>
<th>Depth (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.25</td>
<td>17.19</td>
<td>0.429</td>
<td>1.00E+16</td>
<td>2</td>
<td>1.00E+14</td>
<td>0.7</td>
<td>0.114</td>
</tr>
<tr>
<td>2</td>
<td>5.484</td>
<td>10.008</td>
<td>1.225</td>
<td>1.00E+12</td>
<td>2</td>
<td>1.00E+14</td>
<td>0.7</td>
<td>0.137</td>
</tr>
<tr>
<td>3</td>
<td>6.24</td>
<td>11.99</td>
<td>0.752</td>
<td>1.00E+17</td>
<td>2</td>
<td>1.00E+14</td>
<td>0.7</td>
<td>0.165</td>
</tr>
<tr>
<td>4</td>
<td>6.083</td>
<td>11.291</td>
<td>0.501</td>
<td>1.00E+15</td>
<td>4</td>
<td>1.00E+14</td>
<td>0.7</td>
<td>0.193</td>
</tr>
<tr>
<td>5</td>
<td>5.484</td>
<td>10.008</td>
<td>3.031</td>
<td>1.00E+12</td>
<td>2</td>
<td>1.00E+14</td>
<td>0.7</td>
<td>0.244</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>31.541</td>
<td>60.487</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>6.3082</td>
<td>12.0974</td>
<td></td>
<td></td>
<td></td>
<td>1.1876</td>
</tr>
<tr>
<td>Wt Ave</td>
<td></td>
<td></td>
<td>6.0847</td>
<td>11.555</td>
<td></td>
<td></td>
<td></td>
<td>2.0485</td>
</tr>
</tbody>
</table>

Layer Number	Material
--- | space (outside of suit)
1 | Teflon/Nomex/Kevlar
2 | Neoprene coated Nylon
3 | Dacron polyester
4 | Urethane coated Nylon
5 | Nylon chiffon, Nylon Spandex, water cooling tubes
--- | skin (inside suit)
EVA Suit Study Environment

LANL/GEO: LANL-01A

2003lan01_5min.sav

0.050-0.075 MeV
0.075-0.105 MeV
0.105-0.150 MeV
0.150-0.225 MeV
0.225-0.315 MeV
0.315-0.500 MeV
0.500-0.750 MeV
0.750-1.1 MeV
1.1-1.5 MeV
0.7-1.8 MeV
1.8-2.2 MeV
2.2-2.7 MeV
2.7-3.5 MeV
3.5-4.5 MeV
4.5-6.0 MeV
6.0-7.8 MeV
7.8-10.8 MeV
10.8-25.8 MeV

$e^{-}/cm^{2}-sec-sr-MeV$

Day of Year

3/30/2014
EVA Suit Study Environment

draw_flux_ts_215.11186.txt → test_env.txt

LANL/GEO: LANL-01A

2003lan01_5min.sav

8 hours 16 hours
Interpolation records for filling data gaps

3/30/2014
Arms and Lower Torso

Current Design*

<table>
<thead>
<tr>
<th>Layer</th>
<th>κ</th>
<th>σ (S/m)</th>
<th>Depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0</td>
<td>10^{-16}</td>
<td>1.14</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>10^{-12}</td>
<td>1.37</td>
</tr>
<tr>
<td>3</td>
<td>2.0</td>
<td>10^{-17}</td>
<td>1.65</td>
</tr>
<tr>
<td>4</td>
<td>4.0</td>
<td>10^{-15}</td>
<td>1.93</td>
</tr>
<tr>
<td>5</td>
<td>2.0</td>
<td>10^{-12}</td>
<td>2.44</td>
</tr>
</tbody>
</table>

Z$_{\text{eff}}$ = 6

A_{eff} = 12

2.04 g/cm3

Kp = 10^{-14} S-sec/m-rad

Δ = 0.7

ΔT = 1.0 sec

*Using material spec for nylon conductivity

$\sigma = 10^{-12}$ S/m

geo_flux_ts_215.11186.txt → test_env.txt

3/30/2014
Case 1c

30 mm
0.14 g/cm³
κ=1.13
10⁻¹³ S/m
τ~100 sec

Simulated:
30 days
(720 hours)

Δt=30 sec

LANL-01 2003
geo_flux_ts_1.0017361.txt
30 days
Case 2a

60 mm
0.14 g/cm³
κ=1.13
10^{-19} S/m
τ~1157 days

Simulated:
30 days
(720 hours)

Δt=300 sec

LANL-01 2003
geo_flux_ts_1.0017361.txt
30 days
Time constant for charge decay through conduction: \(\tau = \kappa \varepsilon_0 / \sigma \)

<table>
<thead>
<tr>
<th>(\kappa)</th>
<th>(\sigma) (S/m)</th>
<th>(\tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10(^{-12})</td>
<td>(\sim 18) sec</td>
</tr>
<tr>
<td>2</td>
<td>10(^{-13})</td>
<td>(\sim 3) min</td>
</tr>
<tr>
<td>2</td>
<td>10(^{-14})</td>
<td>(\sim 30) min</td>
</tr>
<tr>
<td>2</td>
<td>10(^{-15})</td>
<td>(\sim 5) hr</td>
</tr>
<tr>
<td>2</td>
<td>10(^{-16})</td>
<td>(\sim 2) days</td>
</tr>
</tbody>
</table>

Electric fields resulting from internal (deep dielectric) charging as function of depth in dielectric material and electrical conductivity. Fields are updated at 5 minute intervals using NOAA GOES >0.8 MeV, >2.0 MeV electron data.
Geostationary Orbit Internal Charging Tool

GEO Internal Charging Model using GOES-13 e- Flux Data
Data Extracted: 2013 08 26 0000 GMT

GOES Electron Flux (5 minute data)

Begin: 2013 Aug 26 0000 UTC

Updated 2013 Aug 28 23:56:03 UTC
NOAA/SWPC Boulder, CO USA
Geostationary Orbit Internal Charging Tool

GEO Internal Charging Model using GOES-13 e- Flux Data
Data Extracted: 2013 08 26 0900 GMT

GOES Electron Flux (5 minute data)
Begin: 2013 Aug 26 0000 UTC

Updated 2013 Aug 28 23:56:03 UTC
NOAA/SWPC Boulder, CO USA
Geostationary Orbit Internal Charging Tool

GEO Internal Charging Model using GOES-13 e- Flux Data
Data Extracted: 2013 08 26 1800 GMT

GOES Electron Flux (5 minute data)

Updated 2013 Aug 28 23:56:03 UTC
NOAA/SWPC Boulder, CO USA
Geostationary Orbit Internal Charging Tool

GEO Internal Charging Model using GOES-13 e- Flux Data
Data Extracted: 2013 08 27 0300 GMT

GOES Electron Flux (5 minute data)
Begin: 2013 Aug 26 0000 UTC

Updated 2013 Aug 28 23:56:03 UTC
NOAA/SWPC Boulder, CO USA
Geostationary Orbit Internal Charging Tool

GEO Internal Charging Model using GOES-13 e- Flux Data
Data Extracted: 2013 08 27 2100 GMT

GOES Electron Flux (5 minute data)

Updated 2013 Aug 28 23:56:03 UTC
NOAA/SWPC Boulder, CO USA
Geostationary Orbit Internal Charging Tool

GEO Internal Charging Model using GOES-13 e- Flux Data
Data Extracted: 2013 08 28 0600 GMT

GOES Electron Flux (5 minute data)

Updated 2013 Aug 28 23:56:03 UTC
NOAA/SWPC Boulder, CO USA
Geostationary Orbit Internal Charging Tool

GEO Internal Charging Model using GOES-13 e- Flux Data
Data Extracted: 2013 08 28 1500 GMT

GOES Electron Flux (5 minute data)
Begin: 2013 Aug 26 0000 UTC

Updated 2013 Aug 28 23:56:03 UTC
NOAA/SWPC Boulder, CO USA
Radiation Shielding Option

0.069 g/cm² Al shielding
(0.256 mm)
Input Data Options

GOES Electron Flux (5 minute data) Begin: 2011 Jun 18 0000 UTC

Updated 2011 Jun 20 17:36:02 UTC
NOAA/SWPC Boulder, CO USA

Fok Radiation Belt Model
[iswa.ccmc.gsfc.nasa.gov]

08/18/2011 Time = 12:00:00 UT En = 425 keV
solid line: Fok-RB boundary

0.425 MeV
2.00 MeV

Radiation Belt Model

Updated 2011 Jun 20 17:36:02 UTC
NOAA/SWPC Boulder, CO USA
LEO Internal Charging Model

• 1-D internal charging simulation treating electron flux responsible for charging dielectric materials (or isolated conductors) covered by thin shielding (e.g., MLI):

\[\kappa \varepsilon_0 \frac{dE}{dt} + \sigma E = J_p \]

where \(J_p \) is the integral electron current density penetrating the MLI shielding, \(\kappa \) is the dielectric constant, \(\varepsilon_0 \) the permittivity of free space, and \(\sigma \) the electrical conductivity of the dielectric material.

• Compute electric field \(E \) and potential \(\Phi \) as function of time using electron flux measurements from NOAA-19 for the incident electron current density, \(J_p \).

• Conductivity \(\sigma \) due only to “dark” conductivity, neglect radiation induced conductivity
 – Charge loss process due to conduction to ground slows charge accumulation rate and limits ESD events in lower flux environments.
 – Charge, electric field will establishes an equilibrium \(E \sim J/\sigma \) if charging time constant \(\tau = \kappa \varepsilon_0 / \sigma \) for charge loss through conduction is short compared to exposure time.
 – Finite amount of time required for charge to decay through conduction after exposure to electrons.

• Electric field enhancement factor included to account for sharp edges.
LEO Internal Charging Model

$J_e(>150.0\text{ keV}) - J_e(>300.0\text{ keV})$ electrons

Simulated: 0 discharges
Inf days/event
NOAA-19: pi^*(0deg + 90deg)
Model 2, $\tau = 40.97$ days

10.000 cm \times 3.000 cm \times 0.200 mm
$k = 4.00$
Dielectric strength = 2.50×10^7 V/m
$0.10 < \text{frac. discharged} < 0.30$
1.0x field enhancement
1.00×10^7 ohm-m
LEO Internal Charging Model

\[J_e(> 150.0 \text{ keV}) - J_e(> 300.0 \text{ keV}) \text{ electrons} \]

- Simulated: 65 discharges
- 6.6 days/event
- NOAA-19: pi*(0deg + 90deg)
- Model 2, \(\tau = 409.72 \text{ days} \)

- \(10,000 \text{ cm} \times 3,000 \text{ cm} \times 0.200 \text{ mm} \)
- \(k = 4.00 \)
- Dielectric strength = \(2.50 \times 10^{-7} \text{ V/m} \)
- \(0.10 < \text{frac. discharged} < 0.30 \)
- 10.0x field enhancement
- 1.00e+18 ohm-m
LEO Internal Charging Model

Dimensions (LxWxD): 10.000 cm x 3.000 cm x 0.200 mm

Volume resistivity: 1.000e+018 ohm-m
Kappa: 4.0000

Dielectric strength: 2.500e+007 V/m
Efield enhancement: 10.0x

Capacitance: 5.310e-010 Farads
Conduction time constant: 409.7222 days

Fraction (f) discharged: 0.100 < f < 0.300

NOAA-19 electrons: \(\pi \times (0 \text{deg} + 90 \text{deg}) \)

Electron energy: 150.0000 keV - 300.0000 keV

<table>
<thead>
<tr>
<th>Arc</th>
<th>Decimal</th>
<th>Day of Year (UT)</th>
<th>Year (UT)</th>
<th>Fraction Discharged</th>
<th>Surface Voltage (Volts)</th>
<th>Arc Energy (mJoule)</th>
<th>Arc Current (Amp) 0.10 us</th>
<th>Arc Current (Amp) 1.00 us</th>
<th>Arc Current (Amp) 10.00 us</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2012.0710</td>
<td>26.9785</td>
<td>0.2283</td>
<td>500.0</td>
<td>385.9</td>
<td>0.0268</td>
<td>6.06e-001</td>
<td>6.06e-002</td>
<td>6.06e-003</td>
</tr>
<tr>
<td>1</td>
<td>2012.1039</td>
<td>39.0314</td>
<td>0.2004</td>
<td>500.0</td>
<td>399.8</td>
<td>0.0239</td>
<td>5.32e-001</td>
<td>5.32e-002</td>
<td>5.32e-003</td>
</tr>
<tr>
<td>2</td>
<td>2012.1290</td>
<td>48.2109</td>
<td>0.2537</td>
<td>500.0</td>
<td>373.2</td>
<td>0.0294</td>
<td>6.73e-001</td>
<td>6.73e-002</td>
<td>6.73e-003</td>
</tr>
<tr>
<td>3</td>
<td>2012.1399</td>
<td>52.2185</td>
<td>0.2410</td>
<td>500.0</td>
<td>379.5</td>
<td>0.0281</td>
<td>6.40e-001</td>
<td>6.40e-002</td>
<td>6.40e-003</td>
</tr>
<tr>
<td>4</td>
<td>2012.1837</td>
<td>68.2398</td>
<td>0.2647</td>
<td>500.1</td>
<td>367.7</td>
<td>0.0305</td>
<td>7.03e-001</td>
<td>7.03e-002</td>
<td>7.03e-003</td>
</tr>
<tr>
<td>5</td>
<td>2012.1874</td>
<td>69.5824</td>
<td>0.1438</td>
<td>500.6</td>
<td>428.6</td>
<td>0.0178</td>
<td>3.82e-001</td>
<td>3.82e-002</td>
<td>3.82e-003</td>
</tr>
<tr>
<td>6</td>
<td>2012.1891</td>
<td>70.2203</td>
<td>0.1002</td>
<td>500.0</td>
<td>449.9</td>
<td>0.0126</td>
<td>2.66e-001</td>
<td>2.66e-002</td>
<td>2.66e-003</td>
</tr>
<tr>
<td>7</td>
<td>2012.1909</td>
<td>70.8707</td>
<td>0.1937</td>
<td>500.1</td>
<td>403.3</td>
<td>0.0232</td>
<td>5.14e-001</td>
<td>5.14e-002</td>
<td>5.14e-003</td>
</tr>
<tr>
<td>8</td>
<td>2012.1942</td>
<td>72.0668</td>
<td>0.1379</td>
<td>500.0</td>
<td>431.1</td>
<td>0.0170</td>
<td>3.66e-001</td>
<td>3.66e-002</td>
<td>3.66e-003</td>
</tr>
<tr>
<td>9</td>
<td>2012.1965</td>
<td>72.9144</td>
<td>0.1782</td>
<td>500.0</td>
<td>410.9</td>
<td>0.0215</td>
<td>4.73e-001</td>
<td>4.73e-002</td>
<td>4.73e-003</td>
</tr>
<tr>
<td>10</td>
<td>2012.2000</td>
<td>74.1920</td>
<td>0.2192</td>
<td>500.0</td>
<td>390.4</td>
<td>0.0259</td>
<td>5.82e-001</td>
<td>5.82e-002</td>
<td>5.82e-003</td>
</tr>
</tbody>
</table>
Questions?